Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Approaches to treat immune hot, altered and cold tumours with combination immunotherapies

Abstract

Immunotherapies are the most rapidly growing drug class and have a major impact in oncology and on human health. It is increasingly clear that the effectiveness of immunomodulatory strategies depends on the presence of a baseline immune response and on unleashing of pre-existing immunity. Therefore, a general consensus emerged on the central part played by effector T cells in the antitumour responses. Recent technological, analytical and mechanistic advances in immunology have enabled the identification of patients who are more likely to respond to immunotherapy. In this Review, we focus on defining hot, altered and cold tumours, the complexity of the tumour microenvironment, the Immunoscore and immune contexture of tumours, and we describe approaches to treat such tumours with combination immunotherapies, including checkpoint inhibitors. In the upcoming era of combination immunotherapy, it is becoming critical to understand the mechanisms responsible for hot, altered or cold immune tumours in order to boost a weak antitumour immunity. The impact of combination therapy on the immune response to convert an immune cold into a hot tumour will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defining ‘hot’, ‘altered’ and ‘cold’ immune tumours — Immunoscore as a new approach for the classification of cancer.
Fig. 2: Overview of more than 2,000 immuno-oncology agents currently tested or in use.
Fig. 3: The tumour–immune classification cycle as a tool to direct anticancer therapy.
Fig. 4: Schematic representation of treatments of immune cold tumours.

Similar content being viewed by others

References

  1. Shankaran, V. et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  2. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  3. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006). This article is the first demonstration of the dependence of tumour progression and invasion on the intratumoural adaptive immunity. T cell infiltrates and IFNγ signatures have predictive value superior to TNM with respect to the natural history of primary cancers.

    CAS  PubMed  Google Scholar 

  4. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014). This article shows that the baseline density and location at the invasive margin of T cells in metastatic melanomas predicts the treatment outcome of patients receiving PD-1-targeting therapies.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015). This article is the first to show that patients with metastatic melanoma with high mutational burden, neoantigen load and expression of cytolytic markers in their tumours are more likely to respond to anti-CTLA4 immunotherapy.

    PubMed  PubMed Central  Google Scholar 

  8. Huang, A. C. et al. T cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mlecnik, B. et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 29, 610–618 (2011).

    PubMed  Google Scholar 

  10. Galon, J., Angell, H. K., Bedognetti, D. & Marincola, F. M. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39, 11–26 (2013).

    CAS  PubMed  Google Scholar 

  11. Angell, H. & Galon, J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25, 261–267 (2013).

    CAS  PubMed  Google Scholar 

  12. Galluzzi, L. et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 1, 1111–1134 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Galon, J., Fridman, W. H. & Pages, F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 67, 1883–1886 (2007).

    CAS  PubMed  Google Scholar 

  14. Pages, F. et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27, 5944–5951 (2009).

    CAS  PubMed  Google Scholar 

  15. Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    CAS  PubMed  Google Scholar 

  16. Pages, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018). This article validates Immunoscore as a consensus and standardized cytotoxic T cell assay that defines immune hot, altered and cold tumours and has a greater prognostic value in CRC than T stage, N stage, lymphovascular invasion, tumour differentiation and MSI status.

    PubMed  Google Scholar 

  17. Camus, M. et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 69, 2685–2693 (2009). This paper presents the first description of the immune hot (optimal), altered-excluded, altered-immunosuppressed and cold (absent) tumours.

    CAS  PubMed  Google Scholar 

  18. Mlecnik, B. et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl Med. 6, 228ra37 (2014).

    PubMed  Google Scholar 

  19. Mlecnik, B. et al. Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    CAS  PubMed  Google Scholar 

  20. Boland, C. R. & Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 138, 2073–2087 (2010).

    CAS  PubMed  Google Scholar 

  21. Gajewski, T. F. et al. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv. Exp. Med. Biol. 1036, 19–31 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hegde, P. S., Karanikas, V. & Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 22, 1865–1874 (2016).

    CAS  PubMed  Google Scholar 

  23. Angelova, M. et al. Evolution of metastases in space and time under immune selection. Cell 175, 601 (2018).

    Google Scholar 

  24. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013). This article is the first to describe the immunome from immune signatures of purified immune cell subpopulations applied to human tumours. Immune infiltrate composition changes at each tumour stage and T, B and T FH cells have a major impact on survival.

    CAS  PubMed  Google Scholar 

  25. Gu-Trantien, C. et al. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2, 91487 (2017).

    PubMed  Google Scholar 

  26. Chew, V. et al. Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 61, 427–438 (2012).

    CAS  PubMed  Google Scholar 

  27. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+T cells. Cancer Res. 74, 705–715 (2014).

    CAS  PubMed  Google Scholar 

  29. Ingels, A. et al. T-helper 1 immunoreaction influences survival in muscle-invasive bladder cancer: proof of concept. Ecancermedicalscience 8, 486 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Mulligan, A. M., Pinnaduwage, D., Tchatchou, S., Bull, S. B. & Andrulis, I. L. Validation of intratumoral T-bet+lymphoid cells as predictors of disease-free survival in breast cancer. Cancer Immunol. Res. 4, 41–48 (2016).

    CAS  PubMed  Google Scholar 

  31. Mulligan, A. M. et al. Tumoral lymphocytic infiltration and expression of the chemokine CXCL10 in breast cancers from the Ontario Familial Breast Cancer Registry. Clin. Cancer Res. 19, 336–346 (2013).

    CAS  PubMed  Google Scholar 

  32. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Cheon, H., Borden, E. C. & Stark, G. R. Interferons and their stimulated genes in the tumor microenvironment. Semin. Oncol. 41, 156–173 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, C. F. et al. Escape from IFN-gamma-dependent immunosurveillance in tumorigenesis. J. Biomed. Sci. 24, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Zaidi, M. R. & Merlino, G. The two faces of interferon-gamma in cancer. Clin. Cancer Res. 17, 6118–6124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mandai, M. et al. Dual faces of IFNgamma in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin. Cancer Res. 22, 2329–2334 (2016).

    CAS  PubMed  Google Scholar 

  37. Snell, L. M., McGaha, T. L. & Brooks, D. G. Type I interferon in chronic virus infection and cancer. Trends Immunol. 38, 542–557 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Minn, A. J. & Wherry, E. J. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165, 272–275 (2016).

    CAS  PubMed  Google Scholar 

  39. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, T. et al. Inhibition of tumor angiogenesis by interferon-gamma by suppression of tumor-associated macrophage differentiation. Oncol. Res. 21, 227–235 (2014).

    CAS  PubMed  Google Scholar 

  41. Kim, H. J. & Cantor, H. CD4 T cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol. Res. 2, 91–98 (2014).

    CAS  PubMed  Google Scholar 

  42. Placek, K., Coffre, M., Maiella, S., Bianchi, E. & Rogge, L. Genetic and epigenetic networks controlling T helper 1 cell differentiation. Immunology 127, 155–162 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kato, D. et al. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies. Nihon Rinsho Meneki Gakkai Kaishi 40, 68–77 (2017).

    PubMed  Google Scholar 

  44. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015). This article shows that a melanoma cell-intrinsic oncogenic pathway (active β-catenin signalling) contributes to a lack of T cell infiltration in tumour sites and resistance to anti-PD-L1 and/or anti-CTLA4 mAb therapy.

    CAS  PubMed  Google Scholar 

  45. Yaguchi, T. et al. Immune suppression and resistance mediated by constitutive activation of Wnt/beta-catenin signaling in human melanoma cells. J. Immunol. 189, 2110–2117 (2012).

    CAS  PubMed  Google Scholar 

  46. Sumimoto, H., Imabayashi, F., Iwata, T. & Kawakami, Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 203, 1651–1656 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sumimoto, H. et al. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23, 6031–6039 (2004).

    CAS  PubMed  Google Scholar 

  48. Iwata-Kajihara, T. et al. Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors. J. Immunol. 187, 27–36 (2011).

    CAS  PubMed  Google Scholar 

  49. Nishio, H. et al. Immunosuppression through constitutively activated NF-kappaB signalling in human ovarian cancer and its reversal by an NF-kappaB inhibitor. Br. J. Cancer 110, 2965–2974 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mlecnik, B. et al. Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J. Natl Cancer Inst. 110, 97–108 (2018).

    Google Scholar 

  51. Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769 (2018).

    CAS  PubMed  Google Scholar 

  52. Yoshida, M. et al. Modification of the tumor microenvironment in KRAS or c-MYC-induced ovarian cancer-associated peritonitis. PLOS ONE 11, e0160330 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. McFarland, C. D. et al. The damaging effect of passenger mutations on cancer progression. Cancer Res. 77, 4763–4772 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tauriello, D. V. F. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    CAS  PubMed  Google Scholar 

  55. Zitvogel, L. & Kroemer, G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 1, 1223–1225 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. Mlecnik, B. et al. Biomolecular network reconstruction identifies T cell homing factors associated with survival in colorectal cancer. Gastroenterology 138, 1429–1440 (2010).

    CAS  PubMed  Google Scholar 

  57. van der Woude, L. L., Gorris, M. A. J., Halilovic, A., Figdor, C. G. & de Vries, I. J. M. Migrating into the tumor: a roadmap for T cells. Trends Cancer 3, 797–808 (2017).

    PubMed  Google Scholar 

  58. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gros, A. et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji, R. R. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61, 1019–1031 (2012).

    CAS  PubMed  Google Scholar 

  61. Eroglu, Z. et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature 553, 347–350 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Blank, C. U., Haanen, J. B., Ribas, A. & Schumacher, T. N. The “cancer immunogram”. Science 352, 658–660 (2016).

    CAS  PubMed  Google Scholar 

  63. Wieland, A. et al. T cell receptor sequencing of activated CD8 T cells in the blood identifies tumor-infiltrating clones that expand after PD-1 therapy and radiation in a melanoma patient. Cancer Immunol. Immunother. 67, 1767–1776 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Simon, S. et al. Emergence of high-avidity Melan-A-specific clonotypes as a reflection of anti-PD-1 clinical efficacy. Cancer Res. 77, 7083–7093 (2017).

    CAS  PubMed  Google Scholar 

  65. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Whiteside, T. L., Demaria, S., Rodriguez-Ruiz, M. E., Zarour, H. M. & Melero, I. Emerging opportunities and challenges in cancer immunotherapy. Clin. Cancer Res. 22, 1845–1855 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12, 306–315 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Durgeau, A., Virk, Y., Corgnac, S. & Mami-Chouaib, F. Recent advances in targeting CD8 T-Cell immunity for more effective cancer immunotherapy. Front. Immunol. 9, 14 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Mlecnik, B. et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl Med. 8, 327ra26 (2016).

    PubMed  Google Scholar 

  71. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    CAS  PubMed  Google Scholar 

  72. Church, S. E. & Galon, J. Tumor microenvironment and immunotherapy: the whole picture is better than a glimpse. Immunity 43, 631–633 (2015).

    CAS  PubMed  Google Scholar 

  73. Demaria, S., Coleman, C. N. & Formenti, S. C. Radiotherapy: changing the game in immunotherapy. Trends Cancer 2, 286–294 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  75. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shayan, G. et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology 6, e1261779 (2017).

    PubMed  Google Scholar 

  77. Granier, C. et al. Tim-3 expression on tumor-infiltrating PD-1(+)CD8(+) T cells correlates with poor clinical outcome in renal cell carcinoma. Cancer Res. 77, 1075–1082 (2017).

    CAS  PubMed  Google Scholar 

  78. Hellmann, M. D., Friedman, C. F. & Wolchok, J. D. Combinatorial cancer immunotherapies. Adv. Immunol. 130, 251–277 (2016).

    PubMed  Google Scholar 

  79. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    CAS  PubMed  Google Scholar 

  80. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Taube, J. M. Unleashing the immune system: PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology 3, e963413 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Taube, J. M. et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod. Pathol. 31, 214–234 (2018).

    CAS  PubMed  Google Scholar 

  83. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Du, W. et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int. J. Mol. Sci. 18, E645 (2017).

    PubMed  Google Scholar 

  87. Manieri, N. A., Chiang, E. Y. & Grogan, J. L. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 38, 20–28 (2017).

    CAS  PubMed  Google Scholar 

  88. Sedy, J. R. et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol. 6, 90–98 (2005).

    CAS  PubMed  Google Scholar 

  89. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stanczak, M. A. et al. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J. Clin. Invest. https://doi.org/10.1172/JCI120612 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Buchan, S. L., Rogel, A. & Al-Shamkhani, A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 131, 39–48 (2018).

    CAS  PubMed  Google Scholar 

  92. Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sanmamed, M. F. et al. Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin. Oncol. 42, 640–655 (2015).

    CAS  PubMed  Google Scholar 

  96. Hunig, T. The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat. Rev. Immunol. 12, 317–318 (2012).

    PubMed  Google Scholar 

  97. Elpek, K. et al. Efficacy of anti-ICOS agonist monoclonal antibodies in preclinical tumor models provides a rationale for clinical development as cancer immunotherapeutics. Cancer Immunol. Res. 4, A059 (2016).

    Google Scholar 

  98. Chaudhary, B. & Elkord, E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines 4, E28 (2016).

    PubMed  Google Scholar 

  99. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2017).

    PubMed  Google Scholar 

  100. Snyder, A., Pamer, E. & Wolchok, J. Could microbial therapy boost cancer immunotherapy? Science 350, 1031–1032 (2015).

    CAS  PubMed  Google Scholar 

  101. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nolz, J. C. Molecular mechanisms of CD8(+) T cell trafficking and localization. Cell. Mol. Life Sci. 72, 2461–2473 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nagarsheth, N. et al. PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 76, 275–282 (2016).

    CAS  PubMed  Google Scholar 

  107. Huang, Y. et al. CD4+and CD8+T cells have opposing roles in breast cancer progression and outcome. Oncotarget 6, 17462–17478 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Sweis, R. F. et al. Molecular drivers of the non-T cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol. Res. 4, 563–568 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Venning, F. A., Wullkopf, L. & Erler, J. T. Targeting ECM disrupts cancer progression. Front. Oncol. 5, 224 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Huang, Y., Goel, S., Duda, D. G., Fukumura, D. & Jain, R. K. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73, 2943–2948 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    CAS  PubMed  Google Scholar 

  113. Lanitis, E., Irving, M. & Coukos, G. Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol. 33, 55–63 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tan, L. Y. et al. Control of immune cell entry through the tumour vasculature: a missing link in optimising melanoma immunotherapy? Clin. Transl Immunol. 6, e134 (2017).

    Google Scholar 

  115. Wigerup, C., Pahlman, S. & Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 164, 152–169 (2016).

    CAS  PubMed  Google Scholar 

  116. Serra, S. et al. Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv. 1, 47–61 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stagg, J. & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010).

    CAS  PubMed  Google Scholar 

  118. Antonioli, L., Blandizzi, C., Pacher, P. & Hasko, G. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13, 842–857 (2013).

    CAS  PubMed  Google Scholar 

  119. Stagg, J. et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 71, 2892–2900 (2011).

    CAS  PubMed  Google Scholar 

  120. Antonioli, L., Yegutkin, G. G., Pacher, P., Blandizzi, C. & Hasko, G. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2, 95–109 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Hayes, G. M. et al. CD39 is a promising therapeutic antibody target for the treatment of soft tissue sarcoma. Am. J. Transl Res. 7, 1181–1188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sun, X. et al. Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/ENTPD1 null mice. Hepatology 57, 205–216 (2013).

    CAS  PubMed  Google Scholar 

  123. Leone, R. D. & Emens, L. A. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer 6, 57 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Yu, T., Tang, B. & Sun, X. Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Med. J. 58, 489–496 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Leone, R. D., Lo, Y. C. & Powell, J. D. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput. Struct. Biotechnol. J. 13, 265–272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cardones, A. R. & Banez, L. L. VEGF inhibitors in cancer therapy. Curr. Pharm. Des. 12, 387–394 (2006).

    CAS  PubMed  Google Scholar 

  127. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  128. Rajabi, M. & Mousa, S. A. The role of angiogenesis in cancer treatment. Biomedicines 5, 34 (2017).

    PubMed Central  Google Scholar 

  129. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Goel, S., Wong, A. H. & Jain, R. K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb. Perspect. Med. 2, a006486 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sabat, R. et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 21, 331–344 (2010).

    CAS  PubMed  Google Scholar 

  134. Yang, L. TGFbeta a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr. Mol. Med. 10, 374–380 (2010).

    CAS  PubMed  Google Scholar 

  135. Zhang, H., Wang, Y., Hwang, E. S. & He, Y. W. Interleukin-10: an immune-activating cytokine in cancer immunotherapy. J. Clin. Oncol. 34, 3576–3578 (2016).

    CAS  PubMed  Google Scholar 

  136. Neuzillet, C. et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol. Ther. 147, 22–31 (2015).

    CAS  PubMed  Google Scholar 

  137. Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta. Sci. Transl Med. 10, eaan5488 (2018).

    PubMed  Google Scholar 

  138. Shimabukuro-Vornhagen, A. et al. The immunosuppressive factors IL-10, TGF-beta, and VEGF do not affect the antigen-presenting function of CD40-activated B cells. J. Exp. Clin. Cancer Res. 31, 47 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 4, 941–952 (2004).

    CAS  PubMed  Google Scholar 

  140. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Richards, C. H., Mohammed, Z., Qayyum, T., Horgan, P. G. & McMillan, D. C. The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Future Oncol. 7, 1223–1235 (2011).

    CAS  PubMed  Google Scholar 

  142. Holmgaard, R. B. et al. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 13, 412–424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Timosenko, E., Hadjinicolaou, A. V. & Cerundolo, V. Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy 9, 83–97 (2017).

    CAS  PubMed  Google Scholar 

  144. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208–220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Raber, P. L. et al. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int. J. Cancer 134, 2853–2864 (2014).

    CAS  PubMed  Google Scholar 

  146. Long, G. V. et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. J. Clin. Oncol. 36, 108 (2018).

    Google Scholar 

  147. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Moore, E. et al. Established T cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway blockade. Cancer Immunol. Res. 4, 1061–1071 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Clavijo, P. E. et al. Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget 8, 55804–55820 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+T cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    CAS  PubMed  Google Scholar 

  152. Ulloa-Montoya, F. et al. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J. Clin. Oncol. 31, 2388–2395 (2013).

    CAS  PubMed  Google Scholar 

  153. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    CAS  PubMed  Google Scholar 

  154. Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    CAS  PubMed  Google Scholar 

  155. Corrales, L., McWhirter, S. M., Dubensky, T. W. Jr & Gajewski, T. F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 126, 2404–2411 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Sanchez-Paulete, A. R. et al. Antigen cross-presentation and T cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28, xii44–xii55 (2017).

    CAS  PubMed  Google Scholar 

  157. Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    CAS  PubMed  Google Scholar 

  158. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Huck, B. R., Kotzner, L. & Urbahns, K. Small molecules drive big improvements in immuno-oncology therapies. Angew. Chem. Int. Ed. 57, 4412–4428 (2018).

    CAS  Google Scholar 

  160. Foote, J. B. et al. A STING agonist given with OX40 receptor and PD-L1 modulators primes immunity and reduces tumor growth in tolerized mice. Cancer Immunol. Res. 5, 468–479 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Shekarian, T. et al. Pattern recognition receptors: immune targets to enhance cancer immunotherapy. Ann. Oncol. 28, 1756–1766 (2017).

    CAS  PubMed  Google Scholar 

  162. Elion, D. L. & Cook, R. S. Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget 9, 29007–29017 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Le Mercier, I. et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res. 73, 4629–4640 (2013).

    PubMed  Google Scholar 

  164. Kim, Y. H. et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119, 355–363 (2012).

    PubMed  PubMed Central  Google Scholar 

  165. Li, J. et al. Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J. Immunol. 179, 2493–2500 (2007).

    CAS  PubMed  Google Scholar 

  166. Wang, S. et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc. Natl Acad. Sci. USA 113, E7240–E7249 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sato-Kaneko, F. et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight 2, 93397 (2017).

    PubMed  Google Scholar 

  168. Sagiv-Barfi, I. et al. Eradication of spontaneous malignancy by local immunotherapy. Sci. Transl Med. 10, eaan4488 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Marin-Acevedo, J. A., Soyano, A. E., Dholaria, B., Knutson, K. L. & Lou, Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J. Hematol. Oncol. 11, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. Wilkinson, R. W. & Leishman, A. J. Further advances in cancer immunotherapy: going beyond checkpoint blockade. Front. Immunol. 9, 1082 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Frank, M. J. et al. In situ vaccination with a TLR 9 agonist and local low dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-18-0743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chow, L. Q. M. et al. Phase Ib trial of the toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHN. Clin. Cancer Res. 23, 2442–2450 (2017).

    CAS  PubMed  Google Scholar 

  173. Marabelle, A., Kohrt, H., Caux, C. & Levy, R. Intratumoral immunization: a new paradigm for cancer therapy. Clin. Cancer Res. 20, 1747–1756 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Ridnour, L. A. et al. Molecular pathways: toll-like receptors in the tumor microenvironment—poor prognosis or new therapeutic opportunity. Clin. Cancer Res. 19, 1340–1346 (2013).

    CAS  PubMed  Google Scholar 

  175. Huang, L., Xu, H. & Peng, G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell. Mol. Immunol. 15, 428–437 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Li, J. K., Balic, J. J., Yu, L. & Jenkins, B. TLR agonists as adjuvants for cancer vaccines. Adv. Exp. Med. Biol. 1024, 195–212 (2017).

    CAS  PubMed  Google Scholar 

  177. Iribarren, K. et al. Trial watch: immunostimulation with toll-like receptor agonists in cancer therapy. Oncoimmunology 5, e1088631 (2016).

    PubMed  Google Scholar 

  178. Vonderheide, R. H. & Glennie, M. J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035–1043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Tutt, A. L. et al. T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody. J. Immunol. 168, 2720–2728 (2002).

    CAS  PubMed  Google Scholar 

  180. Mangsbo, S. M. et al. The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T cell-dependent tumor immunity. Clin. Cancer Res. 21, 1115–1126 (2015).

    CAS  PubMed  Google Scholar 

  181. Beatty, G. L., Li, Y. & Long, K. B. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev. Anticancer Ther. 17, 175–186 (2017).

    CAS  PubMed  Google Scholar 

  182. Ohta, T. et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci. Rep. 6, 23505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Krummel, M. F., Bartumeus, F. & Gerard, A. T cell migration, search strategies and mechanisms. Nat. Rev. Immunol. 16, 193–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Villadangos, J. A. & Shortman, K. Found in translation: the human equivalent of mouse CD8+dendritic cells. J. Exp. Med. 207, 1131–1134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). This article shows that innate immune sensing of cancer occurs via the host STING pathway and subsequent type I interferon production. Spontaneous CD8 + T cell priming against tumours depends on STING.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zheng, W. et al. Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7, 43039–43051 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Bonvalot, S. et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin. Cancer Res. 23, 908–917 (2017).

    CAS  PubMed  Google Scholar 

  191. Beatty, G. L. & Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687–692 (2015).

    CAS  PubMed  Google Scholar 

  192. Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 140, 798–804 (2010).

    CAS  PubMed  Google Scholar 

  193. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016). This article demonstrates that a relationship exists between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. Sensitivity to PD-1 and CTLA4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumours enriched for clonal neoantigens.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    CAS  PubMed  Google Scholar 

  195. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    CAS  PubMed  Google Scholar 

  196. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  197. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    CAS  PubMed  Google Scholar 

  198. Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015).

    CAS  PubMed  Google Scholar 

  199. Ruffell, B. et al. Leukocyte composition of human breast cancer. Proc. Natl Acad. Sci. USA 109, 2796–2801 (2012).

    CAS  PubMed  Google Scholar 

  200. Park, J. H. et al. Clonal expansion of antitumor T cells in breast cancer correlates with response to neoadjuvant chemotherapy. Int. J. Oncol. 49, 471–478 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ladoire, S. et al. Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy 11, 1878–1890 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Ladoire, S. et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy 12, 864–875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Fucikova, J. et al. Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res. 76, 1746–1756 (2016).

    CAS  PubMed  Google Scholar 

  204. Stoll, G. et al. Calreticulin expression: interaction with the immune infiltrate and impact on survival in patients with ovarian and non-small cell lung cancer. Oncoimmunology 5, e1177692 (2016).

    PubMed  PubMed Central  Google Scholar 

  205. Wemeau, M. et al. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis. 1, e104 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Fucikova, J. et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 128, 3113–3124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    CAS  PubMed  Google Scholar 

  208. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    CAS  PubMed  Google Scholar 

  209. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    CAS  PubMed  Google Scholar 

  210. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, W. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165, 1092–1105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Anitei, M. G. et al. Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin. Cancer Res. 20, 1891–1899 (2014).

    PubMed  Google Scholar 

  213. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    CAS  PubMed  Google Scholar 

  214. Brea, E. J. et al. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol. Res. 4, 936–947 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Gang, A. O. et al. 5-Azacytidine treatment sensitizes tumor cells to T cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J. 4, e197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. de Charette, M., Marabelle, A. & Houot, R. Turning tumour cells into antigen presenting cells: the next step to improve cancer immunotherapy? Eur. J. Cancer 68, 134–147 (2016).

    PubMed  Google Scholar 

  217. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Stengel, S., Fiebig, U., Kurth, R. & Denner, J. Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer 49, 401–411 (2010).

    CAS  PubMed  Google Scholar 

  219. Strissel, P. L. et al. Reactivation of codogenic endogenous retroviral (ERV) envelope genes in human endometrial carcinoma and prestages: emergence of new molecular targets. Oncotarget 3, 1204–1219 (2012).

    PubMed  PubMed Central  Google Scholar 

  220. Sharma, S., Kaufmann, T. & Biswas, S. Impact of inhibitor of apoptosis proteins on immune modulation and inflammation. Immunol. Cell Biol. 95, 236–243 (2017).

    CAS  PubMed  Google Scholar 

  221. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016).

    PubMed  Google Scholar 

  222. Yea, S. S. & Fruman, D. A. Achieving cancer cell death with PI3K/mTOR-targeted therapies. Ann. NY Acad. Sci. 1280, 15–18 (2013).

    CAS  PubMed  Google Scholar 

  223. Kumari, N., Dwarakanath, B. S., Das, A. & Bhatt, A. N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37, 11553–11572 (2016).

    CAS  PubMed  Google Scholar 

  224. Liepe, J. et al. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354, 354–358 (2016).

    CAS  PubMed  Google Scholar 

  225. Lauss, M. et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8, 1738 (2017).

    PubMed  PubMed Central  Google Scholar 

  226. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017). This article shows that inactivation of DNA MMR mechanisms increased mutational load, promoted continuous renewal of neoantigens in human CRCs and triggered immune surveillance in mouse models.

    CAS  PubMed  Google Scholar 

  227. Wieringa, H. W., van der Zee, A. G., de Vries, E. G. & van Vugt, M. A. Breaking the DNA damage response to improve cervical cancer treatment. Cancer Treat. Rev. 42, 30–40 (2016).

    PubMed  Google Scholar 

  228. Hemann, M. T. From breaking bad to worse: exploiting homologous DNA repair deficiency in cancer. Cancer Discov. 4, 516–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Yang, Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335–3337 (2015).

    PubMed  PubMed Central  Google Scholar 

  230. Rosenbaum, L. Tragedy, perseverance, and chance — the story of CAR-T therapy. N. Engl. J. Med. 377, 1313–1315 (2017).

    PubMed  Google Scholar 

  231. Jensen, M. C. & Riddell, S. R. Designing chimeric antigen receptors to effectively and safely target tumors. Curr. Opin. Immunol. 33, 9–15 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Gomes-Silva, D. & Ramos, C. A. Cancer immunotherapy using CAR-T cells: from the research bench to the assembly line. Biotechnol. J. 13, 1700097 (2018).

    Google Scholar 

  233. Wang, X. & Riviere, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolyt. 3, 16015 (2016).

    CAS  Google Scholar 

  234. von Kalle, C., Deichmann, A. & Schmidt, M. Vector integration and tumorigenesis. Hum. Gene Ther. 25, 475–481 (2014).

    Google Scholar 

  235. Wright, A. V., Nunez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    CAS  PubMed  Google Scholar 

  236. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Hervas-Stubbs, S. et al. CD8 T cell priming in the presence of IFN-alpha renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. J. Immunol. 189, 3299–3310 (2012).

    CAS  PubMed  Google Scholar 

  238. Mishto, M. & Liepe, J. Post-translational peptide splicing and T cell responses. Trends Immunol. 38, 904–915 (2017).

    CAS  PubMed  Google Scholar 

  239. Verdegaal, E. M. et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 536, 91–95 (2016).

    CAS  PubMed  Google Scholar 

  240. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Galon, J. et al. Characterization of anti-CD19 chimeric antigen receptor (CAR) T cell-mediated tumor microenvironment immune gene profile in a multicenter trial (ZUMA-1) with axicabtagene ciloleucel (axi-cel, KTE-C19). J. Clin. Oncol. 35, 3025 (2017).

    Google Scholar 

  242. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Pataer, A., Swisher, S. G., Roth, J. A., Logothetis, C. J. & Corn, P. G. Inhibition of RNA-dependent protein kinase (PKR) leads to cancer cell death and increases chemosensitivity. Cancer Biol. Ther. 8, 245–252 (2009).

    CAS  PubMed  Google Scholar 

  244. Chesney, J. et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 36, 1658–1667 (2018). This paper presents the first randomized trial evaluating the combination of an oncolytic virus with a checkpoint inhibitor and showing a significantly higher objective response rate for T-VEC plus ipilimumab versus ipilimumab alone.

    CAS  PubMed  Google Scholar 

  245. Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119 (2017). This article shows that oncolytic virotherapy with T-VEC in patients with advanced melanoma increased the cytotoxic T cell infiltration and therapeutic efficacy of an anti-PD-1 antibody.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Haanen, J. Converting cold into hot tumors by combining immunotherapies. Cell 170, 1055–1056 (2017).

    CAS  PubMed  Google Scholar 

  247. Nestvold, J. et al. Oncolytic peptide LTX-315 induces an immune-mediated abscopal effect in a rat sarcoma model. Oncoimmunology 6, e1338236 (2017).

    PubMed  PubMed Central  Google Scholar 

  248. Patel, A., Kaufman, H. L. & Disis, M. L. Next generation approaches for tumor vaccination. Chin. Clin. Oncol. 6, 19 (2017).

    PubMed  Google Scholar 

  249. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Vigneron, N. Human tumor antigens and cancer immunotherapy. Biomed. Res. Int. 2015, 948501 (2015).

    PubMed  PubMed Central  Google Scholar 

  251. Mitchell, D. A. et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS  PubMed  Google Scholar 

  253. Liau, L. M. et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl Med. 16, 142 (2018).

    PubMed  PubMed Central  Google Scholar 

  254. Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). This paper presents the development and successful application of a personalized vaccine-based immunotherapy exploiting the concept of an individualized mutanome and computational prediction of neo-epitopes.

    CAS  PubMed  Google Scholar 

  256. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017). This article provides a strong rationale for further development of neo-epitope vaccines, alone and in combination with checkpoint blockade or other immunotherapies.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Garcia-Martinez, E. et al. Trial watch: immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 7, e1433982 (2018).

    PubMed  PubMed Central  Google Scholar 

  258. Jiang, T., Zhou, C. & Ren, S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 5, e1163462 (2016).

    PubMed  PubMed Central  Google Scholar 

  259. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Ochoa, M. C. et al. Interleukin-15 in gene therapy of cancer. Curr. Gene Ther. 13, 15–30 (2013).

    CAS  PubMed  Google Scholar 

  261. Romee, R. et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 131, 2515–2527 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Mazzucchelli, R. & Durum, S. K. Interleukin-7 receptor expression: intelligent design. Nat. Rev. Immunol. 7, 144–154 (2007).

    CAS  PubMed  Google Scholar 

  263. Deiser, K., Stoycheva, D., Bank, U., Blankenstein, T. & Schuler, T. Interleukin-7 modulates anti-tumor CD8+T cell responses via its action on host cells. PLOS ONE 11, e0159690 (2016).

    PubMed  PubMed Central  Google Scholar 

  264. Xu, X., Sun, Q., Mei, Y., Liu, Y. & Zhao, L. Newcastle disease virus co-expressing interleukin 7 and interleukin 15 modified tumor cells as a vaccine for cancer immunotherapy. Cancer Sci. 109, 279–288 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Al-Chami, E., Tormo, A., Khodayarian, F. & Rafei, M. Therapeutic utility of the newly discovered properties of interleukin-21. Cytokine 82, 33–37 (2016).

    CAS  PubMed  Google Scholar 

  266. Kannappan, V. et al. Interleukin 21 inhibits cancer-mediated FOXP3 induction in naive human CD4 T cells. Cancer Immunol. Immunother. 66, 637–645 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Spolski, R. & Leonard, W. J. IL-21 and T follicular helper cells. Int. Immunol. 22, 7–12 (2010).

    CAS  PubMed  Google Scholar 

  268. Lewis, K. E. et al. Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. Oncoimmunology 7, e1377873 (2017).

    PubMed  PubMed Central  Google Scholar 

  269. Chapuis, A. G. et al. Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. J. Exp. Med. 213, 1133–1139 (2016).

    PubMed  PubMed Central  Google Scholar 

  270. Kaiser, J. ‘Liquid biopsy’ for cancer promises early detection. Science 359, 259 (2018).

    CAS  PubMed  Google Scholar 

  271. Tavare, R. et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 76, 73–82 (2016).

    CAS  PubMed  Google Scholar 

  272. Ali, H. R., Chlon, L., Pharoah, P. D., Markowetz, F. & Caldas, C. Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLOS Med. 13, e1002194 (2016).

    PubMed  PubMed Central  Google Scholar 

  273. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    PubMed  PubMed Central  Google Scholar 

  277. Li, T. et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108–e110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Zappia, L., Phipson, B. & Oshlack, A. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLOS Comput. Biol. 14, e1006245 (2018).

    PubMed  PubMed Central  Google Scholar 

  280. Chen, X., Sun, Y. C., Church, G. M., Lee, J. H. & Zador, A. M. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res. 46, e22 (2018).

    CAS  PubMed  Google Scholar 

  281. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24, 207–212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  284. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    PubMed  PubMed Central  Google Scholar 

  285. Papaccio, F. et al. Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med. 6, 2115–2125 (2017).

    PubMed  PubMed Central  Google Scholar 

  286. Jolly, M. K., Ware, K. E., Gilja, S., Somarelli, J. A. & Levine, H. EMT and MET: necessary or permissive for metastasis? Mol. Oncol. 11, 755–769 (2017).

    PubMed  PubMed Central  Google Scholar 

  287. Moustakas, A. & de Herreros, A. G. Epithelial-mesenchymal transition in cancer. Mol. Oncol. 11, 715–717 (2017).

    PubMed  PubMed Central  Google Scholar 

  288. Terry, S. et al. New insights into the role of EMT in tumor immune escape. Mol. Oncol. 11, 824–846 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the following institutions for their financial support: the National Cancer Institute of France (INCa), the Plan Cancer, the Canceropole Ile de France, INSERM, Cancer Research for Personalized Medicine (CARPEM), the Paris Alliance of Cancer Research Institutes (PACRI), H2020 PHC-32-2014 APERIM grant number EEAA15006DDA, MedImmune (grant number RVE15004DSA) and LabEx Immuno-oncology.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jérôme Galon.

Ethics declarations

Competing interests

Immunoscore is a registered trademark from INSERM. J.G. is co-founder and chairman of the scientific advisory board of HalioDx. J.G. has patents associated with an ‘in vitro method for the prognosis of progression of a cancer’ (PCT/IB2006/003168 and PCT/EP2013/062405). J.G. established Collaborative Research Agreement (grants) with Perkin-Elmer, IO Biotech, MedImmune, Astra Zeneca, Janssen, Imcheck Therapeutics. J.G. participated to Scientific Advisory Boards of BMS, MedImmune, Astra Zeneca, Novartis, Definiens, Merck Serono, IO Biotech, ImmunID, Nanostring, Illumina, Northwest Biotherapeutics, Actelion, Amgen, Kite Pharma and Merck MSD. J.G. was a consultant for BMS, Roche, GSK, Compugen, Mologen and Sanofi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

TNM system

The tumour-node-metastasis (TNM) staging system is a globally recognized classification of tumours based on their anatomical extent. T refers to the size and extent of the primary tumour, N refers to the involvement of regional lymph nodes and M describes the presence of distant metastases.

Pathologic T (pT) stage

The staging assigned post-surgery to guide treatment stratification, patient selection for clinical trials and prognosis prediction (as opposed to clinical staging that relies on physical exams and imaging tests).

Immunoproteasome

Proteasome isoform constitutively expressed in haematopoietic cells and induced in non-immune cells following exposure to interferon-γ (IFNγ) and other pro-inflammatory cytokines (type I interferons and tumour necrosis factor (TNF)). It is involved in antigen processing and in the expansion, maintenance and differentiation of T cell populations during an immune response.

T cell receptor (TCR) repertoire

The variety of the TCR diversity, as generated by the somatic recombination of the germ line V, D and J gene segments and the deletion and insertion of nucleotides at the V(D)J junctions. Such variety is required to recognize a wide spectrum of antigens.

TCR Vß subfamilies

Human TCR ß locus is on chromosome 7, comprising nine multimember V subfamilies plus additional elements on chromosome 9. The presence of multiple subfamilies is due to evolutionary duplication events.

Tumour-specific antigen

(TSA). Antigen not encoded in the normal genome, expressed exclusively by tumour cells.

Antigenicity

Presence of tumour-associated antigens (TAAs) capable of engaging with T cell receptors or antibodies (B cell receptors), thereby driving adaptive immunity.

Abscopal effect

Phenomenon characterized by the regression of metastases outside the field of radiation after irradiation of one tumour site. Although rarely detected, it is well documented in patients with more immunogenic tumours.

Adjuvanticity

Presence of damage-associated molecular patterns (DAMPs) and stress signals driving the innate immunity.

Genotoxic chemotherapies

Chemical agents that cause DNA damage, such as single-strand and double-strand breaks, loss of excision repair, crosslinking, alkali-labile sites, point mutations and structural and numerical chromosomal aberrations.

Damage-associated molecular patterns

(DAMPs). Intracellular molecules that are hidden from immune recognition under physiological conditions. These molecules are secreted, exposed or released upon cellular stress or tissue injury and recognized by pattern-recognition receptors expressed on innate immune cells.

Tumour-associated antigens

(TAAs). Antigens that are preferentially expressed by tumour cells but they can also be found in normal tissues (except for the TSAs, which are exclusively expressed by tumour cells). They can be broadly categorized into aberrantly expressed self-antigens, mutated self-antigens and TSAs.

(LC3B+) puncta

LC3 is a protein involved in the formation of autophagosomes and autolysosomes. Punctate (as opposed to diffused) LC3 staining indicates autophagy, as determined by fluorescence microscopy.

Differentiation antigens

Antigens derived from proteins that are expressed in a given type of tumour and the corresponding healthy tissue, often in lower amounts.

Neoantigen fitness

The likelihood of a peptide to be immunogenic, as measured by its binding affinity to major histocompatibility complex (MHC) and subsequent recognition by T cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galon, J., Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18, 197–218 (2019). https://doi.org/10.1038/s41573-018-0007-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-018-0007-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer