Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bispecific antibodies: a mechanistic review of the pipeline

Abstract

The term bispecific antibody (bsAb) is used to describe a large family of molecules designed to recognize two different epitopes or antigens. BsAbs come in many formats, ranging from relatively small proteins, merely consisting of two linked antigen-binding fragments, to large immunoglobulin G (IgG)-like molecules with additional domains attached. An attractive bsAb feature is their potential for novel functionalities — that is, activities that do not exist in mixtures of the parental or reference antibodies. In these so-called obligate bsAbs, the physical linkage of the two binding specificities creates a dependency that can be temporal, with binding events occurring sequentially, or spatial, with binding events occurring simultaneously, such as in linking an effector to a target cell. To date, more than 20 different commercialized technology platforms are available for bsAb creation and development, 2 bsAbs are marketed and over 85 are in clinical development. Here, we review the current bsAb landscape from a mechanistic perspective, including a comprehensive overview of the pipeline.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of conceptual and technical innovations contributing to the development of the therapeutic bsAb landscape.
Fig. 2: A selection of bsAb formats.
Fig. 3: Overview of the clinical development pipeline for bsAbs.
Fig. 4: Year of clinical study initiation for bsAbs.
Fig. 5: Examples of obligate mechanisms of action of bsAbs.

References

  1. 1.

    Nisonoff, A., Wissler, F. C. & Lipman, L. N. Properties of the major component of a peptic digest of rabbit antibody. Science 132, 1770–1771 (1960).

    CAS  Google Scholar 

  2. 2.

    Riethmuller, G. Symmetry breaking: bispecific antibodies, the beginnings, and 50 years on. Cancer Immun. 12, 12 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Fudenberg, H. H., Drews, G. & Nisonoff, A. Serologic demonstration of dual specificity of rabbit bivalent hybrid antibody. J. Exp. Med. 119, 151–166 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Brinkmann, U. & Kontermann, R. E. The making of bispecific antibodies. mAbs 9, 182–212 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ha, J. H., Kim, J. E. & Kim, Y. S. Immunoglobulin Fc heterodimer platform technology: from design to applications in therapeutic antibodies and proteins. Front. Immunol. 7, 394 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Spiess, C., Zhai, Q. & Carter, P. J. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67, 95–106 (2015).

    CAS  Google Scholar 

  7. 7.

    Godar, M., de Haard, H., Blanchetot, C. & Rasser, J. Therapeutic bispecific antibody formats: a patent applications review (1994–2017). Expert Opin. Ther. Pat. 28, 251–276 (2018).

    CAS  Google Scholar 

  8. 8.

    Staerz, U. D., Kanagawa, O. & Bevan, M. J. Hybrid antibodies can target sites for attack by T cells. Nature 314, 628–631 (1985).

    CAS  Google Scholar 

  9. 9.

    Perez, P., Hoffman, R. W., Shaw, S., Bluestone, J. A. & Segal, D. M. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 316, 354–356 (1985).

    CAS  Google Scholar 

  10. 10.

    Heiss, M. M. et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int. J. Cancer 127, 2209–2221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Borlak, J., Langer, F., Spanel, R., Schondorfer, G. & Dittrich, C. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcgamma receptors. Oncotarget 7, 28059–28074 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Gokbuget, N. et al. Blinatumomab for minimal residual disease in adults with B-precursor acute lymphoblastic leukemia. Blood 131, 1522–1531 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    de Bruin, R. C. G. et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vgamma9Vdelta2-T cells. Oncoimmunology 7, e1375641 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Oldenburg, J. et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N. Engl. J. Med. 377, 809–818 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Labrijn, A. F. & Parren, P. W. Hitting Ebola, to the power of two. Science 354, 284–285 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Mullard, A. Bispecific antibody pipeline moves beyond oncology. Nat. Rev. Drug Discov. 16, 666–668 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Milstein, C. & Cuello, A. C. Hybrid hybridomas and their use in immunohistochemistry. Nature 305, 537–540 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Birch, J. R. & Racher, A. J. Antibody production. Adv. Drug Deliv. Rev. 58, 671–685 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Demarest, S. J. & Glaser, S. M. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr. Opin. Drug Discov. Devel. 11, 675–687 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lowe, D. et al. Aggregation, stability, and formulation of human antibody therapeutics. Adv. Protein Chem. Struct. Biol. 84, 41–61 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Harwood, S. L. et al. ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncoimmunology 7, e1377874 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Blanco-Toribio, A. et al. Generation and characterization of monospecific and bispecific hexavalent trimerbodies. mAbs 5, 70–79 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Compte, M. et al. A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat. Commun. 9, 4809 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Chames, P. & Baty, D. Bispecific antibodies for cancer therapy. Curr. Opin. Drug Discov. Devel. 12, 276–283 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Chan, A. C. & Carter, P. J. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol. 10, 301–316 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wu, C. et al. Molecular construction and optimization of anti-human IL-1alpha/beta dual variable domain immunoglobulin (DVD-Ig) molecules. mAbs 1, 339–347 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bonisch, M. et al. Novel CH1:CL interfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Eng. Des. Sel. 30, 685–696 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lewis, S. M. et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat. Biotechnol. 32, 191–198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lindhofer, H., Mocikat, R., Steipe, B. & Thierfelder, S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J. Immunol. 155, 219–225 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Mazor, Y. et al. Improving target cell specificity using a novel monovalent bispecific IgG design. mAbs 7, 377–389 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schaefer, W. et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl Acad. Sci. USA 108, 11187–11192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wu, X. et al. Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies. mAbs 7, 364–376 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cooke, H. et al. EFab domain substitution as a solution to the light-chain pairing problem of bispecific antibodies. mAbs 10, 1248–1259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Choi, H. J., Kim, Y. J., Lee, S. & Kim, Y. S. A heterodimeric Fc-based bispecific antibody simultaneously targeting VEGFR-2 and Met exhibits potent antitumor activity. Mol. Cancer Ther. 12, 2748–2759 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Davis, J. H. et al. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng. Des. Sel. 23, 195–202 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    De Nardis, C. et al. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1. J. Biol. Chem. 292, 14706–14717 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gunasekaran, K. et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J. Biol. Chem. 285, 19637–19646 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Leaver-Fay, A. et al. Computationally designed bispecific antibodies using negative state repertoires. Structure 24, 641–651 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Merchant, A. M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Moore, G. L. et al. A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. mAbs 3, 546–557 (2011).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Skegro, D. et al. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. J. Biol. Chem. 292, 9745–9759 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Von Kreudenstein, T. S. et al. Improving biophysical properties of a bispecific antibody scaffold to aid developability: quality by molecular design. mAbs 5, 646–654 (2013).

    Google Scholar 

  44. 44.

    Wei, H. et al. Structural basis of a novel heterodimeric Fc for bispecific antibody production. Oncotarget 8, 51037–51049 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Fischer, N. et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat. Commun. 6, 6113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Smith, E. J. et al. A novel, native-format bispecific antibody triggering T cell killing of B cells is robustly active in mouse tumor models and cynomolgus monkeys. Sci. Rep. 5, 17943 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Jackman, J. et al. Development of a two-part strategy to identify a therapeutic human bispecific antibody that inhibits IgE receptor signaling. J. Biol. Chem. 285, 20850–20859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Shatz, W. et al. An efficient route to bispecific antibody production using single-reactor mammalian co-culture. mAbs 8, 1487–1497 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Spiess, C. et al. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat. Biotechnol. 31, 753–758 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Huang, S. et al. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. mAbs 10, 864–875 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Labrijn, A. F. et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl Acad. Sci. USA 110, 5145–5150 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Strop, P. et al. Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J. Mol. Biol. 420, 204–219 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wec, A. Z. et al. A “Trojan horse” bispecific antibody strategy for broad protection against ebolaviruses. Science 354, 350–354 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    De Gast, G. C. et al. Clinical experience with CD3 x CD19 bispecific antibodies in patients with B cell malignancies. J. Hematother 4, 433–437 (1995).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Tibben, J. G. et al. Pharmacokinetics, biodistribution and biological effects of intravenously administered bispecific monoclonal antibody OC/TR F(ab’)2 in ovarian carcinoma patients. Int. J. Cancer 66, 477–483 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321, 974–977 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Loffler, A. et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95, 2098–2103 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Klinger, M. et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119, 6226–6233 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Chatenoud, L. et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 49, 697–702 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Xu, D. et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell. Immunol. 200, 16–26 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Woodle, E. S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Labrijn, A. F. et al. Efficient generation of bispecific murine antibodies for pre-clinical investigations in syngeneic rodent models. Sci. Rep. 7, 2476 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Vafa, O. et al. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods 65, 114–126 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Schlothauer, T. et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng. Des. Sel. 29, 457–466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Moore, P. A. et al. Application of dual affinity retargeting molecules to achieve optimal redirected T cell killing of B cell lymphoma. Blood 117, 4542–4551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Tita-Nwa, F. et al. Cytokine-induced killer cells targeted by the novel bispecific antibody CD19xCD5 (HD37xT5.16) efficiently lyse B-lymphoma cells. Cancer Immunol. Immunother. 56, 1911–1920 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Pessano, S., Oettgen, H., Bhan, A. K. & Terhorst, C. The T3/T cell receptor complex: antigenic distinction between the two 20-kd T3 (T3-delta and T3-epsilon) subunits. EMBO J. 4, 337–344 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Leong, S. R. et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 129, 609–618 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Bortoletto, N., Scotet, E., Myamoto, Y., D’Oro, U. & Lanzavecchia, A. Optimizing anti-CD3 affinity for effective T cell targeting against tumor cells. Eur. J. Immunol. 32, 3102–3107 (2002).

    CAS  Google Scholar 

  71. 71.

    List, T. & Neri, D. Biodistribution studies with tumor-targeting bispecific antibodies reveal selective accumulation at the tumor site. mAbs 4, 775–783 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Mandikian, D. et al. Relative target affinities of T-cell-dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol. Cancer Ther. 17, 776–785 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Chatenoud, L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nat. Rev. Immunol. 3, 123–132 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Reusch, U. et al. Characterization of CD33/CD3 tetravalent bispecific tandem diabodies (TandAbs) for the treatment of acute myeloid leukemia. Clin. Cancer Res. 22, 5829–5838 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Comeau, M. R. et al. Abstract 1786: APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T cell cytotoxicity, induces potent T cell activation, proliferation and cytotoxicity with limited cytokine release. Cancer Res. 78, 1786 (2018).

    Google Scholar 

  76. 76.

    Offner, S., Hofmeister, R., Romaniuk, A., Kufer, P. & Baeuerle, P. A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 43, 763–771 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Baeuerle, P. A. Development of T-cell-engaging bispecific antibody blinatumomab (Blincyto®) for treatment of B-cell malignancies. Successful Drug Discov. https://doi.org/10.1002/9783527808694.ch5 (2018).

    Article  Google Scholar 

  78. 78.

    Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Liddy, N. et al. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 18, 980–987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Oberst, M. D. et al. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. mAbs 6, 1571–1584 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Laszlo, G. S. et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T cell engager (BiTE) antibody, AMG 330, against human AML. Blood 123, 554–561 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Lopez-Albaitero, A. et al. Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody. Oncoimmunology 6, e1267891 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Hammond, S. A. et al. Selective targeting and potent control of tumor growth using an EphA2/CD3-Bispecific single-chain antibody construct. Cancer Res. 67, 3927–3935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Friedrich, M. et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol. Cancer Ther. 11, 2664–2673 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Li, J. et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 31, 383–395 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Pfosser, A., Brandl, M., Salih, H., Grosse-Hovest, L. & Jung, G. Role of target antigen in bispecific-antibody-mediated killing of human glioblastoma cells: a pre-clinical study. Int. J. Cancer 80, 612–616 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Bluemel, C. et al. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol. Immunother. 59, 1197–1209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Ahmed, M., Cheng, M., Cheung, I. Y. & Cheung, N. K. Human derived dimerization tag enhances tumor killing potency of a T cell engaging bispecific antibody. Oncoimmunology 4, e989776 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Slaga, D. et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci. Transl Med. 10, eaat5775 (2018).

    Google Scholar 

  90. 90.

    Bacac, M. et al. CD20 Tcb (RG6026), a novel “2:1” T cell bispecific antibody for the treatment of B cell malignancies. Blood 128, 1836 (2016).

    Google Scholar 

  91. 91.

    Hiemstra, I. H. et al. Duobody-CD3xCD20 shows unique and potent preclinical anti-tumor activity in vitro and in vivo, and is being evaluated clinically in patients with B-cell malignancies. Blood 132, 1664–1664 (2018).

    Google Scholar 

  92. 92.

    Bacac, M. et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin. Cancer Res. 22, 3286–3297 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Fisher, T. S. et al. A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice. Cancer Immunol. Immunother. 67, 247–259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Ishiguro, T. et al. An anti-glypican 3/CD3 bispecific T cell-redirecting antibody for treatment of solid tumors. Sci. Transl Med. 9, eaal4291 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Benonisson, H. et al. CD3-bispecific antibody therapy turns solid tumors into inflammatory sites but does not install protective memory. Mol. Cancer Ther. 18, 312–322 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Braig, F. et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 129, 100–104 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Junttila, T. T. et al. Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Res. 74, 5561–5571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Feucht, J. et al. T cell responses against CD19+pediatric acute lymphoblastic leukemia mediated by bispecific T cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget 7, 76902–76919 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Osada, T. et al. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunol. Immunother. 64, 677–688 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Krupka, C. et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T cell-induced immune escape mechanism. Leukemia 30, 484–491 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Argiles, G. et al. Novel carcinoembryonic antigen T cell bispecific (CEA-TCB) antibody: preliminary clinical data as a single agent and in combination with atezolizumab in patients with metastatic colorectal cancer (mCRC) [abstract LBA-004]. Ann. Oncol. 28, mdx302.003 (2017).

    Google Scholar 

  102. 102.

    Webster, J. et al. Blinatumomab in combination with immune checkpoint inhibitors of PD-1 and CTLA-4 in adult patients with relapsed/refractory (R/R) CD19 positive B-cell acute lymphoblastic leukemia (ALL): preliminary results of a phase I study. Blood 132, 557 (2018).

    Google Scholar 

  103. 103.

    Topp, M. S. et al. Safety and preliminary antitumor activity of the anti-PD-1 monoclonal antibody REGN2810 alone or in combination with REGN1979, an anti-CD20 x anti-CD3 bispecific antibody, in patients with B-lymphoid malignancies. Blood 130, 1495 (2017).

    Google Scholar 

  104. 104.

    Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Dovedi, S. J. et al. MEDI5752: a novel bispecific antibody that preferentially targets CTLA-4 on PD-1 expressing T cells [abstract 2776]. Cancer Res. 78, 2776 (2018).

    Google Scholar 

  106. 106.

    Hedvat, M. et al. Simultaneous checkpoint — checkpoint or checkpoint — costimulatory receptor targeting with bispecific antibodies promotes enhanced human T cell activation [abstract P664]. Presented at the 2018 Society for Immunotherapy of Cancer (SITC) (2018).

  107. 107.

    Lutterbuese, R. et al. T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc. Natl Acad. Sci. USA 107, 12605–12610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Ross, S. L. et al. Bispecific T cell engager (BiTE(R)) antibody constructs can mediate bystander tumor cell killing. PLOS ONE 12, e0183390 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Kebenko, M. et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T cell engager (BiTE(R)) antibody construct, in patients with refractory solid tumors. Oncoimmunology 7, e1450710 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Duell, J. et al. Frequency of regulatory T cells determines the outcome of the T cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 31, 2181–2190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Kabelitz, D., Lettau, M. & Janssen, O. Immunosurveillance by human gammadelta T lymphocytes: the emerging role of butyrophilins. F1000Res 6, 782 (2017).

    Google Scholar 

  112. 112.

    Tosolini, M. et al. Assessment of tumor-infiltrating TCRVgamma9Vdelta2 gammadelta lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 6, e1284723 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Don Yun, H. et al. Trispecific killer engager CD16xIL15xCD33 potently induces NK cell activation and cytotoxicity against neoplastic mast cells. Blood Adv. 2, 1580–1584 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Schmohl, J. U., Felices, M., Taras, E., Miller, J. S. & Vallera, D. A. Enhanced ADCC and NK cell activation of an anticarcinoma bispecific antibody by genetic insertion of a modified IL-15 cross-linker. Mol. Ther. 24, 1312–1322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Oberg, H. H. et al. Tribody [(HER2)2xCD16] is more effective than trastuzumab in enhancing gammadelta T cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. Front. Immunol. 9, 814 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Reusch, U. et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+tumor cells. mAbs 6, 728–739 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Pahl, J. H. W. et al. CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells. Cancer Immunol. Res. 6, 517–527 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Dheilly, E. et al. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol. Ther. 25, 523–533 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Kruse, R. L. et al. In situ liver expression of HBsAg/CD3-bispecific antibodies for HBV immunotherapy. Mol. Ther. Methods Clin. Dev. 7, 32–41 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Meng, W. et al. Targeting human-cytomegalovirus-infected cells by redirecting T cells using an anti-CD3/anti-glycoprotein B bispecific antibody. Antimicrob. Agents Chemother. 62, e01719–17 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Fabozzi, G., Pegu, A., Koup, R. A. & Petrovas, C. Bispecific antibodies: potential immunotherapies for HIV treatment. Methods 154, 118–124 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Pegu, A. et al. Activation and lysis of human CD4 cells latently infected with HIV-1. Nat. Commun. 6, 8447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Brozy, J. et al. Antiviral activity of HIV gp120-targeting bispecific T cell engager antibody constructs. J. Virol. 92, e00491–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Sloan, D. D. et al. Targeting HIV reservoir in infected CD4 T cells by dual-affinity re-targeting molecules (DARTs) that bind HIV envelope and recruit cytotoxic T cells. PLOS Pathog. 11, (e1005233 (2015).

    Google Scholar 

  126. 126.

    Sung, J. A. et al. Dual-affinity re-targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells. J. Clin. Invest. 125, 4077–4090 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Wu, G. et al. HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal. JCI Insight 2, e92901 (2017).

    Google Scholar 

  128. 128.

    Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Barbash, I. M. et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108, 863–868 (2003).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Li, Z. et al. Pretargeting and bioorthogonal click chemistry-mediated endogenous stem cell homing for heart repair. ACS Nano 12, 12193–12200 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Ziegler, M. et al. Platelet-targeted delivery of peripheral blood mononuclear cells to the ischemic heart restores cardiac function after ischemia-reperfusion injury. Theranostics 7, 3192–3206 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    CAS  Google Scholar 

  134. 134.

    Moores, S. L. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).

    CAS  Google Scholar 

  135. 135.

    Grugan, K. D. et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. mAbs 9, 114–126 (2017).

    CAS  Google Scholar 

  136. 136.

    Cho, B. C. et al. JNJ-61186372 (JNJ-372), an EGFR-cMET bispecific antibody, in advanced non-small cell lung cancer (NSCLC): an update on phase I results [abstract 1497P]. Ann. Oncol. 29, mdy292.118 (2018).

    Google Scholar 

  137. 137.

    Geuijen, C. A. W. et al. Unbiased combinatorial screening identifies a bispecific IgG1 that potently inhibits HER3 signaling via HER2-guided ligand blockade. Cancer Cell 33, 922–936 (2018).

    CAS  Google Scholar 

  138. 138.

    Li, Y. et al. ABT-165, a dual variable domain immunoglobulin (DVD-Ig) targeting DLL4 and VEGF, demonstrates superior efficacy and favorable safety profiles in preclinical models. Mol. Cancer Ther. 17, 1039–1050 (2018).

    CAS  Google Scholar 

  139. 139.

    Regula, J. T. et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol. Med. 8, 1265–1288 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Weisser, N., Wickman, G., Davies, R. & Rowse, G. Preclinical development of a novel biparatopic HER2 antibody with activity in low to high HER2 expressing cancers [abstract 31]. Cancer Res. 77, 31 (2017).

    Google Scholar 

  141. 141.

    American Association for Cancer Research. ZW25 effective in HER2-positive cancers. Cancer Discov. 9, 8 (2018).

    Google Scholar 

  142. 142.

    Li, J. Y. et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29, 117–129 (2016).

    CAS  Google Scholar 

  143. 143.

    Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008).

    CAS  Google Scholar 

  144. 144.

    Xu, J. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models—association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297, E1105–E1114 (2009).

    CAS  Google Scholar 

  145. 145.

    Wu, A. L. et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci. Transl Med. 3, 113ra126 (2011).

    Google Scholar 

  146. 146.

    Kolumam, G. et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/betaklotho complex. EBioMedicine 2, 730–743 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Fon Tacer, K. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050–2064 (2010).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Arora, P. S. et al. A bispecific agonistic antibody to FGF-R1/KlothoB improves the cardiometabolic profile in otherwise healthy obese subjects—preliminary results from the first-in-human single ascending dose study [abstract #1096]. Presented at the American Diabetes Association’s 77th Scientific Sessions (2017).

  149. 149.

    Sampei, Z. et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLOS ONE 8, e57479 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Kitazawa, T. et al. Factor VIIIa-mimetic cofactor activity of a bispecific antibody to factors IX/IXa and X/Xa, emicizumab, depends on its ability to bridge the antigens. Thromb. Haemost. 117, 1348–1357 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Shima, M. et al. Factor VIII-mimetic function of humanized bispecific antibody in hemophilia A. N. Engl. J. Med. 374, 2044–2053 (2016).

    CAS  Google Scholar 

  152. 152.

    Mahlangu, J. et al. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N. Engl. J. Med. 379, 811–822 (2018).

    CAS  Google Scholar 

  153. 153.

    Raso, V. & Griffin, T. Hybrid antibodies with dual specificity for the delivery of ricin to immunoglobulin-bearing target cells. Cancer Res. 41, 2073–2078 (1981).

    CAS  Google Scholar 

  154. 154.

    Raso, V., Brown, M. & McGrath, J. Intracellular targeting with low pH-triggered bispecific antibodies. J. Biol. Chem. 272, 27623–27628 (1997).

    CAS  Google Scholar 

  155. 155.

    Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl Med. 3, 84ra44 (2011).

    Google Scholar 

  156. 156.

    Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci. Transl Med. 6, 261ra154 (2014).

    Google Scholar 

  157. 157.

    Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).

    CAS  Google Scholar 

  158. 158.

    Bezabeh, B. et al. Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties. mAbs 9, 240–256 (2017).

    CAS  Google Scholar 

  159. 159.

    DiGiandomenico, A. et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl Med. 6, 262ra155 (2014).

    Google Scholar 

  160. 160.

    Thanabalasuriar, A. et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J. Clin. Invest. 127, 2249–2261 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Tabor, D. E. et al. Pseudomonas aeruginosa PcrV and Psl, the molecular targets of bispecific antibody MEDI3902, are conserved among diverse global clinical isolates. J. Infect. Dis. 218, 1983–1994 (2018).

    CAS  Google Scholar 

  162. 162.

    de Goeij, B. E. et al. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol. Cancer Ther. 15, 2688–2697 (2016).

    Google Scholar 

  163. 163.

    Schmidt, E. G. W. et al. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J. Biol. Chem. 292, 13312–13322 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Van Roy, M. et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res. Ther. 17, 135 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. 165.

    Harris, K. E. et al. Sequence-based discovery demonstrates that fixed light chain human transgenic rats produce a diverse repertoire of antigen-specific antibodies. Front. Immunol. 9, 889 (2018).

    PubMed  PubMed Central  Google Scholar 

  166. 166.

    Logtenberg, T. O. N., Pinto Rui, D. & Houtzager, E. Antibody producing non-human mammals. US Patent 9951124B2 (2018).

  167. 167.

    McWhirter, J. et al. Common light chain mouse. US Patent 20120021409A1 (2012).

  168. 168.

    Van Blarcom, T. et al. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies. mAbs 10, 256–268 (2018).

    Google Scholar 

  169. 169.

    Nixon, A. E., Sexton, D. J. & Ladner, R. C. Drugs derived from phage display: from candidate identification to clinical practice. mAbs 6, 73–85 (2014).

    Google Scholar 

  170. 170.

    Xiao, X. et al. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. mAbs 9, 996–1006 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Harms, B. D., Kearns, J. D., Iadevaia, S. & Lugovskoy, A. A. Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies. Methods 65, 95–104 (2014).

    CAS  Google Scholar 

  172. 172.

    Zheng, S. et al. Cross-arm binding efficiency of an EGFR x c-Met bispecific antibody. mAbs 8, 551–561 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Steinmetz, A. et al. CODV-Ig, a universal bispecific tetravalent and multifunctional immunoglobulin format for medical applications. mAbs 8, 867–878 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Kitazawa, T. et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat. Med. 18, 1570–1574 (2012).

    CAS  Google Scholar 

  175. 175.

    Jimeno, A. et al. A first-in-human phase 1a study of the bispecific anti-DLL4/anti-VEGF antibody navicixizumab (OMP-305B83) in patients with previously treated solid tumors. Invest. New Drugs https://doi.org/10.1007/s10637-018-0665-y (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Panowski, S. H. et al. Preclinical evaluation of a potent anti-BCMA CD3 bispecific molecule for the treatment of multiple myeloma. Blood 128, 383–383 (2016).

    Google Scholar 

  177. 177.

    Gaudet, F. et al. Development of a CD123xCD3 bispecific antibody (JNJ-63709178) for the treatment of acute myeloid leukemia (AML). Blood 128, 2824–2824 (2016).

    Google Scholar 

  178. 178.

    de Vries Schultink, A. H. M. et al. Translational PK-PD modeling analysis of MCLA-128, a HER2/HER3 bispecific monoclonal antibody, to predict clinical efficacious exposure and dose. Invest. New Drugs 36, 1006–1015 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. 179.

    Shiraiwa, H. et al. Engineering a bispecific antibody with a common light chain: Identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974. Methods 154, 10–20 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Moore, G. L. et al. A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods 154, 38–50 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Grosso, J. F. & Jure-Kunkel, M. N. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13, 5 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Loisel, S. et al. Relevance, advantages and limitations of animal models used in the development of monoclonal antibodies for cancer treatment. Crit. Rev. Oncol. Hematol. 62, 34–42 (2007).

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    Marques, A. & Muller, S. Mouse models of autoimmune diseases. Curr. Drug Discov. Technol. 6, 262–269 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Li, B. et al. CD89-mediated recruitment of macrophages via a bispecific antibody enhances anti-tumor efficacy. Oncoimmunology 7, e1380142 (2017).

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Amann, M. et al. Therapeutic window of MuS110, a single-chain antibody construct bispecific for murine EpCAM and murine CD3. Cancer Res. 68, 143–151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Lutterbuese, R. et al. Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. J. Immunother. 32, 341–352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Ruf, P. et al. Ganglioside GD2-specific trifunctional surrogate antibody Surek demonstrates therapeutic activity in a mouse melanoma model. J. Transl Med. 10, 219 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Schlereth, B. et al. Potent inhibition of local and disseminated tumor growth in immunocompetent mouse models by a bispecific antibody construct specific for murine CD3. Cancer Immunol. Immunother. 55, 785–796 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Wu, C. et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat. Biotechnol. 25, 1290–1297 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Lo, M. et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J. Biol. Chem. 292, 3900–3908 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Li, J. et al. IFNgamma-induced chemokines are required for CXCR3-mediated T-cell recruitment and antitumor efficacy of anti-HER2/CD3 bispecific antibody. Clin. Cancer Res. 24, 6447–6458 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. 192.

    Dimasi, N. et al. Development of a trispecific antibody designed to simultaneously and efficiently target three different antigens on tumor cells. Mol. Pharm. 12, 3490–3501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Gantke, T. et al. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells. Protein Eng. Des. Sel. 30, 673–684 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Schoonjans, R. et al. Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J. Immunol. 165, 7050–7057 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Nyakatura, E. K. et al. Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins. J. Biol. Chem. 293, 6201–6211 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Khan, S. N. et al. Targeting the HIV-1 spike and coreceptor with bi- and trispecific antibodies for single-component broad inhibition of entry. J. Virol. 92, e00384–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Kugler, M. et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br. J. Haematol. 150, 574–586 (2010).

    Google Scholar 

  198. 198.

    Wang, X. B. et al. A new recombinant single chain trispecific antibody recruits T lymphocytes to kill CEA (carcinoma embryonic antigen) positive tumor cells in vitro efficiently. J. Biochem. 135, 555–565 (2004).

    CAS  Google Scholar 

  199. 199.

    Castoldi, R. et al. TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations. Protein Eng. Des. Sel. 29, 467–475 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Steinhardt, J. J. et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nat. Commun. 9, 877 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Xu, L. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 358, 85–90 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Klein, C., Schaefer, W. & Regula, J. T. The use of CrossMAb technology for the generation of bi- and multispecific antibodies. mAbs 8, 1010–1020 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Hu, S. et al. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res. 75, 159–170 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Wu, X., Yuan, R., Bacica, M. & Demarest, S. J. Generation of orthogonal Fab-based trispecific antibody formats. Protein Eng. Des. Sel. 31, 249–256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Keyt, B., Presta Leonard, G., Zhang, F. E. N. & Baliga, R. Modified J-chain. US Patent 20170283510A1 (2017).

  206. 206.

    Kaveri, S. V., Silverman, G. J. & Bayry, J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. J. Immunol. 188, 939–945 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Patel, A. et al. An engineered bispecific DNA-encoded IgG antibody protects against Pseudomonas aeruginosa in a pneumonia challenge model. Nat. Commun. 8, 637 (2017).

    PubMed  PubMed Central  Google Scholar 

  208. 208.

    Stadler, C. R. et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209.

    Bakker, J. M., Bleeker, W. K. & Parren, P. W. Therapeutic antibody gene transfer: an active approach to passive immunity. Mol. Ther. 10, 411–416 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Wing, A. et al. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T cell engager. Cancer Immunol. Res. 6, 605–616 (2018).

    CAS  Google Scholar 

  211. 211.

    Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Huston, J. S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl Acad. Sci. USA 85, 5879–5883 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Holliger, P., Prospero, T. & Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl Acad. Sci. USA 90, 6444–6448 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Mallender, W. D. & Voss, E. W. Jr. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J. Biol. Chem. 269, 199–206 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Gruber, M., Schodin, B. A., Wilson, E. R. & Kranz, D. M. Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J. Immunol. 152, 5368–5374 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Ridgway, J. B., Presta, L. G. & Carter, P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9, 617–621 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Coloma, M. J. & Morrison, S. L. Design and production of novel tetravalent bispecific antibodies. Nat. Biotechnol. 15, 159–163 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Schuurman, J. et al. Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology 97, 693–698 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    van der Neut Kolfschoten, M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557 (2007).

    PubMed  PubMed Central  Google Scholar 

  220. 220.

    Oberg, H. H. et al. Novel bispecific antibodies increase T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Roovers and H. van der Vliet for helpful comments on the manuscript and A. Cook and V. P. Rath for access to the Beacon Targeted Therapies database.

Author information

Affiliations

Authors

Contributions

All authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Paul W. H. I. Parren.

Ethics declarations

Competing interests

A.F.L. and M.L.J. are employees of Genmab, a biotechnology company that develops therapeutic antibodies including bispecific antibodies and bispecific antibody technology. They own warrants and/or stock. P.W.H.I.P. is an employee of Lava Therapeutics, a start-up biotechnology company that develops therapeutic antibodies including bispecific antibodies and bispecific antibody technology. He obtains stock options as part of his employment.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Combinatorial bsAbs

Bispecific antibodies (bsAbs) that display an activity or functionality that can also be obtained by combining separate antibodies with the same specificities (for example, a parental or reference antibody mixture).

Obligate bsAbs

Bispecific antibodies (bsAbs) that display an activity or functionality that is dependent on the physical linkage of the two specificities (and cannot be obtained by combining separate antibodies with the same specificities). The dual-targeting concepts mediated by these bsAbs are considered obligate concepts.

Chain-association issue

The co-expression of two different heavy (H) and two different light (L) chains results in a complex mixture of sixteen possible H2L2 recombinations, representing ten different antibodies. Only one of these antibodies (represented by two possible H2L2 recombinations) corresponds with the desired bispecific antibody (maximal yield 12.5% in the mixture). This issue is addressed by strategies forcing cognate HL-pairing and/or promoting heterodimerization of the two different H chains.

Valency

The number of antigen-binding sites in an antibody molecule. The design of a bispecific antibody (bsAb) format influences the number of binding sites per target. A bivalent bsAb with one binding site for each target is denoted as 1 + 1. Incorporating additional binding sites can lead to trivalent (2 + 1) and tetravalent (2 + 2 or 1 + 3) designs.

Antibody fragments

The antibody molecule consists of different domains that can be expressed separately and used as modular building blocks. The domains involved in antigen recombination are often used as binding moieties in the design of antibody-based therapeutics. Examples include domain antibodies (heavy chain-only variable domain (VHH)) and single-chain Fv fragments (scFvs), antigen-binding fragments (Fabs), single-chain Fab fragments (scFabs) and, more recently, single-chain Fc fragments (scFcs).

Cross-arm binding efficiency

An increase in apparent affinity when a bispecific antibody binds to the second target or receptor following its binding to the first target or receptor on the same cell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labrijn, A.F., Janmaat, M.L., Reichert, J.M. et al. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 18, 585–608 (2019). https://doi.org/10.1038/s41573-019-0028-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing