Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Adhesion G protein-coupled receptors: opportunities for drug discovery

Abstract

Adhesion G protein-coupled receptors (aGPCRs) — one of the five main families in the GPCR superfamily — have several atypical characteristics, including large, multi-domain N termini and a highly conserved region that can be autoproteolytically cleaved. Although GPCRs overall have well-established pharmacological tractability, currently no therapies that target any of the 33 members of the aGPCR family are either approved or in clinical trials. However, human genetics and preclinical research have strengthened the links between aGPCRs and disease in recent years. This, together with a greater understanding of their functional complexity, has led to growing interest in aGPCRs as drug targets. A framework for prioritizing aGPCR targets and supporting approaches to develop aGPCR modulators could therefore be valuable in harnessing the untapped therapeutic potential of this family. With this in mind, here we discuss the unique opportunities and challenges for drug discovery in modulating aGPCR functions, including target identification, target validation, assay development and safety considerations, using ADGRG1 as an illustrative example.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A short history of aGPCRs.
Fig. 2: aGPCR structure and interaction models.
Fig. 3: A fingerprint of aGPCRs.
Fig. 4: Targeting ADGRG1: a hypothetical example.

Similar content being viewed by others

References

  1. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Munk, C. et al. An online resource for GPCR structure determination and analysis. Nat. Methods 16, 151–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M. & Sexton, P. M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Isberg, V. et al. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44, D356–D364 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kolakowski, L. F., Jr. GCRDb: a G-protein-coupled receptor database. Receptors Channels 2, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  6. Munk, C. et al. GPCRdb: the G protein-coupled receptor database — an introduction. Br. J. Pharmacol. 173, 2195–2207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Baud, V. et al. EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments. Genomics 26, 334–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Hamann, J. et al. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretion receptor superfamily with an unusual extracellular domain. J. Immunol. 155, 1942–1950 (1995).

    CAS  PubMed  Google Scholar 

  10. Hamann, J. et al. International union of basic and clinical pharmacology. XCIV. adhesion G protein-coupled receptors. Pharmacol. Rev. 67, 338–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vallon, M. & Essler, M. Proteolytically processed soluble tumor endothelial marker (TEM) 5 mediates endothelial cell survival during angiogenesis by linking integrin α(v)β3 to glycosaminoglycans. J. Biol. Chem. 281, 34179–34188 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Koh, J. T. et al. Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking αvβ5 integrin. Exp. Cell Res. 294, 172–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kaur, B., Brat, D. J., Devi, N. S. & Van Meir, E. G. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24, 3632–3642 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Gray, J. X. et al. CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J. Immunol. 157, 5438–5447 (1996).

    CAS  PubMed  Google Scholar 

  15. Leemans, J. C. et al. The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J. Immunol. 172, 1125–1131 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Davies, B. et al. Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol. Cell Biol. 24, 8642–8648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piao, X. et al. G protein-coupled receptor-dependent development of human frontal cortex. Science 303, 2033–2036 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Boyden, S. E. et al. Vibratory urticaria associated with a missense variant in ADGRE2. N. Engl. J. Med. 374, 656–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjarnadottir, T. K. et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84, 23–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Nordstrom, K. J., Lagerstrom, M. C., Waller, L. M., Fredriksson, R. & Schioth, H. B. The Secretin GPCRs descended from the family of adhesion GPCRs. Mol Biol. Evol. 26, 71–84 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Arac, D. et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364–1378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamilton, J. R. & Trejo, J. Challenges and opportunities in protease-activated receptor drug development. Annu. Rev. Pharmacol. Toxicol. 57, 349–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Liebscher, I. et al. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paavola, K. J., Stephenson, J. R., Ritter, S. L., Alter, S. P. & Hall, R. A. The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J. Biol. Chem. 286, 28914–28921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stoveken, H. M., Hajduczok, A. G., Xu, L. & Tall, G. G. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc. Natl Acad. Sci. USA 112, 6194–6199 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Promel, S., Langenhan, T. & Arac, D. Matching structure with function: the GAIN domain of adhesion-GPCR and PKD1-like proteins. Trends Pharmacol. Sci. 34, 470–478 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Hsiao, C. C., Chen, H. Y., Chang, G. W. & Lin, H. H. GPS autoproteolysis is required for CD97 to up-regulate the expression of N-cadherin that promotes homotypic cell-cell aggregation. FEBS Lett. 585, 313–318 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Hsiao, C. C. et al. The adhesion GPCR CD97/ADGRE5 inhibits apoptosis. Int. J. Biochem. Cell Biol. 65, 197–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Jin, Z. et al. Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum. Mol. Genet. 16, 1972–1985 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Promel, S. et al. The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep. 2, 321–331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scholz, N. et al. Mechano-dependent signaling by latrophilin/CIRL quenches cAMP in proprioceptive neurons. Elife 6, e28360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Purcell, R. H., Hall, R. A. & Adhesion, G. Protein-coupled receptors as drug targets. Annu. Rev. Pharmacol. Toxicol. 58, 429–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Giera, S. et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. Elife 7, e33385 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Posokhova, E. et al. GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Rep. 10, 123–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Stacey, M. et al. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102, 2916–2924 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Luo, R. et al. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc. Natl Acad. Sci. USA 108, 12925–12930 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Kuffer, A. et al. The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature 536, 464–468 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, H. et al. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177, 1217–1231 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Hamoud, N. et al. Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion. Nat. Commun. 9, 4470 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Petersen, S. C. et al. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85, 755–769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paavola, K. J., Sidik, H., Zuchero, J. B., Eckart, M. & Talbot, W. S. Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci. Signal. 7, ra76 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kaur, B. et al. Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res. 69, 1212–1220 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silva, J. P. et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc. Natl Acad. Sci. USA 108, 12113–12118 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Hamann, J. et al. Expression of the activation antigen CD97 and its ligand CD55 in rheumatoid synovial tissue. Arthritis Rheum. 42, 650–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Cork, S. M. et al. A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene 31, 5144–5152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, T. et al. CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105, 2836–2844 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Boucard, A. A., Ko, J. & Sudhof, T. C. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J. Biol. Chem. 287, 9399–9413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamann, J., Vogel, B., van Schijndel, G. M. & van Lier, R. A. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J. Exp. Med. 184, 1185–1189 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Wandel, E., Saalbach, A., Sittig, D., Gebhardt, C. & Aust, G. Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J. Immunol. 188, 1442–1450 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Eubelen, M. et al. A molecular mechanism for Wnt ligand-specific signaling. Science 361, eaat1178 (2018).

    Article  PubMed  CAS  Google Scholar 

  52. Little, K. D., Hemler, M. E. & Stipp, C. S. Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Gα q/11 association. Mol. Biol. Cell 15, 2375–2387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ward, Y. et al. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res. 71, 7301–7311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Becker, S. et al. Overexpression of CD97 in intestinal epithelial cells of transgenic mice attenuates colitis by strengthening adherens junctions. PLoS ONE 5, e8507 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hilbig, D. et al. The interaction of CD97/ADGRE5 with β-catenin in adherens junctions is lost during colorectal carcinogenesis. Front. Oncol. 8, 182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hamann, J. et al. EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur. J. Immunol. 37, 2797–2802 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Waddell, L. A. et al. ADGRE1 (EMR1, F4/80) is a rapidly-evolving gene expressed in mammalian monocyte-macrophages. Front. Immunol. 9, 2246 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yona, S. et al. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J. 22, 741–751 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Hsiao, C. C. et al. The adhesion g protein-coupled receptor GPR97/ADGRG3 Is expressed in human granulocytes and triggers antimicrobial effector functions. Front. Immunol. 9, 2830 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fang, W. et al. Gpr97 exacerbates AKI by mediating Sema3A signaling. J. Am. Soc. Nephrol. 29, 1475–1489 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, J. et al. Gpr97/Adgrg3 ameliorates experimental autoimmune encephalomyelitis by regulating cytokine expression. Acta Biochim. Biophys. Sin. 50, 666–675 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Bridges, J. P. et al. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size. Am. J. Respir. Cell Mol. Biol. 49, 348–357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Niaudet, C. et al. Gpr116 Receptor regulates distinctive functions in pneumocytes and vascular endothelium. PLoS ONE 10, e0137949 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lee, J. W. et al. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat. Commun. 7, 13123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhat, R. R. et al. GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res. Treat. 170, 279–292 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, X. J. et al. Understanding cadherin EGF LAG seven-pass G-type receptors. J. Neurochem. 131, 699–711 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, L. et al. Digenic variants of planar cell polarity genes in human neural tube defect patients. Mol. Genet. Metab. 124, 94–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lindenmaier, L. B., Parmentier, N., Guo, C., Tissir, F. & Wright, K. M. Dystroglycan is a scaffold for extracellular axon guidance decisions. Elife 8, e42143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karner, C. M., Long, F., Solnica-Krezel, L., Monk, K. R. & Gray, R. S. Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum. Mol. Genet. 24, 4365–4373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monk, K. R., Oshima, K., Jors, S., Heller, S. & Talbot, W. S. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138, 2673–2680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mogha, A. et al. Gpr126/Adgrg6 Has schwann cell autonomous and nonautonomous functions in peripheral nerve injury and repair. J. Neurosci. 36, 12351–12367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cui, H. et al. GPR126 protein regulates developmental and pathological angiogenesis through modulation of VEGFR2 receptor signaling. J. Biol. Chem. 289, 34871–34885 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Favara, D. M., Banham, A. H. & Harris, A. L. A review of ELTD1, a pro-angiogenic adhesion GPCR. Biochem. Soc. Trans. 42, 1658–1664 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Cullen, M. et al. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc. Natl Acad. Sci. USA 108, 5759–5764 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Kuhnert, F. et al. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330, 985–989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moon, S. Y., Shin, S. A., Oh, Y. S., Park, H. H. & Lee, C. S. Understanding the role of the BAI subfamily of adhesion G protein-coupled receptors (gpcrs) in pathological and physiological conditions. Genes (Basel) 9, E597 (2018).

    Google Scholar 

  77. Meza-Aguilar, D. G. & Boucard, A. A. Latrophilins updated. Biomol. Concepts 5, 457–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Rothe, J. et al. Involvement of the adhesion GPCRs latrophilins in the regulation of insulin release. Cell Rep. 26, 1573–1584 e1575 (2019).

    Article  PubMed  CAS  Google Scholar 

  79. Scholz, N. et al. The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep. 11, 866–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Pulley, J. M. et al. Accelerating precision drug development and drug repurposing by leveraging human genetics. Assay Drug Dev. Technol. 15, 113–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Cazorla-Vazquez, S. & Engel, F. B. Adhesion GPCRs in kidney development and disease. Front. Cell Dev. Biol. 6, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lin, H. H. et al. Adhesion GPCRs in regulating immune responses and inflammation. Adv. Immunol. 136, 163–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. White, J. P. Control of skeletal muscle cell growth and size through adhesion GPCRs. Handb. Exp. Pharmacol. 234, 299–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Aust, G., Zhu, D., Van Meir, E. G. & Xu, L. Adhesion GPCRs in tumorigenesis. Handb. Exp. Pharmacol. 234, 369–396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Langenhan, T., Piao, X. & Monk, K. R. Adhesion G protein-coupled receptors in nervous system development and disease. Nat. Rev. Neurosci. 17, 550–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Ludwig, M. G., Seuwen, K. & Bridges, J. P. Adhesion GPCR Function in pulmonary development and disease. Handb. Exp. Pharmacol. 234, 309–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Musa, G., Engel, F. B. & Niaudet, C. Heart development, angiogenesis, and blood-brain barrier function is modulated by adhesion GPCRs. Handb. Exp. Pharmacol. 234, 351–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Kovacs, P. & Schoneberg, T. The relevance of genomic signatures at adhesion GPCR loci in humans. Handb. Exp. Pharmacol. 234, 179–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Huang, C. H. et al. Increased EMR2 expression on neutrophils correlates with disease severity and predicts overall mortality in cirrhotic patients. Sci. Rep. 6, 38250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. I, K. Y. et al. Activation of adhesion GPCR EMR2/ADGRE2 induces macrophage differentiation and inflammatory responses via Gα16/Akt/MAPK/NF-kappaB signaling pathways. Front. Immunol. 8, 373 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chang, G. W. et al. The adhesion G protein-coupled receptor GPR56/ADGRG1 Is an inhibitory receptor on human NK cells. Cell Rep. 15, 1757–1770 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Kishore, A. & Hall, R. A. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling. J. Biol. Chem. 292, 9711–9720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oncu-Oner, T. et al. GPR56 homozygous nonsense mutation p.R271* associated with phenotypic variability in bilateral frontoparietal polymicrogyria. Turk. J. Pediatr. 60, 229–237 (2018).

    Article  PubMed  Google Scholar 

  95. Zou, J. et al. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells. Hum. Mol. Genet. 26, 624–636 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Scholz, N. Cancer cell mechanics: adhesion G protein-coupled receptors in action? Front. Oncol. 8, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Millar, M. W., Corson, N. & Xu, L. The adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits cell-extracellular matrix signaling to prevent metastatic melanoma growth. Front. Oncol. 8, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang, J. et al. G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Exp. Biol. Med. (Maywood) 239, 686–696 (2014).

    Article  CAS  Google Scholar 

  99. Yang, B. et al. Pathogenic role of ADGRG2 in CBAVD patients replicated in Chinese population. Andrology 5, 954–957 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Patat, O. et al. Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. Am. J. Hum. Genet. 99, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khan, M. J. et al. X-linked ADGRG2 mutation and obstructive azoospermia in a large Pakistani family. Sci. Rep. 8, 16280 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yuan, P. et al. Expanding the phenotypic and genetic spectrum of Chinese patients with congenital absence of vas deferens bearing CFTR and ADGRG2 alleles. Andrology 7, 329–340 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, G. et al. Genetic polymorphisms of GPR126 are functionally associated with PUMC classifications of adolescent idiopathic scoliosis in a Northern Han population. J. Cell. Mol. Med. 22, 1964–1971 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fischer, L., Wilde, C., Schoneberg, T. & Liebscher, I. Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133). BMC Genomics 17, 609 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Stäubert, C., Le Duc, D. & Schöneberg, T. in G Protein-Coupled Receptor Genetics 23–43 (ed. Stevens, C.) (Humana Press, 2014).

  106. Luo, R., Jin, Z., Deng, Y., Strokes, N. & Piao, X. Disease-associated mutations prevent GPR56-collagen III interaction. PLoS ONE 7, e29818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chiang, N. Y. et al. Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms. J. Biol. Chem. 286, 14215–14225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hochreiter-Hufford, A. E. et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497, 263–267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, C. S. et al. Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity 44, 807–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Billings, E. A. et al. The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Sci. Signal. 9, ra14 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zhu, D. et al. BAI1 suppresses medulloblastoma formation by protecting p53 from Mdm2-mediated degradation. Cancer Cell 33, 1004–1016 e1005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Haitina, T. et al. Expression profile of the entire family of adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci. 9, 43 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chiang, N. Y. et al. GPR56/ADGRG1 Activation promotes melanoma cell migration via NTF dissociation and CTF-mediated gα12/13/RhoA signaling. J. Invest. Dermatol. 137, 727–736 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Kishore, A., Purcell, R. H., Nassiri-Toosi, Z. & Hall, R. A. Stalk-dependent and Stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). J. Biol. Chem. 291, 3385–3394 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Wilde, C. et al. The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. 30, 666–673 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Boucard, A. A., Maxeiner, S. & Sudhof, T. C. Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J. Biol. Chem. 289, 387–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Patra, C. et al. Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent. Proc. Natl Acad. Sci. USA 110, 16898–16903 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Scheel, H., Tomiuk, S. & Hofmann, K. A common protein interaction domain links two recently identified epilepsy genes. Hum. Mol. Genet. 11, 1757–1762 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Giera, S. et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat. Commun. 6, 6121 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ackerman, S. D., Garcia, C., Piao, X., Gutmann, D. H. & Monk, K. R. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nat. Commun. 6, 6122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jeong, S. J. et al. GPR56 functions together with α3β1 integrin in regulating cerebral cortical development. PLoS ONE 8, e68781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, S. et al. GPR56 regulates pial basement membrane integrity and cortical lamination. J. Neurosci. 28, 5817–5826 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Koirala, S., Jin, Z., Piao, X. & Corfas, G. GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J. Neurosci. 29, 7439–7449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Daria, D. et al. GPR56 contributes to the development of acute myeloid leukemia in mice. Leukemia 30, 1734–1741 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Bostaille, N., Gauquier, A., Stainier, D. Y., Raible, D. W. & Vanhollebeke, B. Defective adgra2 (gpr124) splicing and function in zebrafish ouchless mutants. Development 144, 8–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Demberg, L. M. et al. Activation of adhesion G protein-coupled receptors: agonist specificity of stachel sequence-derived peptides. J. Biol. Chem. 292, 4383–4394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Monk, K. R. et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325, 1402–1405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Park, S. J. et al. Lysophosphatidylethanolamine utilizes LPA(1) and CD97 in MDA-MB-231 breast cancer cells. Cell Signal. 25, 2147–2154 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Peeters, M. C. et al. The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFkappaB and is involved in cell adhesion and migration. Cell Signal. 27, 2579–2588 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Balenga, N. et al. Orphan adhesion GPCR GPR64/ADGRG2 Is overexpressed in parathyroid tumors and attenuates calcium-sensing receptor-mediated signaling. J. Bone Min. Res. 32, 654–666 (2017).

    Article  CAS  Google Scholar 

  132. Junge, H. J. Ligand-selective wnt receptor complexes in CNS blood vessels: RECK and GPR124 plugged In. Neuron 95, 983–985 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Woelfle, R., D'Aquila, A. L., Pavlovic, T., Husic, M. & Lovejoy, D. A. Ancient interaction between the teneurin C-terminal associated peptides (TCAP) and latrophilin ligand-receptor coupling: a role in behavior. Front. Neurosci. 9, 146 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Mogha, A. et al. Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J. Neurosci. 33, 17976–17985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Duner, P. et al. Adhesion G protein-coupled receptor G1 (ADGRG1/GPR56) and pancreatic β-cell function. J. Clin. Endocrinol. Metab. 101, 4637–4645 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Iguchi, T. et al. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G α 12/13 and Rho pathway. J. Biol. Chem. 283, 14469–14478 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Flock, T. et al. Selectivity determinants of GPCR-G-protein binding. Nature 545, 317–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nazarko, O. et al. A comprehensive mutagenesis screen of the adhesion GPCR latrophilin-1/ADGRL1. iScience 3, 264–278 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stoveken, H. M. et al. Dihydromunduletone is a small-molecule selective adhesion G protein-coupled receptor antagonist. Mol. Pharmacol. 90, 214–224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stoveken, H. M., Larsen, S. D., Smrcka, A. V. & Tall, G. G. Gedunin- and khivorin-derivatives are small-molecule partial agonists for adhesion G protein-coupled receptors GPR56/ADGRG1 and GPR114/ADGRG5. Mol. Pharmacol. 93, 477–488 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gupte, J. et al. Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett. 586, 1214–1219 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Southern, C. et al. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J. Biomol. Screen. 18, 599–609 (2013).

    Article  PubMed  CAS  Google Scholar 

  146. Luo, R. et al. Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation. PLoS ONE 9, e100043 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Salzman, G. S. et al. Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron 91, 1292–1304 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Salzman, G. S. et al. Stachel-independent modulation of GPR56/ADGRG1 signaling by synthetic ligands directed to its extracellular region. Proc. Natl Acad. Sci. USA 114, 10095–10100 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Ackerman, S. D. et al. GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J. Exp. Med. 215, 941–961 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hernandez-Vasquez, M. N. et al. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock. J. Biol. Chem. 292, 12178–12191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chai, G. et al. Celsr3 is required in motor neurons to steer their axons in the hindlimb. Nat. Neurosci. 17, 1171–1179 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Moreno, M. et al. GPR56/ADGRG1 inhibits mesenchymal differentiation and radioresistance in glioblastoma. Cell Rep. 21, 2183–2197 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Alok, A. et al. Wnt proteins synergize to activate β-catenin signaling. J. Cell Sci. 130, 1532–1544 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Demberg, L. M., Rothemund, S., Schoneberg, T. & Liebscher, I. Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem. Biophys. Res. Commun. 464, 743–747 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Chackalamannil, S. et al. Discovery of a novel, orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity. J. Med. Chem. 51, 3061–3064 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hilbig, D. et al. Mechano-dependent phosphorylation of the PDZ-Binding Motif of CD97/ADGRE5 modulates cellular detachment. Cell Rep. 24, 1986–1995 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Scholz, N., Monk, K. R., Kittel, R. J. & Langenhan, T. Adhesion GPCRs as a putative class of metabotropic mechanosensors. Handb. Exp. Pharmacol. 234, 221–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. White, J. P. et al. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc. Natl Acad. Sci. USA 111, 15756–15761 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Brown, K. et al. Epithelial Gpr116 regulates pulmonary alveolar homeostasis via Gq/11 signaling. JCI Insight 2, 93700 (2017).

    Article  PubMed  Google Scholar 

  161. Tang, X. et al. GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway. Cancer Res. 73, 6206–6218 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Martino, F., Perestrelo, A. R., Vinarsky, V., Pagliari, S. & Forte, G. Cellular mechanotransduction: from tension to function. Front. Physiol. 9, 824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Olaniru, O. E. et al. The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function. Cell Mol. Life Sci. 75, 4007–4019 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yang, L., Friedland, S., Corson, N. & Xu, L. GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res. 74, 1022–1031 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Yang, L. et al. GPR56 Regulates VEGF production and angiogenesis during melanoma progression. Cancer Res. 71, 5558–5568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kwakkenbos, M. J. et al. Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J. Leukoc. Biol. 77, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Sigoillot, S. M., Monk, K. R., Piao, X., Selimi, F. & Harty, B. L. Adhesion GPCRs as novel actors in neural and glial cell functions: from synaptogenesis to myelination. Handb. Exp. Pharmacol. 234, 275–298 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Stephenson, J. R. et al. Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J. Biol. Chem. 288, 22248–22256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shiratsuchi, T. et al. Cloning and characterization of BAI-associated protein 1: a PDZ domain-containing protein that interacts with BAI1. Biochem. Biophys. Res. Commun. 247, 597–604 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Mathema, V. B. & Na-Bangchang, K. Regulatory roles of brain-specific angiogenesis inhibitor 1(BAI1) protein in inflammation, tumorigenesis and phagocytosis: A brief review. Crit. Rev. Oncol. Hematol. 111, 81–86 (2017).

    Article  PubMed  Google Scholar 

  171. Stucki, J. D. & Guenat, O. T. A microfluidic bubble trap and oscillator. Lab Chip 15, 4393–4397 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Hammerschmidt, S., Kuhn, H., Gessner, C., Seyfarth, H. J. & Wirtz, H. Stretch-induced alveolar type II cell apoptosis: role of endogenous bradykinin and PI3K-Akt signaling. Am J. Respir. Cell Mol. Biol. 37, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Barnes, J. M., Przybyla, L. & Weaver, V. M. Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130, 71–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Xu, J. et al. GPR68 Senses flow and is essential for vascular physiology. Cell 173, 762–775 e716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mih, J. D. et al. A multiwell platform for studying stiffness-dependent cell biology. PLoS ONE 6, e19929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Karpus, O. N. et al. Shear stress-dependent downregulation of the adhesion-G protein-coupled receptor CD97 on circulating leukocytes upon contact with its ligand CD55. J. Immunol. 190, 3740–3748 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Ohashi, K., Fujiwara, S. & Mizuno, K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J. Biochem. 161, 245–254 (2017).

    CAS  PubMed  Google Scholar 

  180. Herrick, W. G. et al. Smooth muscle stiffness sensitivity is driven by soluble and insoluble ECM chemistry. Cell Mol. Bioeng. 8, 333–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yin, Y. et al. CD97 Promotes tumor aggressiveness through the traditional g protein-coupled receptor-mediated signaling in hepatocellular carcinoma. Hepatology 68, 1865–1878 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Gupta, A., Heimann, A. S., Gomes, I. & Devi, L. A. Antibodies against G-protein coupled receptors: novel uses in screening and drug development. Comb. Chem. High Throughput Screen. 11, 463–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gupta, A. et al. Conformation state-sensitive antibodies to G-protein-coupled receptors. J. Biol. Chem. 282, 5116–5124 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Li, J. et al. Structural basis for teneurin function in circuit-wiring: a toxin motif at the synapse. Cell 173, 735–748 e715 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. de Groot, D. M. et al. Therapeutic antibody targeting of CD97 in experimental arthritis: the role of antigen expression, shedding, and internalization on the pharmacokinetics of anti-CD97 monoclonal antibody 1B2. J. Immunol. 183, 4127–4134 (2009).

    Article  PubMed  Google Scholar 

  186. Wobus, M., Vogel, B., Schmucking, E., Hamann, J. & Aust, G. N-glycosylation of CD97 within the EGF domains is crucial for epitope accessibility in normal and malignant cells as well as CD55 ligand binding. Int. J. Cancer 112, 815–822 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Lin, H. H. et al. Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J. Biol. Chem. 279, 31823–31832 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Huang, Y. S. et al. Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol. Cell Biol. 32, 1408–1420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Abe, J., Fukuzawa, T. & Hirose, S. Cleavage of Ig-Hepta at a "SEA" module and at a conserved G protein-coupled receptor proteolytic site. J. Biol. Chem. 277, 23391–23398 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Moriguchi, T. et al. DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes Cells 9, 549–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Patra, C., Monk, K. R. & Engel, F. B. The multiple signaling modalities of adhesion G protein-coupled receptor GPR126 in development. Receptors Clin. Invest. 1, 79 (2014).

    Google Scholar 

  192. Renaud, J. P. et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat. Rev. Drug Discov. 17, 471–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Liang, Y. L. et al. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555, 121–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Liang, Y. L. et al. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature 561, 492–497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lu, Y. C. et al. Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure 23, 1678–1691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jackson, V. A. et al. Super-complexes of adhesion GPCRs and neural guidance receptors. Nat. Commun. 7, 11184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cho, C., Smallwood, P. M. & Nathans, J. Reck and Gpr124 Are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95, 1221–1225 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Schaarschmidt, J. et al. Rearrangement of the extracellular domain/extracellular loop 1 interface is critical for thyrotropin receptor activation. J. Biol. Chem. 291, 14095–14108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Saha, H. R. et al. Suppression of GPR56 expression by pyrrole-imidazole polyamide represents a novel therapeutic drug for AML with high EVI1 expression. Sci. Rep. 8, 13741 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Hanrahan, J. W., Matthes, E., Carlile, G. & Thomas, D. Y. Corrector combination therapies for F508del-CFTR. Curr. Opin. Pharmacol. 34, 105–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Fukuda, R. & Okiyoneda, T. Peripheral protein quality control as a novel drug target for CFTR stabilizer. Front. Pharmacol. 9, 1100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bostaille, N., Gauquier, A., Twyffels, L. & Vanhollebeke, B. Molecular insights into Adgra2/Gpr124 and Reck intracellular trafficking. Biol. Open 5, 1874–1881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ramachandran, R., Altier, C., Oikonomopoulou, K. & Hollenberg, M. D. Proteinases, their extracellular targets, and inflammatory signaling. Pharmacol. Rev. 68, 1110–1142 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Oller-Salvia, B., Sanchez-Navarro, M., Giralt, E. & Teixido, M. Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev. 45, 4690–4707 (2016).

    Article  CAS  PubMed  Google Scholar 

  206. Allouche, S., Noble, F. & Marie, N. Opioid receptor desensitization: mechanisms and its link to tolerance. Front. Pharmacol. 5, 280 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Zhang, D. L. et al. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. Elife 7, e33432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ji, B. et al. GPR56 promotes proliferation of colorectal cancer cells and enhances metastasis via epithelialmesenchymal transition through PI3K/AKT signaling activation. Oncol. Rep. 40, 1885–1896 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Veninga, H. et al. Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J. Immunol. 181, 6574–6583 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Huang, Y. S., Chiang, N. Y., Chang, G. W. & Lin, H. H. Membrane-association of EMR2/ADGRE2-NTF is regulated by site-specific N-glycosylation. Sci. Rep. 8, 4532 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Hamann, J. et al. Molecular cloning and characterization of mouse CD97. Int. Immunol. 12, 439–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Tseng, W. Y. et al. High levels of soluble GPR56/ADGRG1 are associated with positive rheumatoid factor and elevated tumor necrosis factor in patients with rheumatoid arthritis. J. Microbiol. Immunol. Infect. 51, 485–491 (2017).

    Article  PubMed  CAS  Google Scholar 

  213. Jacobson, K. A. New paradigms in GPCR drug discovery. Biochem. Pharmacol. 98, 541–555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shepherd, C. A., Hopkins, A. L. & Navratilova, I. Fragment screening by SPR and advanced application to GPCRs. Prog. Biophys. Mol. Biol. 116, 113–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Jin, G. et al. The G-protein coupled receptor 56, expressed in colonic stem and cancer cells, binds progastrin to promote proliferation and carcinogenesis. Oncotarget 8, 40606–40619 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Ribases, M. et al. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes Brain Behav. 10, 149–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Orsini, C. A. et al. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol. Genet. Genomic Med. 4, 322–343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. O'Sullivan, M. L. et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ravenscroft, G. et al. Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am. J. Hum. Genet. 96, 955–961 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tu, Y. K., Duman, J. G. & Tolias, K. F. The Adhesion-GPCR BAI1 Promotes excitatory synaptogenesis by coordinating bidirectional trans-synaptic signaling. J. Neurosci. 38, 8388–8406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhu, D. et al. BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J. Clin. Invest. 125, 1497–1508 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Wang, T. et al. Improved antibacterial host defense and altered peripheral granulocyte homeostasis in mice lacking the adhesion class G protein receptor CD97. Infect. Immun. 75, 1144–1153 (2007).

    Article  CAS  PubMed  Google Scholar 

  223. Safaee, M. et al. CD97 is a multifunctional leukocyte receptor with distinct roles in human cancers (Review). Int. J. Oncol. 43, 1343–1350 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Xie, K. et al. Polymorphisms in genes related to epithelial-mesenchymal transition and risk of non-small cell lung cancer. Carcinogenesis 38, 1029–1035 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ma, B. et al. Gpr110 deficiency decelerates carcinogen-induced hepatocarcinogenesis via activation of the IL-6/STAT3 pathway. Am. J. Cancer Res. 7, 433–447 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Austyn, J. M. & Gordon, S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol. 11, 805–815 (1981).

    Article  CAS  PubMed  Google Scholar 

  227. Tissir, F., Bar, I., Jossin, Y., De Backer, O. & Goffinet, A. M. Protocadherin Celsr3 is crucial in axonal tract development. Nat. Neurosci. 8, 451–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  228. Vanhollebeke, B. et al. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. Elife 4, e6489 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Frederic Bassilana.

Ethics declarations

Competing interests

F.B., M.-G.L. and M.N. are employees of Novartis Institutes for Biomedical Research and hold Novartis shares.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Adhesion GPCR Consortium: https://www.adhesiongpcr.org/

International Union of Basic and Clinical Pharmacology: https://iuphar.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassilana, F., Nash, M. & Ludwig, MG. Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov 18, 869–884 (2019). https://doi.org/10.1038/s41573-019-0039-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0039-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing