Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting metabolic dysregulation for fibrosis therapy

Abstract

Fibrosis is the abnormal deposition of extracellular matrix, which can lead to organ dysfunction, morbidity, and death. The disease burden caused by fibrosis is substantial, and there are currently no therapies that can prevent or reverse fibrosis. Metabolic alterations are increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types. As a result, metabolically targeted therapies could become important strategies for fibrosis reduction. Indeed, some of the pathways targeted by antifibrotic drugs in development — such as the activation of transforming growth factor-β and the deposition of extracellular matrix — have metabolic implications. This Review summarizes the evidence to date and describes novel opportunities for the discovery and development of drugs for metabolic reprogramming, their associated challenges, and their utility in reducing fibrosis. Fibrotic therapies are potentially relevant to numerous common diseases such as cirrhosis, non-alcoholic steatohepatitis, chronic renal disease, heart failure, diabetes, idiopathic pulmonary fibrosis, and scleroderma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disease burden of fibrosis.
Fig. 2: TGFβ signalling pathway.
Fig. 3: Major metabolic pathways involved in fibrosis and antifibrosis drug targets.
Fig. 4: Collagen production and degradation.

Similar content being viewed by others

References

  1. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ley, B. & Collard, H. R. Epidemiology of idiopathic pulmonary fibrosis. Clin. Epidemiol. 5, 483–492 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Conrad, N. et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391, 572–580 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Furst, D. E., Fernandes, A. W., Iorga, S. R., Greth, W. & Bancroft, T. Epidemiology of systemic sclerosis in a large US managed care population. J. Rheumatol. 39, 784–786 (2012).

    PubMed  Google Scholar 

  5. Fleming, K. M., Aithal, G. P., Solaymani-Dodaran, M., Card, T. R. & West, J. Incidence and prevalence of cirrhosis in the United Kingdom, 1992-2001: a general population-based study. J. Hepatol. 49, 732–738 (2008).

    PubMed  Google Scholar 

  6. Harris, R., Harman, D. J., Card, T. R., Aithal, G. P. & Guha, I. N. Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterol. Hepatol. 2, 288–297 (2017).

    PubMed  Google Scholar 

  7. van Blijderveen, J. C. et al. A population-based study on the prevalence and incidence of chronic kidney disease in the Netherlands. Int. Urol. Nephrol. 46, 583–592 (2014).

    PubMed  Google Scholar 

  8. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    PubMed  Google Scholar 

  9. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed  Google Scholar 

  10. Sayiner, M., Koenig, A., Henry, L. & Younossi, Z. M. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the united states and the rest of the world. Clin. Liver Dis. 20, 205–214 (2016).

    PubMed  Google Scholar 

  11. Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, Y., Xiao, L., Sun, L. & Liu, F. Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol. Res. 61, 337–346 (2012).

    CAS  PubMed  Google Scholar 

  13. Attisano, L. & Wrana, J. L. Signal transduction by the TGF-beta superfamily. Science 296, 1646–1647 (2002).

    CAS  PubMed  Google Scholar 

  14. Secker, G. A. et al. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp. Cell Res. 314, 131–142 (2008).

    CAS  PubMed  Google Scholar 

  15. Xie, L. et al. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 6, 603–610 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayashida, T., Decaestecker, M. & Schnaper, H. W. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. FASEB J. 17, 1576–1578 (2003).

    CAS  PubMed  Google Scholar 

  17. Li, X., Meng, Y., Yang, X. S., Mi, L. F. & Cai, S. X. ACEI attenuates the progression of CCl4-induced rat hepatic fibrogenesis by inhibiting TGF-beta1, PDGF-BB, NF-kappaB and MMP-2,9. World J. Gastroenterol. 11, 4807–4811 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lan, R. et al. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am. J. Physiol. Ren. Physiol. 302, F1210–F1223 (2012).

    CAS  Google Scholar 

  19. Kattla, J. J., Carew, R. M., Heljic, M., Godson, C. & Brazil, D. P. Protein kinase B/Akt activity is involved in renal TGF-beta1-driven epithelial-mesenchymal transition in vitro and in vivo. Am. J. Physiol Ren. Physiol. 295, F215–F225 (2008).

    CAS  Google Scholar 

  20. Ono, K., Ohtomo, T., Ninomiya-Tsuji, J. & Tsuchiya, M. A dominant negative TAK1 inhibits cellular fibrotic responses induced by TGF-beta. Biochem. Biophys. Res. Commun. 307, 332–337 (2003).

    CAS  PubMed  Google Scholar 

  21. Gu, J. et al. Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp. Cell Res. 318, 2105–2115 (2012).

    CAS  PubMed  Google Scholar 

  22. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577–584 (2003).

    CAS  PubMed  Google Scholar 

  23. Philips, G. M. et al. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLOS ONE 6, e23943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shirasaki, T. et al. Impaired interferon signaling in chronic hepatitis C patients with advanced fibrosis via the transforming growth factor beta signaling pathway. Hepatology 60, 1519–1530 (2014).

    CAS  PubMed  Google Scholar 

  25. Djudjaj, S. et al. Notch-3 receptor activation drives inflammation and fibrosis following tubulointerstitial kidney injury. J. Pathol. 228, 286–299 (2012).

    CAS  PubMed  Google Scholar 

  26. Matsuno, Y., Coelho, A. L., Jarai, G., Westwick, J. & Hogaboam, C. M. Notch signaling mediates TGF-β1-induced epithelial-mesenchymal transition through the induction of Snai1. Int. J. Biochem. Cell Biol. 44, 776–789 (2012).

    CAS  PubMed  Google Scholar 

  27. Stratton, R. et al. Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway. FASEB J. 16, 1949–1951 (2002).

    CAS  PubMed  Google Scholar 

  28. Armendariz-Borunda, J., Katayama, K. & Seyer, J. M. Transcriptional mechanisms of type I collagen gene expression are differentially regulated by interleukin-1 beta, tumor necrosis factor alpha, and transforming growth factor beta in Ito cells. J. Biol. Chem. 267, 14316–14321 (1992).

    CAS  PubMed  Google Scholar 

  29. Akhmetshina, A. et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun. 3, 735 (2012).

    PubMed  Google Scholar 

  30. Guo, X. & Wang, X. F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 19, 71–88 (2009).

    CAS  PubMed  Google Scholar 

  31. Varga, J. & Jimenez, S. A. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-beta. Biochem. Biophys. Res. Commun. 138, 974–980 (1986).

    CAS  PubMed  Google Scholar 

  32. Hoff, C. R., Perkins, D. R. & Davidson, J. M. Elastin gene expression is upregulated during pulmonary fibrosis. Connect. Tissue Res. 40, 145–153 (1999).

    CAS  PubMed  Google Scholar 

  33. Bouzeghrane, F., Reinhardt, D. P., Reudelhuber, T. L. & Thibault, G. Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am. J. Physiol. Heart Circ. Physiol. 289, H982–H991 (2005).

    CAS  PubMed  Google Scholar 

  34. Muro, A. F. et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 177, 638–645 (2008).

    CAS  PubMed  Google Scholar 

  35. Van Berlo, J. H. et al. A-type lamins are essential for TGF-beta1 induced PP2A to dephosphorylate transcription factors. Hum. Mol. Genet. 14, 2839–2849 (2005).

    PubMed  Google Scholar 

  36. Bensadoun, E. S., Burke, A. K., Hogg, J. C. & Roberts, C. R. Proteoglycan deposition in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 154, 1819–1828 (1996).

    CAS  PubMed  Google Scholar 

  37. Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue repair and fibrosis. J. Pathol. 229, 298–309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schlingensiepen, R. et al. Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15, 94–104 (2005).

    CAS  PubMed  Google Scholar 

  39. Schlingensiepen, K. H. et al. Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci. 102, 1193–1200 (2011).

    CAS  PubMed  Google Scholar 

  40. Schlingensiepen, K. H. et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev. 17, 129–139 (2006).

    CAS  PubMed  Google Scholar 

  41. Santiago, B. et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J. Invest. Dermatol. 125, 450–455 (2005).

    CAS  PubMed  Google Scholar 

  42. Laping, N. J. et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol. Pharmacol. 62, 58–64 (2002).

    CAS  PubMed  Google Scholar 

  43. Zhou, C. et al. A targeted transforming growth factor-beta (TGF-β) blocker, TTB, inhibits tumor growth and metastasis. Oncotarget 9, 23102–23113 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Nam, J. S. et al. An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res. 68, 3835–3843 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    CAS  PubMed  Google Scholar 

  46. Daniels, C. E. et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114, 1308–1316 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rangarajan, S. et al. Novel mechanisms for the antifibrotic action of nintedanib. Am. J. Respir. Cell Mol. Biol. 54, 51–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sato, S. et al. Anti-fibrotic efficacy of nintedanib in pulmonary fibrosis via the inhibition of fibrocyte activity. Respir. Res. 18, 172 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Iyer, S. N., Gurujeyalakshmi, G. & Giri, S. N. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J. Pharmacol. Exp. Ther. 291, 367–373 (1999).

    CAS  PubMed  Google Scholar 

  51. Oku, H., Nakazato, H., Horikawa, T., Tsuruta, Y. & Suzuki, R. Pirfenidone suppresses tumor necrosis factor-alpha, enhances interleukin-10 and protects mice from endotoxic shock. Eur. J. Pharmacol. 446, 167–176 (2002).

    CAS  PubMed  Google Scholar 

  52. Meng, X. M. et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 81, 266–279 (2012).

    CAS  PubMed  Google Scholar 

  53. O’Kane, S. & Ferguson, M. W. Transforming growth factor βs and wound healing. Int. J. Biochem. Cell Biol. 29, 63–78 (1997).

    CAS  PubMed  Google Scholar 

  54. Principe, D. R. et al. TGF-β: duality of function between tumor prevention and carcinogenesis. J. Natl Cancer Inst. 106, djt369 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    CAS  PubMed  Google Scholar 

  56. Jiang, L. et al. Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene 34, 3908–3916 (2015).

    CAS  PubMed  Google Scholar 

  57. Kang, Y. P. et al. Metabolic profiling regarding pathogenesis of idiopathic pulmonary fibrosis. J. Proteome Res. 15, 1717–1724 (2016).

    CAS  PubMed  Google Scholar 

  58. Win, T. et al. Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients. Eur. J. Nucl. Med. Mol. Imaging. 41, 337–342 (2014).

    PubMed  Google Scholar 

  59. Calvier, L. et al. PPARγ Links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism. Cell Metab. 25, 1118–1134.e1117 (2017).

    CAS  PubMed  Google Scholar 

  60. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  61. Ueno, M. et al. Hypoxia-inducible factor-1α mediates TGF-β-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 300, L740–L752 (2011).

    CAS  PubMed  Google Scholar 

  62. Goodwin, J. et al. Targeting hypoxia-inducible factor-1α/pyruvate dehydrogenase kinase 1 axis by dichloroacetate suppresses bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58, 216–231 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ha, H., Yu, M. R. & Lee, H. B. High glucose-induced PKC activation mediates TGF-beta 1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney Int. 59, 463–470 (2001).

    CAS  PubMed  Google Scholar 

  65. Cheng, X. et al. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J. Diabetes Res. 2013, 463740 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Singh, V. P., Baker, K. M. & Kumar, R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am. J. Physiol. Heart Circ. Physiol. 294, H1675–H1684 (2008).

    CAS  PubMed  Google Scholar 

  67. Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015). This study reveals increased glycolysis as an important promoter of lung myofibroblast differentiation. Further, it shows that inhibition of the glycolytic enzyme PFKFB3 by genetic and pharmacological means decreased lung fibrosis in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lemons, J. M. et al. Quiescent fibroblasts exhibit high metabolic activity. PLOS Biol. 8, e1000514 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoyles, R. K. et al. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor β receptor. Am. J. Respir. Crit. Care Med. 183, 249–261 (2011).

    CAS  PubMed  Google Scholar 

  71. Phillips, R. J. et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114, 438–446 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, K. K. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl Acad. Sci. USA 103, 13180–13185 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McKleroy, W., Lee, T. H. & Atabai, K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 304, L709–L721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuhn, C. et al. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am. Rev. Respir. Dis. 140, 1693–1703 (1989).

    PubMed  Google Scholar 

  75. Basak, T. et al. Comprehensive characterization of glycosylation and hydroxylation of basement membrane collagen iv by high-resolution mass spectrometry. J. Proteome Res. 15, 245–258 (2016).

    CAS  PubMed  Google Scholar 

  76. Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. & San Antonio, J. D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277, 4223–4231 (2002).

    PubMed  Google Scholar 

  77. Cheng, T. et al. Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation. J. Mol. Cell Biol. 6, 506–515 (2014).

    CAS  PubMed  Google Scholar 

  78. López, B. et al. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am. J. Physiol. Heart Circ. Physiol. 299, H1–H9 (2010).

    PubMed  Google Scholar 

  79. de Paz-Lugo, P., Lupiáñez, J. A. & Meléndez-Hevia, E. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids 50, 1357–1365 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Im, M. J., Freshwater, M. F. & Hoopes, J. E. Enzyme activities in granulation tissue: energy for collagen synthesis. J. Surg. Res. 20, 121–125 (1976).

    CAS  PubMed  Google Scholar 

  81. Keppler, D. O. & Hübner, G. Liver injury induced by 2-deoxy-D-galactose. Exp. Mol. Pathol. 19, 365–377 (1973).

    CAS  PubMed  Google Scholar 

  82. Schietke, R. et al. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J. Biol. Chem. 285, 6658–6669 (2010).

    CAS  PubMed  Google Scholar 

  83. Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12, 149–162 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Morell, B. & Froesch, E. R. Fibroblasts as an experimental tool in metabolic and hormone studies. I. Growth and glucose metabolism of fibroblasts in culture. Eur. J. Clin. Invest. 3, 112–118 (1973).

    CAS  PubMed  Google Scholar 

  85. Kruse, N. J. & Bornstein, P. The metabolic requirements for transcellular movement and secretion of collagen. J. Biol. Chem. 250, 4841–4847 (1975).

    CAS  PubMed  Google Scholar 

  86. Vincent, A. S. et al. Human skin keloid fibroblasts display bioenergetics of cancer cells. J. Invest. Dermatol. 128, 702–709 (2008).

    CAS  PubMed  Google Scholar 

  87. Nishikawa, T. et al. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. J. Hepatol. 60, 1203–1211 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Ren. Physiol. 313, F561–F575 (2017). This study shows the role of aerobic glycolysis in renal fibroblast activation and the therapeutic effect of pharmacological reduction of the phosphorylation of PKM2 (a rate-limiting glycolytic enzyme) to decrease mouse renal fibrosis.

    CAS  Google Scholar 

  89. Álvarez, D. et al. IPF lung fibroblasts have a senescent phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1164–L1173 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Zhao, Y. D. et al. Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study. BMJ Open Respir. Res. 4, e000183 (2017). This study performed mass spectrometry-based metabolomic profiling of lung tissue from patients with and without IPF and identified disruption of 108 metabolites indicative of altered glycolysis, mitochondrial β-oxidation and citric acid cycle, bile acid, haem and amino acid metabolism.

    PubMed  PubMed Central  Google Scholar 

  91. Schultz, G. S., Davidson, J. M., Kirsner, R. S., Bornstein, P. & Herman, I. M. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 19, 134–148 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).

    CAS  PubMed  Google Scholar 

  93. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lim, D. H. et al. Reduced peribronchial fibrosis in allergen-challenged MMP-9-deficient mice. Am. J. Physiol. Lung Cell Mol. Physiol. 291, L265–L271 (2006).

    CAS  PubMed  Google Scholar 

  95. Li, A. H., Liu, P. P., Villarreal, F. J. & Garcia, R. A. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives. Circ. Res. 114, 916–927 (2014).

    CAS  PubMed  Google Scholar 

  96. Yamashita, C. M. et al. Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am. J. Pathol. 179, 1733–1745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. García-Prieto, E. et al. Resistance to bleomycin-induced lung fibrosis in MMP-8 deficient mice is mediated by interleukin-10. PLOS ONE 5, e13242 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell Physiol. 227, 493–507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tuan, T. L. et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. Am. J. Pathol. 162, 1579–1589 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Senoo, T. et al. Suppression of plasminogen activator inhibitor-1 by RNA interference attenuates pulmonary fibrosis. Thorax 65, 334–340 (2010).

    PubMed  Google Scholar 

  101. Brew, K. & Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim. Biophys. Acta 1803, 55–71 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Aoki, M. et al. siRNA knockdown of tissue inhibitor of metalloproteinase-1 in keloid fibroblasts leads to degradation of collagen type I. J. Invest. Dermatol. 134, 818–826 (2014).

    CAS  PubMed  Google Scholar 

  103. McLennan, S. V., Wang, X. Y., Moreno, V., Yue, D. K. & Twigg, S. M. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology 145, 5646–5655 (2004).

    CAS  PubMed  Google Scholar 

  104. Roten, L. et al. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J. Mol. Cell. Cardiol. 32, 109–120 (2000).

    CAS  PubMed  Google Scholar 

  105. Kassiri, Z. et al. Simultaneous transforming growth factor beta-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart. J. Biol. Chem. 284, 29893–29904 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Leco, K. J. et al. Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J. Clin. Invest. 108, 817–829 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Heymans, S. et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112, 1136–1144 (2005).

    CAS  PubMed  Google Scholar 

  108. Wang, H. et al. Tissue inhibitor of metalloproteinase 1 (TIMP-1) deficiency exacerbates carbon tetrachloride-induced liver injury and fibrosis in mice: involvement of hepatocyte STAT3 in TIMP-1 production. Cell Biosci. 1, 14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Madsen, D. H. et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J. Cell Biol. 202, 951–966 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Madsen, D. H. et al. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J. Biol. Chem. 282, 27037–27045 (2007).

    CAS  PubMed  Google Scholar 

  111. Abraham, L. C., Dice, J. F., Lee, K. & Kaplan, D. L. Phagocytosis and remodeling of collagen matrices. Exp. Cell Res. 313, 1045–1055 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ma, R. H., Tsai, C. C. & Shieh, T. Y. Increased lysyl oxidase activity in fibroblasts cultured from oral submucous fibrosis associated with betel nut chewing in Taiwan. J. Oral Pathol. Med. 24, 407–412 (1995).

    CAS  PubMed  Google Scholar 

  113. Harvey, W., Scutt, A., Meghji, S. & Canniff, J. P. Stimulation of human buccal mucosa fibroblasts in vitro by betel-nut alkaloids. Arch. Oral Biol. 31, 45–49 (1986).

    CAS  PubMed  Google Scholar 

  114. Lee, H., Overall, C. M., McCulloch, C. A. & Sodek, J. A critical role for the membrane-type 1 matrix metalloproteinase in collagen phagocytosis. Mol Biol Cell. 17, 4812–4826 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zigrino, P. et al. Fibroblast-derived MMP-14 regulates collagen homeostasis in adult skin. J. Invest. Dermatol. 136, 1575–1583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Martin, G. et al. The human fatty acid transport protein-1 (SLC27A1; FATP-1) cDNA and gene: organization, chromosomal localization, and expression. Genomics 66, 296–304 (2000).

    CAS  PubMed  Google Scholar 

  117. Ibrahimi, A. et al. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc. Natl Acad. Sci. USA 93, 2646–2651 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015). This study reveals that downregulation of fatty acid oxidation and increased intracellular lipid deposition are characteristic of renal fibrosis in mice and humans. Furthermore, it finds lack of renal fibrosis when fatty acid metabolism is normalized by genetic and pharmacological approaches.

    CAS  PubMed  Google Scholar 

  119. Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502–2509 (2006).

    CAS  PubMed  Google Scholar 

  120. Nilsson, L. et al. Unsaturated fatty acids increase plasminogen activator inhibitor-1 expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18, 1679–1685 (1998).

    CAS  PubMed  Google Scholar 

  121. Rangarajan, S. et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat. Med. 24, 1121–1127 (2018). This study reveals the role of AMPK as a regulator of mitochondrial biogenesis and normal apoptosis of lung myofibroblasts. The findings support the use of AMPK activators, such as metformin, in decreasing fibrosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lakshmi, S. P., Reddy, A. T. & Reddy, R. C. Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements. Biochem. J. 474, 1531–1546 (2017).

    CAS  PubMed  Google Scholar 

  123. Qian, J., Niu, M., Zhai, X., Zhou, Q. & Zhou, Y. β-Catenin pathway is required for TGF-β1 inhibition of PPARγ expression in cultured hepatic stellate cells. Pharmacol. Res. 66, 219–225 (2012).

    CAS  PubMed  Google Scholar 

  124. Zheng, F. et al. Upregulation of type I collagen by TGF-beta in mesangial cells is blocked by PPARgamma activation. Am. J. Physiol. Ren. Physiol. 282, F639–F648 (2002).

    CAS  Google Scholar 

  125. Wei, J. et al. PPARγ downregulation by TGFß in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLOS ONE 5, e13778 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. Zhao, X. et al. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat. Metabolism 1, 147–157 (2019). This study reveals the presence of decreased fatty acid oxidation in skin fibrosis. Furthermore, activation of fatty acid oxidation, via PPAR signalling, decreased transcriptional regulation and promoted degradation of ECM proteins.

    Google Scholar 

  127. Chen, H. et al. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice. Cell Death Dis. 6, e1597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lauber, K. et al. Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids. Cell Death Differ. 20, 1230–1240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Borregaard, N. & Herlin, T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550–557 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    CAS  PubMed  Google Scholar 

  131. Kalhan, S. C. et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 60, 404–413 (2011).

    CAS  PubMed  Google Scholar 

  132. Constantinou, M. A., Theocharis, S. E. & Mikros, E. Application of metabonomics on an experimental model of fibrosis and cirrhosis induced by thioacetamide in rats. Toxicol. Appl. Pharmacol. 218, 11–19 (2007).

    CAS  PubMed  Google Scholar 

  133. Pena, M. J. et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet. Med. 31, 1138–1147 (2014).

    CAS  PubMed  Google Scholar 

  134. Yu, B. et al. Serum metabolomic profiling and incident ckd among african americans. Clin. J. Am. Soc. Nephrol. 9, 1410–1417 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Niewczas, M. A. et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int. 85, 1214–1224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Gou, X. et al. Urinary metabonomics characterization of liver fibrosis induced by CCl4 in rats and intervention effects of Xia Yu Xue decoction. J. Pharm. Biomed. Anal. 74, 62–65 (2013).

    CAS  PubMed  Google Scholar 

  137. Bradford, B. U. et al. Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease. Toxicol. Appl. Pharmacol. 232, 236–243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Posada-Ayala, M. et al. Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int. 85, 103–111 (2014).

    CAS  PubMed  Google Scholar 

  139. Tokushige, K. et al. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol. 48, 1392–1400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schoors, S. et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19, 37–48 (2014).

    CAS  PubMed  Google Scholar 

  141. Tang, M. et al. High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol. Cell Biochem. 301, 109–114 (2007).

    CAS  PubMed  Google Scholar 

  142. Westermann, D. et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56, 641–646 (2007).

    CAS  PubMed  Google Scholar 

  143. Jia, Y. et al. Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells. Exp. Mol. Med. 50, 56 (2018).

    PubMed Central  Google Scholar 

  144. Febbraio, M., Hajjar, D. P. & Silverstein, R. L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Souza, A. C. et al. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation. Kidney Int. 89, 809–822 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gagnon, L. et al. A newly discovered antifibrotic pathway regulated by two fatty acid receptors: GPR40 and GPR84. Am. J. Pathol. 188, 1132–1148 (2018). This study identifies the therapeutic potential of targeting the fatty acid receptors GPR40 and GPR84 using a synthetic fatty acid analogue, 3-pentylbenzeneacetic acid sodium salt (PBI-4050), to reduce fibrosis.

    CAS  PubMed  Google Scholar 

  147. Jung, M. Y. et al. Fatty acid synthase is required for profibrotic TGF-β signaling. FASEB J. 32, 3803–3815 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159.e1145 (2016).

    CAS  PubMed  Google Scholar 

  149. Avouac, J. et al. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann. Rheum. Dis. 76, 1931–1940 (2017).

    CAS  PubMed  Google Scholar 

  150. Zhang, Y. et al. PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Cytokine 75, 127–135 (2015).

    CAS  PubMed  Google Scholar 

  151. Aleshin, S., Grabeklis, S., Hanck, T., Sergeeva, M. & Reiser, G. Peroxisome proliferator-activated receptor (PPAR)-gamma positively controls and PPARalpha negatively controls cyclooxygenase-2 expression in rat brain astrocytes through a convergence on PPARbeta/delta via mutual control of PPAR expression levels. Mol. Pharmacol. 76, 414–424 (2009).

    CAS  PubMed  Google Scholar 

  152. Irrcher, I., Walkinshaw, D. R., Sheehan, T. E. & Hood, D. A. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. J. Appl. Physiol. (1985). 104, 178–185 (2008).

    CAS  Google Scholar 

  153. Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol. 19, 102–112 (2005).

    CAS  PubMed  Google Scholar 

  154. Adams, A. C. et al. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J. Biol. Chem. 285, 14078–14082 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Kim, D. et al. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin. Gastroenterol. Hepatol. 16, 123–131.e121 (2018).

    CAS  PubMed  Google Scholar 

  156. Yu, G. et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 24, 39–49 (2018). This study reveals the role of thyroid hormone activity in supporting mitochondrial biogenesis and viability of alveolar epithelial cells. Administration of thyroid hormone decreased lung fibrosis in mice.

    CAS  PubMed  Google Scholar 

  157. Arena, G. et al. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ. 20, 920–930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Alonso-Merino, E. et al. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses. Proc. Natl Acad. Sci. USA 113, E3451–E3460 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lu, X. et al. Thyroid hormone inhibits TGFβ1 induced renal tubular epithelial to mesenchymal transition by increasing miR34a expression. Cell Signal. 25, 1949–1954 (2013).

    CAS  PubMed  Google Scholar 

  160. Kahn, C. R. et al. The insulin receptor and its substrate: molecular determinants of early events in insulin action. Recent Prog. Horm. Res. 48, 291–339 (1993).

    CAS  PubMed  Google Scholar 

  161. LeRoith, D., Werner, H., Beitner-Johnson, D. & Roberts, C. T. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 16, 143–163 (1995).

    CAS  PubMed  Google Scholar 

  162. Marra, F. et al. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor’s actions on hepatic stellate cells. Gastroenterology 112, 1297–1306 (1997).

    CAS  PubMed  Google Scholar 

  163. Davis, B. H., Chen, A. & Beno, D. W. Raf and mitogen-activated protein kinase regulate stellate cell collagen gene expression. J. Biol. Chem. 271, 11039–11042 (1996).

    CAS  PubMed  Google Scholar 

  164. Svegliati-Baroni, G. et al. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology 29, 1743–1751 (1999).

    CAS  PubMed  Google Scholar 

  165. Jung, U. J., Lee, M. K., Jeong, K. S. & Choi, M. S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr. 134, 2499–2503 (2004).

    CAS  PubMed  Google Scholar 

  166. Zhang, Z., Liu, H. & Liu, J. Akt activation: a potential strategy to ameliorate insulin resistance. Diabetes Res. Clin. Pract. S0168-8227, 30315–30317 (2017).

    Google Scholar 

  167. Garcia, F. A. et al. Pentoxifylline decreases glycemia levels and TNF-alpha, iNOS and COX-2 expressions in diabetic rat pancreas. Springerplus 3, 283 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. Jung, U. J., Lee, M. K., Park, Y. B., Kang, M. A. & Choi, M. S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol. 38, 1134–1145 (2006).

    CAS  PubMed  Google Scholar 

  169. Spagnolo, P. et al. Metformin does not affect clinically relevant outcomes in patients with idiopathic pulmonary fibrosis. Respiration 96, 314–322 (2018).

    CAS  PubMed  Google Scholar 

  170. Gingras, A. A. et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 579, 269–284 (2007).

    CAS  PubMed  Google Scholar 

  171. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728–1731 (2001).

    CAS  PubMed  Google Scholar 

  172. Zeng, Z. et al. Omega-3 Polyunsaturated fatty acids attenuate fibroblast activation and kidney fibrosis involving MTORC2 signaling suppression. Sci. Rep. 7, 46146 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Zabel, P., Schade, F. U. & Schlaak, M. Inhibition of endogenous TNF formation by pentoxifylline. Immunobiology 187, 447–463 (1993).

    CAS  PubMed  Google Scholar 

  174. Hotamisligil, G. S. Mechanisms of TNF-alpha-induced insulin resistance. Exp. Clin. Endocrinol. Diabetes 107, 119–125 (1999).

    CAS  PubMed  Google Scholar 

  175. Wettstein, G. et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol. Commun. 1, 524–537 (2017). This study reveals the therapeutic effects of IVA337, a pan-PPAR agonist that transcriptionally upregulates β-oxidation and fatty acid desaturation, in normalizing metabolic dysregulation and fibrosis associated with NASH.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    CAS  PubMed  Google Scholar 

  177. Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep. 6, 33453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Fiorucci, S. et al. A farnesoid x receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J. Pharmacol. Exp. Ther. 314, 584–595 (2005).

    CAS  PubMed  Google Scholar 

  179. Comeglio, P. et al. Anti-fibrotic effects of chronic treatment with the selective FXR agonist obeticholic acid in the bleomycin-induced rat model of pulmonary fibrosis. J. Steroid Biochem. Mol. Biol. 168, 26–37 (2017).

    CAS  PubMed  Google Scholar 

  180. De Magalhaes Filho, C. D., Downes, M. & Evans, R. Bile acid analog intercepts liver fibrosis. Cell 166, 789 (2016).

    PubMed  Google Scholar 

  181. Clark, J. M., Brancati, F. L. & Diehl, A. M. Nonalcoholic fatty liver disease. Gastroenterology 122, 1649–1657 (2002).

    PubMed  Google Scholar 

  182. Bruno, S. et al. Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial. BMJ 330, 932 (2005).

    PubMed  PubMed Central  Google Scholar 

  183. Yang, J. D. et al. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 59, 1406–1414 (2014).

    CAS  PubMed  Google Scholar 

  184. Peters-Golden, M. et al. Protection from pulmonary fibrosis in leukotriene-deficient mice. Am. J. Respir. Crit. Care Med. 165, 229–235 (2002).

    PubMed  Google Scholar 

  185. Devchand, P. R. et al. The PPARα–leukotriene B4 pathway to inflammation control. Nature 384, 39–43 (1996).

    CAS  PubMed  Google Scholar 

  186. Wilborn, J. et al. Constitutive activation of 5-lipoxygenase in the lungs of patients with idiopathic pulmonary fibrosis. J. Clin. Invest. 97, 1827–1836 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  188. Subramanian, A., Narayan, R. & Corsello, S. A NEXT generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Vidović, D., Koleti, A. & Schürer, S. C. Large-scale integration of small molecule-induced genome-wide transcriptional responses, kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action. Front. Genet. 5, 342 (2014).

    PubMed  PubMed Central  Google Scholar 

  190. Karatzas, E., Bourdakou, M. M., Kolios, G. & Spyrou, G. M. Drug repurposing in idiopathic pulmonary fibrosis filtered by a bioinformatics-derived composite score. Sci. Rep. 7, 12569 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Li, L. et al. Novel therapeutics identification for fibrosis in renal allograft using integrative informatics approach. Sci. Rep. 7, 39487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Stefanovic, B. & Stefanovic, L. Screening for antifibrotic compounds using high throughput system based on fluorescence polarization. Biology 3, 281–294 (2014).

    CAS  Google Scholar 

  193. Zheng, B. et al. Predicting in vivo anti-hepatofibrotic drug efficacy based on in vitro high-content analysis. PLOS ONE 6, e26230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Xu, Q., Norman, J. T., Shrivastav, S., Lucio-Cazana, J. & Kopp, J. B. In vitro models of TGF-beta-induced fibrosis suitable for high-throughput screening of antifibrotic agents. Am. J. Physiol. Ren. Physiol. 293, F631–F640 (2007).

    CAS  Google Scholar 

  195. Leite, S. B. et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78, 1–10 (2016).

    CAS  PubMed  Google Scholar 

  196. Rodansky, E. S., Johnson, L. A., Huang, S., Spence, J. R. & Higgins, P. D. Intestinal organoids: a model of intestinal fibrosis for evaluating anti-fibrotic drugs. Exp. Mol. Pathol. 98, 346–351 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Asmani, M. et al. Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nat. Commun. 9, 2066 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Kodack, D. P. et al. Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Rep. 21, 3298–3309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Korfhagen, T. R. et al. Respiratory epithelial cell expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice. J. Clin. Invest. 93, 1691–1699 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhu, Z. et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103, 779–788 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Smith, R. E. et al. A role for C-C chemokines in fibrotic lung disease. J. Leukoc. Biol. 57, 782–787 (1995).

    CAS  PubMed  Google Scholar 

  202. Chevalier, R. L., Thornhill, B. A. & Chang, A. Y. Unilateral ureteral obstruction in neonatal rats leads to renal insufficiency in adulthood. Kidney Int. 58, 1987–1995 (2000).

    CAS  PubMed  Google Scholar 

  203. Chevalier, R. L., Forbes, M. S. & Thornhill, B. A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 75, 1145–1152 (2009).

    PubMed  Google Scholar 

  204. Degryse, A. L. & Lawson, W. E. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 341, 444–449 (2011).

    PubMed  PubMed Central  Google Scholar 

  205. Schrier, D. J., Kunkel, R. G. & Phan, S. H. The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am. Rev. Respir. Dis. 127, 63–66 (1983).

    CAS  PubMed  Google Scholar 

  206. Harrison, J. H. & Lazo, J. S. High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J. Pharmacol. Exp. Ther. 243, 1185–1194 (1987).

    CAS  PubMed  Google Scholar 

  207. Yang, L. et al. Novel biomarker candidates to predict hepatic fibrosis in hepatitis C identified by serum proteomics. Dig. Dis. Sci. 56, 3305–3315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Ho, J. E. et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J. Am. Coll. Cardiol. 60, 1249–1256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Liu, T., Wang, X., Karsdal, M. A., Leeming, D. J. & Genovese, F. Molecular serum markers of liver fibrosis. Biomark. Insights 7, 105–117 (2012).

    PubMed  PubMed Central  Google Scholar 

  210. Jenkins, R. G. et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir. Med. 3, 462–472 (2015). This prospective, multicentre, observational cohort study (PROFILE) shows the presence of increased levels of MMP cleaved protein fragments in the serum of patients with IPF. This study reveals the potential utility of collagen degradation proteins as theragnostic biomarkers for lung fibrosis.

    CAS  PubMed  Google Scholar 

  211. Papasotiriou, M. et al. Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases. Nephrol. Dial. Transplant. 30, 1112–1121 (2015).

    CAS  PubMed  Google Scholar 

  212. Togao, O. et al. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 255, 772–780 (2010).

    PubMed  PubMed Central  Google Scholar 

  213. Désogère, P. et al. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci. Transl Med. 9, 384 (2017).

    Google Scholar 

  214. Goldstein, N. S., Hastah, F., Galan, M. V. & Gordon, S. C. Fibrosis heterogeneity in nonalcoholic steatohepatitis and hepatitis C virus needle core biopsy specimens. Am. J. Clin. Pathol. 123, 382–387 (2005).

    PubMed  Google Scholar 

  215. Dyvorne, H. A. et al. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection. Liver Int. 36, 659–666 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

    CAS  PubMed  Google Scholar 

  217. Jadvar, H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J. Nucl. Med. 52, 81–89 (2011).

    PubMed  Google Scholar 

  218. Fuchs, B. C. et al. Molecular MRI of collagen to diagnose and stage liver fibrosis. J. Hepatol. 59, 992–998 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Martin, P. Wound healing — aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    CAS  PubMed  Google Scholar 

  220. Stapor, P., Wang, X., Goveia, J., Moens, S. & Carmeliet, P. Angiogenesis revisited Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism role and therapeutic potential of targeting endothelial metabolism. J. Cell Sci. 127, 4331–4341 (2014).

    CAS  PubMed  Google Scholar 

  221. Xu, Y. et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 34, 1231–1239 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Home, P. D. et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373, 2125–2135 (2009).

    CAS  PubMed  Google Scholar 

  224. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    CAS  PubMed  Google Scholar 

  225. Chalasani, N. et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology 148, 1340–1352.e1347 (2015).

    PubMed  Google Scholar 

  226. Holoshitz, N., Alsheikh-Ali, A. A. & Karas, R. H. Relative safety of gemfibrozil and fenofibrate in the absence of concomitant cerivastatin use. Am. J. Cardiol. 101, 95–97 (2008).

    CAS  PubMed  Google Scholar 

  227. Peraza, M. A., Burdick, A. D., Marin, H. E., Gonzalez, F. J. & Peters, J. M. The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol. Sci. 90, 269–295 (2006).

    CAS  PubMed  Google Scholar 

  228. Faghihzadeh, F., Adibi, P., Rafiei, R. & Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res. 34, 837–843 (2014).

    CAS  PubMed  Google Scholar 

  229. Steneberg, P. et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 3, 12 (2018).

    Google Scholar 

  230. Liu, Y. et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J. Clin. Invest. 112, 1678–1687 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Erstad, D. J. et al. A novel farnesoid X receptor agonist: EDP-305, reduces fibrosis progression in animal models of fibrosis. J. Hepatology 66, S165 (2017).

    Google Scholar 

  232. Chen, H. et al. SAT-341-MET409, an optimized sustained FXR agonist, was safe and well-tolerated in a 14-day phase 1 study in healthy subjects. J. Hepatology 70, e789 (2019).

    Google Scholar 

  233. Khalil, N. et al. Phase 2 clinical trial of PBI-4050 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 53, 1800663 (2019). This study establishes the safety and efficacy of PBI-4050 as an antifibrotic therapy in patients with IPF.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Shi, J. et al. Discovery of potent and orally bioavailable dihydropyrazole GPR40 agonists. J. Med. Chem. 61, 681–694 (2018).

    CAS  PubMed  Google Scholar 

  235. Sunil, V. et al. CNX-011-67, a novel GPR40 agonist, enhances glucose responsiveness, insulin secretion and islet insulin content in n-STZ rats and in islets from type 2 diabetic patients. BMC Pharmacol. Toxicol. 15, 19 (2014).

    PubMed  PubMed Central  Google Scholar 

  236. Bazydlo, K., Buda, P., Mach, M. & Dzida, R. Discovery of CPL207-280CA, an effective and safe GPR40 agonist for the treatment of type 2 diabetes. Diabetes 67, 1189 (2018).

    Google Scholar 

  237. Takano, R. et al. Discovery of DS-1558: a potent and orally bioavailable gpr40 agonist. ACS Med. Chem. Lett. 6, 266–270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Ruzehaji, N. et al. Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis. Ann. Rheum. Dis. 75, 2175–2183 (2016).

    CAS  PubMed  Google Scholar 

  239. Kim, S. G. et al. Efficacy and safety of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 24-weeks: a multicenter, randomized, double-blind, parallel-group, placebo controlled trial. PLOS ONE 9, e92843 (2014).

    PubMed  PubMed Central  Google Scholar 

  240. Jani, R. H. et al. A multicenter, prospective, randomized, double-blind study to evaluate the safety and efficacy of saroglitazar 2 and 4 mg compared with placebo in type 2 diabetes mellitus patients having hypertriglyceridemia not controlled with atorvastatin therapy (PRESS VI). Diabetes Technol. Ther. 16, 63–71 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Oruqaj, G. et al. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling. Proc. Natl Acad. Sci. USA 112, E2048–E2057 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Ishibashi, S. et al. Efficacy and safety of pemafibrate (K-877), a selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia: results from a 24-week, randomized, double blind, active-controlled, phase 3 trial. J. Clin. Lipidol. 12, 173–184 (2018).

    PubMed  Google Scholar 

  243. Wakida, Y., Suzuki, S., Nomura, H. & Isomura, T. Additional treatment with fenofibrate for patients treated with pitavastatin under ordinary medical practice for hypertriglyceridemia in japan (APPROACH-J study). Jpn Clin. Med. 2, 57–66 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Davidson, M. H. et al. Efficacy and tolerability of atorvastatin/fenofibrate fixed-dose combination tablet compared with atorvastatin and fenofibrate monotherapies in patients with dyslipidemia: a 12-week, multicenter, double-blind, randomized, parallel-group study. Clin. Ther. 31, 2824–2838 (2009).

    CAS  PubMed  Google Scholar 

  245. Routh, R. E., Johnson, J. H. & McCarthy, K. J. Troglitazone suppresses the secretion of type I collagen by mesangial cells in vitro. Kidney Int. 61, 1365–1376 (2002).

    CAS  PubMed  Google Scholar 

  246. Weigert, C., Brodbeck, K., Bierhaus, A., Häring, H. U. & Schleicher, E. D. c-Fos-driven transcriptional activation of transforming growth factor beta-1: inhibition of high glucose-induced promoter activity by thiazolidinediones. Biochem. Biophys. Res. Commun. 304, 301–307 (2003).

    CAS  PubMed  Google Scholar 

  247. Burgess, H. A. et al. PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 288, L1146–L1153 (2005).

    CAS  PubMed  Google Scholar 

  248. McHutchison, J. et al. Farglitazar lacks antifibrotic activity in patients with chronic hepatitis C infection. Gastroenterology 138, 1365–1373 1373.e1-2 (2010).

    PubMed  Google Scholar 

  249. Bril, F. et al. Response to pioglitazone in patients with nonalcoholic steatohepatitis with vs without Type 2 diabetes. Clin. Gastroenterol. Hepatol. 16, 558–566.e552 (2018).

    CAS  PubMed  Google Scholar 

  250. Galli, A. et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 122, 1924–1940 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lisa Chong for producing the figures. The authors are funded in part by the Canadian Institutes of Health Research, Genome Canada, the Canadian Cancer Society Research Institute, the Physicians Services Incorporated Foundation, the Harry Barberian Research Scholarship, the Mariano Elia Chair in Head and Neck Cancer Research, the Peter and Shelagh Godsoe Chair in Radiation Medicine, the Princess Margaret Cancer Centre Head and Neck Translational Program, the Princess Margaret Cancer Centre Radiation Medicine Program and the Ottawa Heart Institute Research Corporation, as well by philanthropic funding from the Jesse Rasch Foundation, the Wharton family, Joe’s Team and the Ministry of Health and Long-Term Care. The views expressed in the publication are the views of the authors and do not necessarily reflect those of the Ministry of Health and Long-Term Care.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Fei-Fei Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anaerobic glycolysis

The metabolism of glucose to lactate when insufficient oxygen is present.

Aerobic glycolysis

The metabolism of glucose to lactate via glycolysis when sufficient oxygen is present.

Fibrocytes

Circulating mesenchymal cells that express vimentin and produce extracellular matrix molecules such as collagen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Kwan, J.Y.Y., Yip, K. et al. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19, 57–75 (2020). https://doi.org/10.1038/s41573-019-0040-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0040-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer