Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting metabolism to regulate immune responses in autoimmunity and cancer

Abstract

Metabolic programming is emerging as a critical mechanism to alter immune cell activation, differentiation and function. Targeting metabolism does not completely suppress or activate the immune system but selectively regulates immune responses. The different metabolic requirements of the diverse cells that constitute an immune response provide a unique opportunity to separate effector functions from regulatory functions. Likewise, cells can be metabolically reprogrammed to promote either their short-term effector functions or long-term memory capacity. Studies in the growing field of immunometabolism support a paradigm of ‘cellular selectivity based on demand’, in which generic inhibitors of ubiquitous metabolic processes selectively affect cells with the greatest metabolic demand and have few effects on other cells of the body. Targeting metabolism, rather than particular cell types or cytokines, in metabolically demanding processes such as autoimmunity, graft rejection, cancer and uncontrolled inflammation could lead to successful strategies in controlling the pathogenesis of these complex disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic determinants of immune cell differentiation and function.
Fig. 2: Metabolic phenotypes of immune cells involved in acute immune responses.
Fig. 3: Selected strategies to target metabolism to regulate T cell function in diseases.

Similar content being viewed by others

References

  1. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002). This seminal article was one of the first to demonstrate a critical role for co-stimulation in the form of CD28 signalling to regulate metabolic reprogramming on T cell activation.

    CAS  PubMed  Google Scholar 

  3. Zheng, Y. et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J. Immunol. 178, 2163–2170 (2007).

    CAS  PubMed  Google Scholar 

  4. Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. & Powell, J. D. Anergic T cells are metabolically anergic. J. Immunol. 183, 6095–6101 (2009). This report demonstrated that on rechallenge, anergic T cells fail to upregulate metabolic programmes necessary for activation, suggesting that metabolism may in part be responsible for maintaining the anergic state.

    CAS  PubMed  Google Scholar 

  5. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011). Initial T cell activation and proliferation leads to a dramatic demand for energy and biosynthetic precursors that is facilitated by increased glycolysis, glutamine oxidation and nucleotide synthesis. This report demonstrates that these metabolic processes are coordinated by the upregulation of MYC.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  8. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  9. Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).

    CAS  PubMed  Google Scholar 

  11. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011). This was one of the first reports to demonstrate that effector and regulatory CD4 + T cells use different metabolic programmes.

    CAS  PubMed  Google Scholar 

  13. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, I. H. et al. mTOR complex 1 signaling regulates the generation and function of central and effector Foxp3(+) regulatory T cells. J. Immunol. 201, 481–492 (2018).

    CAS  PubMed  Google Scholar 

  15. Swamy, M. et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17, 712–720 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Araujo, L., Khim, P., Mkhikian, H., Mortales, C. L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Shi, L. Z. et al. HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang, E. V. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Franchi, L. et al. Inhibiting oxidative phosphorylation in vivo restrains Th17 effector responses and ameliorates murine colitis. J. Immunol. 198, 2735–2746 (2017).

    CAS  PubMed  Google Scholar 

  20. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013). This work demonstrates that inhibiting the glycolytic pathway with 2-DG during in vitro T cell activation results in superior and persistent antitumour memory-like CD8 + T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pollizzi, K. N. et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J. Clin. Invest. 125, 2090–2108 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. van der Windt, G. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2011). This report elucidates a central link between mitochondrial spare respiratory capacity and FAO-dependent oxidative metabolism for the development and stability of CD8 + T cell memory.

    PubMed  PubMed Central  Google Scholar 

  24. Phan, A. T. et al. Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection. Immunity 45, 1024–1037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cham, C. M., Driessens, G., O’Keefe, J. P. & Gajewski, T. F. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur. J. Immunol. 38, 2438–2450 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cham, C. M. & Gajewski, T. F. Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol. 174, 4670–4677 (2005).

    CAS  PubMed  Google Scholar 

  27. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013). This report demonstrates that one mechanism by which glycolysis regulates T cell effector function is through the ability of GAPDH to bind to the 3ʹ untranslated region of IFNγ mRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Millet, P., Vachharajani, V., McPhail, L., Yoza, B. & McCall, C. E. GAPDH binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism. J. Immunol. 196, 2541–2551 (2016).

    CAS  PubMed  Google Scholar 

  29. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016). This report demonstrates that the glycolytic enzyme LDHA regulates IFNγ production by modulating the availability of acetyl-CoA and consequently epigenetic changes at the IFNγ gene promoter.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    CAS  PubMed  Google Scholar 

  31. Balmer, M. L. et al. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016).

    CAS  PubMed  Google Scholar 

  32. Ho, P.-C. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    PubMed  Google Scholar 

  34. Dunbar, E. M. et al. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest. New Drugs 32, 452–464 (2014).

    CAS  PubMed  Google Scholar 

  35. Ma, R. et al. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells. Nat. Cell Biol. 20, 21–27 (2018).

    CAS  PubMed  Google Scholar 

  36. Thwe, P. M. et al. Cell-intrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses. Cell Metab. 26, 558–567 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hall, C. J. et al. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab. 18, 265–278 (2013).

    CAS  PubMed  Google Scholar 

  38. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Franchina, D. G., Dostert, C. & Brenner, D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 39, 489–502 (2018).

    CAS  PubMed  Google Scholar 

  40. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013). This study demonstrates a link between mitochondrial function and T cell activation through the ability of ROS to regulate NFAT.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Previte, D. M. et al. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLOS ONE 12, e0175549 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Siska, P. J. et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J. Immunol. Methods 438, 51–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mak, T. W. et al. Glutathione primes T cell metabolism for inflammation. Immunity 46, 675–689 (2017).

    CAS  PubMed  Google Scholar 

  44. Hosios, A. M. et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013). This report demonstrates a critical link between T cell activation and the upregulation of the amino acid transporter SLC7A5, which in turn promotes leucine influx and mTORC1 activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ananieva, E. A., Patel, C. H., Drake, C. H., Powell, J. D. & Hutson, S. M. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J. Biol. Chem. 289, 18793–18804 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kolev, M. et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity 42, 1033–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M. & Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561–4568 (2003).

    CAS  PubMed  Google Scholar 

  52. Albina, J. E. et al. Arginine metabolism in wounds. Am. J. Physiol. 254, E459–E467 (1988).

    CAS  PubMed  Google Scholar 

  53. Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T cell receptor expression and antigen-specific T cell responses. Cancer Res. 64, 5839–5849 (2004).

    CAS  PubMed  Google Scholar 

  54. Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998). This report demonstrated the ability of IDO to suppress immune responses through the depletion of tryptophan.

    CAS  PubMed  Google Scholar 

  55. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Routy, J. P., Routy, B., Graziani, G. M. & Mehraj, V. The kynurenine pathway is a double-edged sword in immune-privileged sites and in cancer: implications for immunotherapy. Int. J. Tryptophan Res. 9, 67–77 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Srivastava, M. K., Sinha, P., Clements, V. K., Rodriguez, P. & Ostrand-Rosenberg, S. Myeloid-derived suppressor cells inhibit T cell activation by depleting cystine and cysteine. Cancer Res. 70, 68–77 (2010).

    CAS  PubMed  Google Scholar 

  58. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    CAS  PubMed  Google Scholar 

  59. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Klysz, D. et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    PubMed  Google Scholar 

  61. Xu, T. et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013). This report demonstrates that on macrophage stimulation, the TCA cycle intermediate succinate plays a critical role in promoting a proinflammatory response by mediating HIF1α transcriptional activity of IL-1β.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015). This work combined expression profiling and metabolic profiling to elucidate distinct differences in M1 and M2 macrophage metabolism.

    CAS  PubMed  Google Scholar 

  65. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013). This report incisively connected fatty acid metabolism and T cell activation and function.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, W. et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, J. et al. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol. 192, 3190–3199 (2014).

    CAS  PubMed  Google Scholar 

  69. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    CAS  PubMed  Google Scholar 

  70. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pearce, E. L. et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Cui, G. et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jang, K. J. et al. Mitochondrial function provides instructive signals for activation-induced B cell fates. Nat. Commun. 6, 6750 (2015).

    CAS  PubMed  Google Scholar 

  78. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    CAS  PubMed  Google Scholar 

  79. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature 540, 236–241 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shutt, D. C., O’Dorisio, M. S., Aykin-Burns, N. & Spitz, D. R. 2-Deoxy-D-glucose induces oxidative stress and cell killing in human neuroblastoma cells. Cancer Biol. Ther. 9, 853–861 (2010).

    CAS  PubMed  Google Scholar 

  83. Raez, L. E. et al. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 71, 523–530 (2013).

    CAS  PubMed  Google Scholar 

  84. Lee, C.-F. F. et al. Preventing allograft rejection by targeting immune metabolism. Cell Rep. 13, 760–770 (2015). This report demonstrates the ability of targeting metabolism to inhibit solid organ graft rejection.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, H., Franco, F. & Ho, P. C. Metabolic regulation of Tregs in cancer: opportunities for immunotherapy. Trends Cancer 3, 583–592 (2017).

    CAS  PubMed  Google Scholar 

  87. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Liu, P. S. et al. alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    CAS  PubMed  Google Scholar 

  89. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).

    CAS  PubMed  Google Scholar 

  90. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Teijeira, A. et al. Mitochondrial morphological and functional reprogramming following CD137 (4-1BB) costimulation. Cancer Immunol. Res. 6, 798–811 (2018).

    CAS  PubMed  Google Scholar 

  93. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    CAS  PubMed  Google Scholar 

  94. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    CAS  PubMed  Google Scholar 

  96. Ohshiro, T. & Tomoda, H. Isoform-specific inhibitors of ACATs: recent advances and promising developments. Future Med. Chem. 3, 2039–2061 (2011).

    CAS  PubMed  Google Scholar 

  97. Fan, J. et al. Tetrameric acetyl-CoA acetyltransferase 1 is important for tumor growth. Mol. Cell 64, 859–874 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yoshinaka, Y. et al. A selective ACAT-1 inhibitor, K-604, stimulates collagen production in cultured smooth muscle cells and alters plaque phenotype in apolipoprotein E-knockout mice. Atherosclerosis 213, 85–91 (2010).

    CAS  PubMed  Google Scholar 

  99. Lopez-Farre, A. J., Sacristan, D., Zamorano-Leon, J. J., San-Martin, N. & Macaya, C. Inhibition of acyl-CoA cholesterol acyltransferase by F12511 (Eflucimibe): could it be a new antiatherosclerotic therapeutic? Cardiovasc. Ther. 26, 65–74 (2008).

    CAS  PubMed  Google Scholar 

  100. Shibuya, Y., Chang, C. C., Huang, L. H., Bryleva, E. Y. & Chang, T. Y. Inhibiting ACAT1/SOAT1 in microglia stimulates autophagy-mediated lysosomal proteolysis and increases Abeta1-42 clearance. J. Neurosci. 34, 14484–14501 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–E770 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Weinlich, G., Murr, C., Richardsen, L., Winkler, C. & Fuchs, D. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214, 8–14 (2007).

    PubMed  Google Scholar 

  103. Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Munn, D. H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Polak, M. E. et al. Mechanisms of local immunosuppression in cutaneous melanoma. Br. J. Cancer 96, 1879–1887 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Egilmez, T. G., Rachael, B. R.-T., Mehmet, O. K. & Nejat, K. Central role of IFNγ–indoleamine 2,3-dioxygenase axis in regulation of interleukin-12–mediated antitumor immunity. Cancer Res. 70, 129–138 (2010).

    PubMed  Google Scholar 

  107. Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer 101, 151–155 (2002).

    CAS  PubMed  Google Scholar 

  108. Labadie, B. W., Bao, R. & Luke, J. J. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-aryl hydrocarbon axis. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-2882 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5, 9–16 (2017).

    CAS  PubMed  Google Scholar 

  111. Jones, S. F. & Infante, J. R. Molecular pathways: fatty acid synthase. Clin. Cancer Res. 21, 5434–5438 (2015).

    CAS  PubMed  Google Scholar 

  112. Rai, G. et al. Discovery and optimization of potent, cell-active pyrazole-based inhibitors of lactate dehydrogenase (LDH). J. Med. Chem. 60, 9184–9204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lacroix, R., Rozeman, E. A., Kreutz, M., Renner, K. & Blank, C. U. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol. Immunother. 67, 1331–1348 (2018).

    CAS  PubMed  Google Scholar 

  114. Falchook, G. et al. First in human study of the first-in-class fatty acid synthase (FASN) inhibitor TVB-2640. Cancer Res. 77 (Suppl.), CT153 (2017).

    Google Scholar 

  115. Arkenau, H. T. et al. 27LBA Evidence of activity of a new mechanism of action (MoA): a first-in-human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640, as monotherapy or in combination. Eur. J. Cancer 51, S724 (2015).

    Google Scholar 

  116. Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    CAS  PubMed  Google Scholar 

  117. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    CAS  PubMed  Google Scholar 

  118. Farabegoli, F. et al. Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur. J. Pharm. Sci. 47, 729–738 (2012).

    CAS  PubMed  Google Scholar 

  119. Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).

    CAS  PubMed  Google Scholar 

  120. O’Sullivan, D., Sanin, D. E., Pearce, E. J. & Pearce, E. L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 19, 324–335 (2019).

    PubMed  Google Scholar 

  121. Araki, K. et al. mTOR regulates memory CD8 T cell differentiation. Nature 460, 108–112 (2009). This report linked the inhibition of mTORC1 activity and the enhancement of T cell memory generation.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Turner, A. P. et al. Sirolimus enhances the magnitude and quality of viral-specific CD8+ T cell responses to vaccinia virus vaccination in rhesus macaques. Am. J. Transplant. 11, 613–618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl Med. 6, 268ra179 (2014).

    PubMed  Google Scholar 

  124. Keating, R. et al. The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nat. Immunol. 14, 1266–1276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Amiel, E. et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J. Immunol. 189, 2151–2158 (2012).

    CAS  PubMed  Google Scholar 

  126. Li, Q. et al. Regulating mTOR to tune vaccination induced CD8+ T cell responses for tumor immunity1. J. Immunol. 188, 3080–3087 (2012).

    CAS  PubMed  Google Scholar 

  127. Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    CAS  PubMed  Google Scholar 

  128. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl Med. 7, 274ra18 (2015). This report demonstrates the ability of targeting glycolysis with 2-DG and mitochondrial metabolism with metformin to treat a mouse model of SLE.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, Z. et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat. Med. 24, 617–627 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Suwannaroj, S., Lagoo, A., Keisler, D. & Lupus, M.-R. W. Antioxidants suppress mortality in the female NZB×NZW F1 mouse model of systemic lupus erythematosus (SLE). Lupus 10, 258–265 (2001).

    CAS  PubMed  Google Scholar 

  131. Lai, Z. W. et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 64, 2937–2946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fernandez, D., Bonilla, E., Mirza, N., Niland, B. & Perl, A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2983–2988 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Warner, L. M., Adams, L. M. & Sehgal, S. N. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum. 37, 289–297 (1994).

    CAS  PubMed  Google Scholar 

  134. Lai, Z. W., Kelly, R., Winans, T., Marchena, I. & Lancet, S.-A. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet 391, 1186–1196 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Torigoe, M. et al. Metabolic reprogramming commits differentiation of human CD27+IgD+ B cells to plasmablasts or CD27IgD cells. J. Immunol. 199, 425–434 (2017).

    CAS  PubMed  Google Scholar 

  136. Johnson, K. M. et al. Identification and validation of the mitochondrial F1F0-ATPase as the molecular target of the immunomodulatory benzodiazepine Bz-423. Chem. Biol. 12, 485–496 (2005).

    CAS  PubMed  Google Scholar 

  137. Blatt, N. B. et al. Benzodiazepine-induced superoxide signals B cell apoptosis: mechanistic insight and potential therapeutic utility. J. Clin. Invest. 110, 1123–1132 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Imboden, J. B. The immunopathogenesis of rheumatoid arthritis. Annu. Rev. Pathol. 4, 417–434 (2009).

    CAS  PubMed  Google Scholar 

  139. Son, H.-J. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl Med. 8, 331ra38 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. Okano, T. et al. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Sci. Rep. 7, 42412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Abboud, G. et al. Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis. Front. Immunol. 9, 1973 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Bian, L. et al. Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice. Arthritis Res. Ther. 11, R132 (2009).

    PubMed  PubMed Central  Google Scholar 

  144. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Liberti, M. V. et al. A predictive model for selective targeting of the Warburg effect through GAPDH inhibition with a natural product. Cell Metab. 26, 648–659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Shriver, L. P. & Manchester, M. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci. Rep. 1, 79 (2011).

    PubMed  PubMed Central  Google Scholar 

  147. Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194–202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sayegh, M. H. & Carpenter, C. B. Transplantation 50 years later—progress, challenges, and promises. N. Engl. J. Med. 351, 2761–2766 (2004).

    CAS  PubMed  Google Scholar 

  150. Calne, R. Y. et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet 2, 1033–1036 (1979).

    CAS  PubMed  Google Scholar 

  151. Kalluri, H. V. & Hardinger, K. L. Current state of renal transplant immunosuppression: present and future. World J. Transplant. 2, 51–68 (2012).

    PubMed  PubMed Central  Google Scholar 

  152. Saunders, R. N., Metcalfe, M. S. & Nicholson, M. L. Rapamycin in transplantation: a review of the evidence. Kidney Int. 59, 3–16 (2001).

    CAS  PubMed  Google Scholar 

  153. Nguyen, L. S. et al. Sirolimus and mTOR inhibitors: a review of side effects and specific management in solid organ transplantation. Drug Saf. 42, 813–825 (2019).

    CAS  PubMed  Google Scholar 

  154. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Powell, J. D. & Delgoffe, G. M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33, 301–311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Nguyen, H. D. et al. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J. Clin. Invest. 126, 1337–1352 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Park, M.-J. J. et al. Metformin attenuates graft-versus-host disease via restricting mammalian target of rapamycin/signal transducer and activator of transcription 3 and promoting adenosine monophosphate-activated protein kinase-autophagy for the balance between T helper 17 and Tregs. Transl Res. 173, 115–130 (2016).

    CAS  PubMed  Google Scholar 

  159. Herrero-Sánchez, M. et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J. Hematol. Oncol. 9, 113 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Glick, G. D. et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J. Pharmacol. Exp. Ther. 351, 298–307 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Gatza, E. et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci. Transl Med. 3, 67ra8 (2011).

    PubMed  PubMed Central  Google Scholar 

  162. Byersdorfer, C. A. et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood 122, 3230–3237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Gross, M. I. et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890–901 (2014).

    CAS  PubMed  Google Scholar 

  165. Chen, Z. et al. Novel 1,3,4-selenadiazole containing kidney-type glutaminase inhibitors showed improved cellular uptake and antitumor activity. J. Med. Chem. 62, 589–603 (2019).

    CAS  PubMed  Google Scholar 

  166. Rajeshkumar, N. V. et al. Treatment of pancreatic cancer patient-derived xenograft panel with metabolic inhibitors reveals efficacy of phenformin. Clin. Cancer Res. 23, 5639–5647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ostroukhova, M. et al. The role of low-level lactate production in airway inflammation in asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L300–L307 (2012).

    CAS  PubMed  Google Scholar 

  168. Chitnis, T. & Weiner, H. L. CNS inflammation and neurodegeneration. J. Clin. Invest. 127, 3577–3587 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Gordon, E. B. et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria. Proc. Natl Acad. Sci. USA 112, 13075–13080 (2015). This report dramatically demonstrates the ability of targeting glutamine metabolism to inhibit and reverse disease in a mouse model of cerebral malaria.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Manivannan, S., Baxter, V. K., Schultz, K. L., Slusher, B. S. & Griffin, D. E. Protective effects of glutamine antagonist 6-diazo-5-oxo-l-norleucine in mice with alphavirus encephalomyelitis. J. Virol. 90, 9251–9262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rais, R. et al. Discovery of 6-diazo-5-oxo-l-norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: a potential treatment for glioblastoma. J. Med. Chem. 59, 8621–8633 (2016).

    CAS  PubMed  Google Scholar 

  172. Blair, D., Dufort, F. J. & Chiles, T. C. Protein kinase Cbeta is critical for the metabolic switch to glycolysis following B cell antigen receptor engagement. Biochem. J. 448, 165–169 (2012).

    CAS  PubMed  Google Scholar 

  173. Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Cho, S. et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Huang, S. C. et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Cheng, S. C. et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Arts, R. J. W. et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 17, 2562–2571 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin state-based complex regulation of differential gene transcription and function of CD8 memory T cells. Immunity 30, 912–925 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Russ, B. E. et al. Mapping histone methylation dynamics during virus-specific CD8+ T cell differentiation in response to infection. Immunity 41, 853–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Shih, H. Y. et al. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol. Rev. 261, 23–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wu, H. et al. Epigenetic regulation in B cell maturation and its dysregulation in autoimmunity. Cell. Mol. Immunol. 15, 676–684 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Chisolm, D. A. & Weinmann, A. S. Connections between metabolism and epigenetics in programming cellular differentiation. Annu. Rev. Immunol. 36, 221–246 (2018).

    CAS  PubMed  Google Scholar 

  185. Schvartzman, J. M., Thompson, C. B. & Finley, L. W. S. Metabolic regulation of chromatin modifications and gene expression. J. Cell Biol. 217, 2247–2259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    CAS  PubMed  Google Scholar 

  187. Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Pechkovsky, D. V. et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin. Immunol. 137, 89–101 (2010).

    CAS  PubMed  Google Scholar 

  189. Madala, S. K. et al. Bone marrow-derived stromal cells are invasive and hyperproliferative and alter transforming growth factor-alpha-induced pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 50, 777–786 (2014).

    PubMed  PubMed Central  Google Scholar 

  190. Chen, Y. et al. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice. Toxicol. Appl. Pharmacol. 275, 62–72 (2014).

    CAS  PubMed  Google Scholar 

  191. Mi, S. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J. Immunol. 187, 3003–3014 (2011).

    CAS  PubMed  Google Scholar 

  192. Braun, R. K. et al. IL-17 producing gammadelta T cells are required for a controlled inflammatory response after bleomycin-induced lung injury. Inflammation 31, 167–179 (2008).

    CAS  PubMed  Google Scholar 

  193. Vigeland, C. L. et al. Deletion of mTORC1 activity in CD4+ T cells is associated with lung fibrosis and increased gammadelta T cells. PLOS ONE 11, e0163288 (2016).

    PubMed  PubMed Central  Google Scholar 

  194. Ask, K. et al. Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta3. Int. J. Biochem. Cell Biol. 40, 484–495 (2008).

    CAS  PubMed  Google Scholar 

  195. Kolb, M., Margetts, P. J., Anthony, D. C., Pitossi, F. & Gauldie, J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J. Clin. Invest. 107, 1529–1536 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Henry, M. T. et al. Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. Eur. Respir. J. 20, 1220–1227 (2002).

    CAS  PubMed  Google Scholar 

  197. Idiopathic Pulmonary Fibrosis Clinical Research Network. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366, 1968–1977 (2012).

    Google Scholar 

  198. Zhao, X. et al. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat. Metab. 1, 147–157 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Powell laboratory for critical review of the manuscript. The authors are supported in part by National Institutes of Health (grants T32AI007247 and T32HL007227 to C.H.P. grant R01HL141490 to M.R.H. and grants R01AI077610, R01CA226765 and R01CA229451 to J.D.P.) and the Bloomberg~Kimmel Institute of Cancer Immunotherapy (J.D.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Powell.

Ethics declarations

Competing interests

J.D.P. has equity in Dracen, Sitryx (<5%) and Corvus (<5%); has consulted for Dracen, as well as for Sitryx, Corvus, Aeonian, Sigma and Quadriga; has received sponsored research money from Abbvie, Quadriga, Dracen, Bluebird and Bristol-Myers Squibb in the last year; and has patents licensed by Dracen. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Signal 1

T cell receptor engagement of peptide–major histocompatibility complex.

Co-stimulation

A ligand–receptor signal provided by activated antigen-presenting cells (for example, B7-1 on antigen-presenting cells engaging CD28 on T cells) that leads to full T cell activation.

Tolerant T cells

T cells that receive signal 1 (T cell receptor engagement) in the absence of co-stimulation are deleted or become anergic (tolerant) such that they fail to become fully activated on subsequent rechallenge.

Regulatory T cells

(Treg cells). FOXP3+CD4+ T cells that negatively regulate immune responses and thus play an important role in preventing overexuberant inflammation and autoimmunity.

Effector Treg cells

While circulating regulatory T cells (Treg cells) are relatively metabolically quiescent, on activation such cells become FOXP3+CD44hiCD62lomTORC1hi effector Treg cells (mTORC1 is mechanistic target of rapamycin complex 1) that are responsible for actively suppressing inflammatory/immune responses.

IL-17-producing T helper cells

(TH17 cells). Characterized by the production of the proinflammatory cytokine IL-17, TH17 cells contribute to pathogen clearance at mucosal surfaces, but have also been implicated in autoimmune and inflammatory disorders.

M1 macrophages

Known as ‘classically activated macrophages’, these cells protect against bacteria and viruses by producing proinflammatory cytokines and by phagocytizing and killing microorganisms by generating nitric oxide or reactive oxygen species.

M2 macrophages

Known as ‘alternatively activated macrophages’, these cells are associated with wound healing and tissue repair by inducing proliferation or collagen deposition.

Myeloid-derived suppressor cells

A myeloid-derived heterogeneous group of immature macrophages and granulocytes that actively suppress antitumour T cell responses.

Trained immunity

The ability of the innate immune system to mount an enhanced memory response on reinfection.

Induced Treg cells

FOXP3+CD4+ regulatory T cells (Treg cells) that are generated when naive CD4+ T cells are stimulated under suppressive conditions (such as in the presence of transforming growth factor-β).

B6.Sle1.Sle2.Sle3 (TC) lupus-prone mouse model

A spontaneous mouse model of systemic lupus erythematosus that mimics human disease due to increased levels of autoantibodies and activated CD4+ T cells.

Plasmablasts

Antibody-secreting B cells in lymph nodes that demonstrate some features of a plasma cell but are typically short-lived compared with differentiated plasma cells.

KBN mouse model

A spontaneous model of arthritis caused by the activation of T cell receptor transgenic CD4+ T cells from the KRN strain and glucose 6-phosphate isomerase peptides presented by the H-2g7 allele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, C.H., Leone, R.D., Horton, M.R. et al. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov 18, 669–688 (2019). https://doi.org/10.1038/s41573-019-0032-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0032-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer