Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polymer–drug conjugate therapeutics: advances, insights and prospects

Abstract

Polymer–drug conjugates have long been a mainstay of the drug delivery field, with several conjugates successfully translated into clinical practice. The conjugation of therapeutic agents to polymeric carriers, such as polyethylene glycol, offers several advantages, including improved drug solubilization, prolonged circulation, reduced immunogenicity, controlled release and enhanced safety. In this Review, we discuss the rational design, physicochemical characteristics and recent advances in the development of different classes of polymer–drug conjugates, including polymer–protein and polymer–small-molecule drug conjugates, dendrimers, polymer nanoparticles and multifunctional systems. Current obstacles hampering the clinical translation of polymer–drug conjugate therapeutics and future prospects are also presented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classes of polymer–drug conjugates on the market or in clinical development.
Fig. 2: Emerging approaches in polymer–protein conjugate development.
Fig. 3: Architectural diversity of polymer therapeutics.
Fig. 4: Stimuli-responsive functionalities and schematic representation of a multifunctional polymer therapeutic.

Similar content being viewed by others

References

  1. Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. C 51, 135–153 (1975).

    CAS  Google Scholar 

  2. Kopecek, J. & Kopeckova, P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 62, 122–149 (2010).

    CAS  PubMed  Google Scholar 

  3. Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003).

    CAS  PubMed  Google Scholar 

  4. Nagle, T., Berg, C., Nassr, R. & Pang, K. The further evolution of biotech. Nat. Rev. Drug Discov. 2, 75–79 (2003).

    CAS  PubMed  Google Scholar 

  5. Caliceti, P. & Veronese, F. M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55, 1261–1277 (2003).

    CAS  PubMed  Google Scholar 

  6. Tong, R. & Cheng, J. Anticancer polymeric nanomedicines. Polym. Rev. 47, 345–381 (2007).

    CAS  Google Scholar 

  7. Canalle, L. A., Lowik, D. W. & van Hest, J. C. Polypeptide-polymer bioconjugates. Chem. Soc. Rev. 39, 329–353 (2010).

    CAS  PubMed  Google Scholar 

  8. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Abuchowski, A., van Es, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    CAS  PubMed  Google Scholar 

  10. Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T. & Davis, F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977).

    CAS  PubMed  Google Scholar 

  11. Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).

    CAS  Google Scholar 

  12. Hershfield, M. S. et al. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N. Engl. J. Med. 316, 589–596 (1987).

    CAS  PubMed  Google Scholar 

  13. Ulbrich, K. et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431 (2016).

    CAS  PubMed  Google Scholar 

  14. Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Turecek, P. L., Bossard, M. J., Schoetens, F. & Ivens, I. A. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105, 460–475 (2016).

    CAS  PubMed  Google Scholar 

  16. Graham, M. L. PEGaspargase: a review of clinical studies. Adv. Drug Deliv. Rev. 55, 1293–1302 (2003).

    CAS  PubMed  Google Scholar 

  17. Peters, B. G., Goeckner, B. J., Ponzillo, J. J., Velasquez, W. S. & Wilson, A. L. PEGaspargase versus asparaginase in adult all: a pharmacoeconomic assessment. Formulary 30, 388–393 (1995).

    CAS  PubMed  Google Scholar 

  18. Macdougall, I. C. et al. Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 1, 1211–1215 (2006).

    CAS  PubMed  Google Scholar 

  19. Curran, M. P. & McCormack, P. L. Methoxy polyethylene glycol-epoetin beta: a review of its use in the management of anaemia associated with chronic kidney disease. Drugs 68, 1139–1156 (2008).

    CAS  PubMed  Google Scholar 

  20. Bezditko, N., Iakovlieva, L., Mishchenko, O., Gerasymova, O. & Kyrychenko, O. Pharmacoeconomic aspects of use of erythropoietin drugs in patients on hemodialysis in ukraine. Value Health 15, A459 (2012).

    Google Scholar 

  21. Wang, Y. S. et al. Structural and biological characterization of PEGylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev. 54, 547–570 (2002).

    CAS  PubMed  Google Scholar 

  22. Rajender Reddy, K., Modi, M. W. & Pedder, S. Use of PEGinterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Rev. 54, 571–586 (2002).

    CAS  PubMed  Google Scholar 

  23. Yang, B. B. & Kido, A. Pharmacokinetics and pharmacodynamics of PEGfilgrastim. Clin. Pharmacokinet. 50, 295–306 (2011).

    CAS  PubMed  Google Scholar 

  24. Deeks, E. D. Certolizumab pegol: a review of its use in the management of rheumatoid arthritis. Drugs 73, 75–97 (2013).

    CAS  PubMed  Google Scholar 

  25. Kharitonenkov, A. & Adams, A. C. Inventing new medicines: the FGF21 story. Mol. Metab. 3, 221–229 (2014).

    CAS  PubMed  Google Scholar 

  26. So, W. Y. & Leung, P. S. Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus. Med. Res. Rev. 36, 672–704 (2016).

    CAS  PubMed  Google Scholar 

  27. Sanyal, A. et al. BMS-986036 (PEGylated FGF21) in patients with non-alcoholic steatohepatitis: a phase 2 study. J. Hepatol. 66, S89–S90 (2017).

    Google Scholar 

  28. Charles, E. D. et al. A phase 1 study of BMS-986036 (PEGylated FGF21) in healthy obese subjects. Hepatology 64, 546A (2016).

    Google Scholar 

  29. Charles, E. D., Tetri, B. A., Luo, Y., Wu, C. K. & Christian, R. A phase 2 study of BMS-986036 (PEGylated FGF21) in obese adults with type 2 diabetes and a high prevalence of fatty liver. Hepatology 64, 17A (2016).

    Google Scholar 

  30. Wu, C. K., Charles, E. D., Bui, A., Christian, R. & Abu Tarif, M. Phase 1 study of BMS-986171 (PEGylated FGF21) in healthy obese subjects. Hepatology 64, 564A–565A (2016).

    Google Scholar 

  31. Huhn, R. D. et al. Pharmacodynamics of subcutaneous recombinant human interleukin-10 in healthy volunteers. Clin. Pharmacol. Ther. 62, 171–180 (1997).

    CAS  PubMed  Google Scholar 

  32. Naing, A. et al. CD8+ T cell stimulation with PEGylated recombinant human IL-10 in the patient with advanced solid tumors — a phase I study. J. Immunother. Cancer 3, P204 (2015).

    PubMed Central  Google Scholar 

  33. Mumm, J. B. et al. Il-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer Cell 20, 781–796 (2011).

    CAS  PubMed  Google Scholar 

  34. Naing, A. et al. Safety, antitumor activity, and immune activation of PEGylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J. Clin. Oncol. 34, 3562–3569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    CAS  PubMed  Google Scholar 

  36. Charych, D. et al. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLOS ONE 12, e0179431 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Langowski, J. et al. NKTR-358: a selective, first-in-class IL-2 pathway agonist which increases number and suppressive function of regulatory T cells for the treatment of immune inflammatory disorders. Arthritis Rheumatol. 69, 2 (2017).

    Google Scholar 

  38. Roberts, M. J., Bentley, M. D. & Harris, J. M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54, 459–476 (2002).

    CAS  PubMed  Google Scholar 

  39. Pelegri-O’Day, E. M., Lin, E. W. & Maynard, H. D. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136, 14323–14332 (2014).

    PubMed  Google Scholar 

  40. Smith, M. E. et al. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132, 1960–1965 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones, M. W. et al. Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and PEGylation agents. J. Am. Chem. Soc. 134, 1847–1852 (2012).

    CAS  PubMed  Google Scholar 

  42. Jones, M. W. et al. Direct peptide bioconjugation/PEGylation at tyrosine with linear and branched polymeric diazonium salts. J. Am. Chem. Soc. 134, 7406–7413 (2012).

    CAS  PubMed  Google Scholar 

  43. Gauthier, M. A. & Klok, H. A. Arginine-specific modification of proteins with polyethylene glycol. Biomacromolecules 12, 482–493 (2011).

    CAS  PubMed  Google Scholar 

  44. Cong, Y. et al. Site-specific PEGylation at histidine tags. Bioconjug. Chem. 23, 248–263 (2012).

    CAS  PubMed  Google Scholar 

  45. Nesbitt, A. M., Stephens, S. & Chartash, E. K. in Pegylated Protein Drugs: Basic Science and Clinical Applications (ed. Veronese, F. M.) 229–254 (Birkhäuser, 2009).

  46. Gilmore, J. M., Scheck, R. A., Esser-Kahn, A. P., Joshi, N. S. & Francis, M. B. N-terminal protein modification through a biomimetic transamination reaction. Angew. Chem. Int. Ed. 45, 5307–5311 (2006).

    CAS  Google Scholar 

  47. Obermeyer, A. C., Jarman, J. B. & Francis, M. B. N-terminal modification of proteins with o-Aminophenols. J. Am. Chem. Soc. 136, 9572–9579 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, X., Li, F., Lu, X. W. & Liu, C. F. Protein C-terminal modification through thioacid/azide amidation. Bioconjug. Chem. 20, 197–200 (2009).

    CAS  PubMed  Google Scholar 

  49. Thom, J., Anderson, D., McGregor, J. & Cotton, G. Recombinant protein hydrazides: application to site-specific protein PEGylation. Bioconjug. Chem. 22, 1017–1020 (2011).

    CAS  PubMed  Google Scholar 

  50. Sato, H. Enzymatic procedure for site-specific PEGylation of proteins. Adv. Drug Deliv. Rev. 54, 487–504 (2002).

    CAS  PubMed  Google Scholar 

  51. Fontana, A., Spolaore, B., Mero, A. & Veronese, F. M. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv. Drug Deliv. Rev. 60, 13–28 (2008).

    CAS  PubMed  Google Scholar 

  52. Popp, M. W., Dougan, S. K., Chuang, T. Y., Spooner, E. & Ploegh, H. L. Sortase-catalyzed transformations that improve the properties of cytokines. Proc. Natl Acad. Sci. USA 108, 3169–3174 (2011). Sortase-mediated, site-specific PEGylation of cytokines extends plasma half-life without compromising biological activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Appel, M. J. & Bertozzi, C. R. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem. Biol. 10, 72–84 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. DeFrees, S. et al. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16, 833–843 (2006).

    CAS  PubMed  Google Scholar 

  55. Stennicke, H. R. et al. A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood 121, 2108–2116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    CAS  PubMed  Google Scholar 

  57. Cho, H. et al. Optimized clinical performance of growth hormone with an expanded genetic code. Proc. Natl Acad. Sci. USA 108, 9060–9065 (2011). This is the first clinical study of a PEG–protein conjugate prepared via the incorporation of an unnatural amino acid.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mu, J. et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 61, 505–512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bontempo, D. & Maynard, H. D. Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation. J. Am. Chem. Soc. 127, 6508–6509 (2005).

    CAS  PubMed  Google Scholar 

  60. Liu, J. et al. In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem. Int. Ed. 46, 3099–3103 (2007).

    CAS  Google Scholar 

  61. Boyer, C. et al. Well-defined protein-polymer conjugates via in situ raft polymerization. J. Am. Chem. Soc. 129, 7145–7154 (2007).

    CAS  PubMed  Google Scholar 

  62. Peeler, J. C. et al. Genetically encoded initiator for polymer growth from proteins. J. Am. Chem. Soc. 132, 13575–13577 (2010).

    CAS  PubMed  Google Scholar 

  63. Gao, W., Liu, W., Christensen, T., Zalutsky, M. R. & Chilkoti, A. In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl Acad. Sci. USA 107, 16432–16437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, Y. & Kopecek, J. Biological rationale for the design of polymeric anti-cancer nanomedicines. J. Drug Target. 21, 1–26 (2013).

    PubMed  Google Scholar 

  65. Lee, Y. et al. Poly(ethylene oxide sulfide): new poly(ethylene glycol) derivatives degradable in reductive conditions. Biomacromolecules 6, 24–26 (2005).

    CAS  PubMed  Google Scholar 

  66. Lundberg, P. et al. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: a hydrolytically-degradable poly(ethylene oxide) platform. ACS Macro Lett. 1, 1240–1243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasut, G. Polymers for protein conjugation. Polymers 6, 160–178 (2014).

    Google Scholar 

  68. Podust, V. N. et al. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J. Control. Release 240, 52–66 (2016).

    CAS  PubMed  Google Scholar 

  69. Gebauer, M. & Skerra, A. Prospects of pasylation® for the design of protein and peptide therapeutics with extended half-life and enhanced action. Bioorg. Med. Chem. 26, 2882–2887 (2018).

    CAS  PubMed  Google Scholar 

  70. Urakami, H. & Guan, Z. Living ring-opening polymerization of a carbohydrate-derived lactone for the synthesis of protein-resistant biomaterials. Biomacromolecules 9, 592–597 (2008).

    CAS  PubMed  Google Scholar 

  71. Steinbach, T. & Wurm, F. R. Degradable polyphosphoester-protein conjugates: “PPEylation” of proteins. Biomacromolecules 17, 3338–3346 (2016).

    CAS  PubMed  Google Scholar 

  72. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    CAS  Google Scholar 

  73. Garay, R. P., El-Gewely, R., Armstrong, J. K., Garratty, G. & Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 9, 1319–1323 (2012).

    CAS  PubMed  Google Scholar 

  74. Luxenhofer, R. et al. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 33, 1613–1631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gangloff, N., Ulbricht, J., Lorson, T., Schlaad, H. & Luxenhofer, R. Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem. Rev. 116, 1753–1802 (2016).

    CAS  PubMed  Google Scholar 

  76. Hu, Y., Hou, Y., Wang, H. & Lu, H. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. Bioconjug. Chem. 29, 2232–2238 (2018).

    CAS  PubMed  Google Scholar 

  77. Hu, J., Wang, G., Zhao, W. & Gao, W. In situ growth of a C-terminal interferon-alpha conjugate of a phospholipid polymer that outperforms pegasys in cancer therapy. J. Control. Release 237, 71–77 (2016).

    CAS  PubMed  Google Scholar 

  78. Keefe, A. J. & Jiang, S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 4, 59–63 (2012).

    CAS  Google Scholar 

  79. Nguyen, T. H. et al. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nat. Chem. 5, 221–227 (2013). The rational design of a heparin-mimicking polymer affords stabilization of basic FGF.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. De, P., Li, M., Gondi, S. R. & Sumerlin, B. S. Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via raft polymerization. J. Am. Chem. Soc. 130, 11288–11289 (2008).

    CAS  PubMed  Google Scholar 

  81. Hardwicke, J. T. et al. The effect of dextrin-rhEGF on the healing of full-thickness, excisional wounds in the (db/db) diabetic mouse. J. Control. Release 152, 411–417 (2011).

    CAS  PubMed  Google Scholar 

  82. Vanparijs, N. et al. Transiently responsive protein-polymer conjugates via a ‘grafting-from’ RAFT approach for intracellular co-delivery of proteins and immune-modulators. Chem. Commun. 51, 13972–13975 (2015).

    CAS  Google Scholar 

  83. Le Droumaguet, B. & Velonia, K. In situ ATRP-mediated hierarchical formation of giant amphiphile bionanoreactors. Angew. Chem. Int. Ed. 47, 6263–6266 (2008).

    Google Scholar 

  84. Jatzkewitz, H. Peptamin (glycyl-l-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z. Naturforsch. 10B, 27–31 (1955).

    CAS  Google Scholar 

  85. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  86. Stirland, D. L., Nichols, J. W., Miura, S. & Bae, Y. H. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J. Control. Release 172, 1045–1064 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vasey, P. A. et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin. Cancer Res. 5, 83–94 (1999).

    CAS  PubMed  Google Scholar 

  88. Seymour, L. W. et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629–1636 (2009).

    CAS  PubMed  Google Scholar 

  89. Duncan, R. & Vicent, M. J. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv. Drug Deliv. Rev. 62, 272–282 (2010).

    CAS  PubMed  Google Scholar 

  90. Hoch, U., Staschen, C. M., Johnson, R. K. & Eldon, M. A. Nonclinical pharmacokinetics and activity of etirinotecan pegol (NKTR-102), a long-acting topoisomerase 1 inhibitor, in multiple cancer models. Cancer Chemother. Pharmacol. 74, 1125–1137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jameson, G. S. et al. A multicenter, phase I, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of etirinotecan pegol in patients with refractory solid tumors. Clin. Cancer Res. 19, 268–278 (2013).

    CAS  PubMed  Google Scholar 

  92. Perez, E. A. et al. Etirinotecan pegol (NKTR-102) versus treatment of physician’s choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (beacon): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 16, 1556–1568 (2015).

    CAS  PubMed  Google Scholar 

  93. Cortes, J. et al. Prolonged survival in patients with breast cancer and a history of brain metastases: results of a preplanned subgroup analysis from the randomized phase III beacon trial. Breast Cancer Res. Treat. 165, 329–341 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Garnock-Jones, K. P. Naloxegol: a review of its use in patients with opioid-induced constipation. Drugs 75, 419–425 (2015).

    CAS  PubMed  Google Scholar 

  95. Miyazaki, T. et al. NKTR-181: a novel mu-opioid analgesic with inherently low abuse potential. J. Pharmacol. Exp. Ther. 363, 104–113 (2017).

    CAS  PubMed  Google Scholar 

  96. Webster, L. et al. Human abuse potential of the new opioid analgesic molecule NKTR-181 compared with oxycodone. Pain Med. 19, 307–318 (2018).

    PubMed  Google Scholar 

  97. El Mehdil, D. et al. APL-2, a complement C3 inhibitor, may potentially reduce both intravascular and extravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria. Mol. Immunol. 89, 115 (2017).

    Google Scholar 

  98. Roblin, D. et al. Topical TrkA kinase inhibitor CT327 is an effective, novel therapy for the treatment of pruritus due to psoriasis: results from experimental studies, and efficacy and safety of CT327 in a phase 2b clinical trial in patients with psoriasis. Acta Derm. Venereol. 95, 542–548 (2015).

    CAS  PubMed  Google Scholar 

  99. Duro-Castano, A., Conejos-Sanchez, I. & Vicent, M. J. Peptide-based polymer therapeutics. Polymers 6, 515–551 (2014).

    Google Scholar 

  100. Yang, J. et al. Backbone degradable N-(2-hydroxypropyl)methacrylamide copolymer conjugates with gemcitabine and paclitaxel: impact of molecular weight on activity toward human ovarian carcinoma xenografts. Mol. Pharm. 14, 1384–1394 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pan, H. et al. Efficiency of high molecular weight backbone degradable HPMA copolymer-prostaglandin E1 conjugate in promotion of bone formation in ovariectomized rats. Biomaterials 34, 6528–6538 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, R., Yang, J., Sima, M., Zhou, Y. & Kopecek, J. Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proc. Natl Acad. Sci. USA 111, 12181–12186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tsai, F. T., Wang, Y. & Darensbourg, D. J. Environmentally benign CO2-based copolymers: degradable polycarbonates derived from dihydroxybutyric acid and their platinum-polymer conjugates. J. Am. Chem. Soc. 138, 4626–4633 (2016). This report describes the synthesis of a novel, water-soluble and biodegradable polymer drug carrier.

    CAS  PubMed  Google Scholar 

  104. Cho, S. et al. Functionalizable hydrophilic polycarbonate, poly(5-methyl-5-(2-hydroxypropyl)aminocarbonyl-1,3-dioxan-2-one), designed as a degradable alternative for PHPMA and PEG. Macromolecules 48, 8797–8805 (2015).

    CAS  Google Scholar 

  105. Dubikovskaya, E. A., Thorne, S. H., Pillow, T. H., Contag, C. H. & Wender, P. A. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc. Natl Acad. Sci. USA 105, 12128–12133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, Y. et al. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev. 110–111, 112–126 (2017).

    PubMed  Google Scholar 

  107. Zhang, P., Cheetham, A. G., Lock, L. L. & Cui, H. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug. Chem. 24, 604–613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Birke, A., Ling, J. & Barz, M. Polysarcosine-containing copolymers: synthesis, characterization, self-assembly, and applications. Prog. Polym. Sci. 81, 163–208 (2018).

    CAS  Google Scholar 

  109. Nasongkla, N. et al. Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers. J. Am. Chem. Soc. 131, 3842–3843 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Etrych, T. et al. HPMA copolymer-doxorubicin conjugates: the effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release 164, 346–354 (2012). In this study, the polymer–drug conjugate in vivo residence time is extended through polymer branching or increased molecular mass.

    CAS  PubMed  Google Scholar 

  111. Quan, L. et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano 8, 458–466 (2014).

    CAS  PubMed  Google Scholar 

  112. Zhou, Y., Yang, J. & Kopecek, J. Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials 33, 1863–1872 (2012).

    CAS  PubMed  Google Scholar 

  113. England, R. M., Masia, E., Gimenez, V., Lucas, R. & Vicent, M. J. Polyacetal-stilbene conjugates — the first examples of polymer therapeutics for the inhibition of HIF-1 in the treatment of solid tumours. J. Control. Release 164, 314–322 (2012).

    CAS  PubMed  Google Scholar 

  114. Chu, T. W., Yang, J. & Kopecek, J. Anti-CD20 multivalent HPMA copolymer-Fab’ conjugates for the direct induction of apoptosis. Biomaterials 33, 7174–7181 (2012). A drug-free macromolecular therapeutic comprising anti-CD20 Fab’ conjugated to a polymer carrier exhibits multivalent binding and enhanced apoptosis induction in malignant B cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chu, T. W., Yang, J., Zhang, R., Sima, M. & Kopecek, J. Cell surface self-assembly of hybrid nanoconjugates via oligonucleotide hybridization induces apoptosis. ACS Nano 8, 719–730 (2014).

    CAS  PubMed  Google Scholar 

  116. Wu, K., Liu, J., Johnson, R. N., Yang, J. & Kopecek, J. Drug-free macromolecular therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. Angew. Chem. Int. Ed. 49, 1451–1455 (2010).

    CAS  Google Scholar 

  117. Tomalia, D. A. et al. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17, 117–132 (1985).

    CAS  Google Scholar 

  118. Newkome, G. R., Yao, Z., Baker, G. R. & Gupta, V. K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 50, 2003–2004 (1985).

    CAS  Google Scholar 

  119. Sadekar, S. et al. Comparative pharmacokinetics of PAMAM-OH dendrimers and HPMA copolymers in ovarian tumor-bearing mice. Drug Deliv. Transl Res. 3, 260–271 (2013).

    CAS  PubMed  Google Scholar 

  120. Nanaware-Kharade, N. et al. Therapeutic anti-methamphetamine antibody fragment-nanoparticle conjugates: synthesis and in vitro characterization. Bioconjug. Chem. 23, 1864–1872 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, X., Inapagolla, R., Kannan, S., Lieh-Lai, M. & Kannan, R. M. Synthesis, characterization, and in vitro activity of dendrimer-streptokinase conjugates. Bioconjug. Chem. 18, 791–799 (2007).

    CAS  PubMed  Google Scholar 

  122. McCarthy, T. D. et al. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm. 2, 312–318 (2005).

    CAS  PubMed  Google Scholar 

  123. Starpharma Holdings Limited. DEP® docetaxel positive phase 1 results; phase 2 commences. Starpharma https://www.starpharma.com/news/339 (2017).

  124. McNerny, D. Q., Leroueil, P. R. & Baker, J. R. Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer-based pharmaceuticals. WIREs Nanomed. Nanobiotechnol. 2, 249–259 (2010).

    CAS  Google Scholar 

  125. Mishra, M. K. et al. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8, 2134–2147 (2014). Systemically administered dendrimer–drug conjugates traverse the impaired blood–brain barrier and localize in activated microglia and injured neurons, affording improved therapeutic efficacy and enhanced safety in a large animal model of brain injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Etrych, T. et al. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy. J. Control. Release 154, 241–248 (2011).

    CAS  PubMed  Google Scholar 

  127. Restani, R. B. et al. Biocompatible polyurea dendrimers with pH-dependent fluorescence. Angew. Chem. Int. Ed. 51, 5162–5165 (2012).

    CAS  Google Scholar 

  128. Kaminskas, L. M. et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J. Control. Release 183, 18–26 (2014).

    CAS  PubMed  Google Scholar 

  129. Pu, Y. et al. The anti-tumor efficiency of poly(l-glutamic acid) dendrimers with polyhedral oligomeric silsesquioxane cores. Biomaterials 34, 3658–3666 (2013).

    CAS  PubMed  Google Scholar 

  130. Carnahan, M. A. & Grinstaff, M. W. Synthesis and characterization of polyether-ester dendrimers from glycerol and lactic acid. J. Am. Chem. Soc. 123, 2905–2906 (2001).

    CAS  PubMed  Google Scholar 

  131. Carnahan, M. A. & Grinstaff, M. W. Synthesis and characterization of poly(glycerol−succinic acid) dendrimers. Macromolecules 34, 7648–7655 (2001).

    CAS  Google Scholar 

  132. Mintzer, M. A. & Grinstaff, M. W. Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev. 40, 173–190 (2011).

    CAS  PubMed  Google Scholar 

  133. Morgan, M. T. et al. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 125, 15485–15489 (2003).

    CAS  PubMed  Google Scholar 

  134. Iezzi, R. et al. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33, 979–988 (2012).

    CAS  PubMed  Google Scholar 

  135. Zhou, Z. et al. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Angew. Chem. Int. Ed. 53, 10949–10955 (2014). The release kinetics of a therapeutic buried within a dendrimer carrier are tuned by modulating the number of generations or altering the surface chemistry.

    CAS  Google Scholar 

  136. Kim, S. H. et al. Ligand accessibility and bioactivity of a hormone-dendrimer conjugate depend on pH and pH History. J. Am. Chem. Soc. 137, 10326–10335 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pearson, R. M. et al. Tuning the selectivity of dendron micelles through variations of the poly(ethylene glycol) corona. ACS Nano 10, 6905–6914 (2016). The cellular interaction of targeted dendron micelles is tuned via modulation of PEG corona length and targeting ligand content.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Choi, S. K. et al. Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7, 214–228 (2013). A multivalent dendrimer–vancomycin conjugate affords enhanced avidity, restoring the ability of vancomycin to bind vancomycin-resistant bacterial cell walls.

    CAS  PubMed  Google Scholar 

  139. Myung, J. H., Gajjar, K. A., Saric, J., Eddington, D. T. & Hong, S. Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. Angew. Chem. Int. Ed. 50, 11769–11772 (2011).

    CAS  Google Scholar 

  140. Skwarczynski, M. et al. Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew. Chem. Int. Ed. 49, 5742–5745 (2010).

    CAS  Google Scholar 

  141. Sweet, D. M., Kolhatkar, R. B., Ray, A., Swaan, P. & Ghandehari, H. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: implications for oral drug delivery. J. Control. Release 138, 78–85 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kannan, S. et al. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci. Transl Med. 4, 130ra146 (2012).

    Google Scholar 

  143. Goldberg, D. S., Vijayalakshmi, N., Swaan, P. W. & Ghandehari, H. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J. Control. Release 150, 318–325 (2011).

    CAS  PubMed  Google Scholar 

  144. Wu, W., Driessen, W. & Jiang, X. Oligo(ethylene glycol)-based thermosensitive dendrimers and their tumor accumulation and penetration. J. Am. Chem. Soc. 136, 3145–3155 (2014).

    CAS  PubMed  Google Scholar 

  145. Li, H. J. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA 113, 4164–4169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, S. et al. Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic janus glycodendrimers. Angew. Chem. Int. Ed. 53, 10899–10903 (2014).

    CAS  Google Scholar 

  147. Kopf, H., Joshi, R. K., Soliva, M. & Speiser, P. Study on micelle polymerization in the presence of lowmolecular-weight drugs. 1. Production and isolation of nanoparticles, residual monomer determination, physical–chemical data. Pharm. Ind. 38, 281–284 (1976).

    CAS  Google Scholar 

  148. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    CAS  PubMed  Google Scholar 

  149. Young, C., Schluep, T., Hwang, J. & Eliasof, S. CRLX101 (formerly IT-101) — a novel nanopharmaceutical of camptothecin in clinical development. Curr. Bioact. Compd. 7, 8–14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Markman, B. et al. A phase 1 study of CRLX301, a novel nanoparticle-drug conjugate (NDC) containing docetaxel (DOC), in patients with refractory solid tumors. J. Clin. Oncol. 34, 2 (2016).

    Google Scholar 

  151. Griset, A. P. et al. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc. 131, 2469–2471 (2009).

    CAS  PubMed  Google Scholar 

  152. Musumeci, T. et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm. 325, 172–179 (2006).

    CAS  PubMed  Google Scholar 

  153. Mu, L. & Feng, S. S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release 86, 33–48 (2003).

    CAS  PubMed  Google Scholar 

  154. Cabral, H. & Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release 190, 465–476 (2014).

    CAS  PubMed  Google Scholar 

  155. Matsumura, Y. et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91, 1775–1781 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Svenson, S. What nanomedicine in the clinic right now really forms nanoparticles? WIREs Nanomed. Nanobiotechnol. 6, 125–135 (2014).

    CAS  Google Scholar 

  157. Cristal Therapeutics. CriPec platform. Cristal Therapeutics https://cristaltherapeutics.com/technology/cripec-platform (2015).

  158. Hu, Q. et al. Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials 53, 370–378 (2015).

    CAS  PubMed  Google Scholar 

  159. Harrisson, S. et al. Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew. Chem. Int. Ed. 52, 1678–1682 (2013).

    CAS  Google Scholar 

  160. Liu, J. et al. Ring-opening polymerization of prodrugs: a versatile approach to prepare well-defined drug-loaded nanoparticles. Angew. Chem. Int. Ed. 54, 1002–1006 (2015).

    CAS  Google Scholar 

  161. Louage, B. et al. Well-defined polymer-paclitaxel prodrugs by a grafting-from-drug approach. Angew. Chem. Int. Ed. 55, 11791–11796 (2016). Drug-initiated in situ polymerization affords synthetically precise amphiphilic polymer–drug conjugates.

    CAS  Google Scholar 

  162. Zhang, H. & Grinstaff, M. W. Synthesis of atactic and isotactic poly(1,2-glycerol carbonate)s: degradable polymers for biomedical and pharmaceutical applications. J. Am. Chem. Soc. 135, 6806–6809 (2013).

    CAS  PubMed  Google Scholar 

  163. Ekladious, I. et al. Synthesis of poly(1,2-glycerol carbonate)-paclitaxel conjugates and their utility as a single high-dose replacement for multi-dose treatment regimens in peritoneal cancer. Chem. Sci 8, 8443–8450 (2017). A high-drug-density, biodegradable polymer–drug conjugate nanocarrier exhibits sustained drug release, eliminating the need for frequent, repeated administrations of the small-molecule chemotherapeutic.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Geschwind, J. & Frey, H. Poly(1,2-glycerol carbonate): a fundamental polymer structure synthesized from CO2 and glycidyl ethers. Macromolecules 46, 3280–3287 (2013).

    CAS  Google Scholar 

  165. MacKay, J. A. et al. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 8, 993–999 (2009).

    PubMed  PubMed Central  Google Scholar 

  166. Kim, W. et al. Targeted antithrombotic protein micelles. Angew. Chem. Int. Ed. 54, 1461–1465 (2015).

    CAS  Google Scholar 

  167. Bhattacharyya, J. et al. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms abraxane in multiple murine cancer models. Nat. Commun. 6, 7939 (2015).

    CAS  PubMed  Google Scholar 

  168. Zhang, S. et al. Poly(ethylene oxide)-block-polyphosphester-based paclitaxel conjugates as a platform for ultra-high paclitaxel-loaded multifunctional nanoparticles. Chem. Sci. 4, 2122–2126 (2013).

    CAS  PubMed  Google Scholar 

  169. Ekladious, I. et al. Reinforcement of polymeric nanoassemblies for ultra-high drug loadings, modulation of stiffness and release kinetics, and sustained therapeutic efficacy. Nanoscale 10, 8360–8366 (2018).

    CAS  PubMed  Google Scholar 

  170. Wilson, J. T. et al. pH-responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano 7, 3912–3925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. McDaniel, J. R. et al. Rational design of “heat seeking” drug loaded polypeptide nanoparticles that thermally target solid tumors. Nano Lett. 14, 2890–2895 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011).

    CAS  Google Scholar 

  173. Zhang, Y. et al. Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew. Chem. Int. Ed. 52, 6435–6439 (2013).

    CAS  Google Scholar 

  174. Duan, X. et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7, 5858–5869 (2013).

    CAS  PubMed  Google Scholar 

  175. Tong, R. & Cheng, J. Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew. Chem. Int. Ed. 47, 4830–4834 (2008).

    CAS  Google Scholar 

  176. Callari, M., De Souza, P. L., Rawal, A. & Stenzel, M. H. The effect of drug loading on micelle properties: solid-state NMR as a tool to gain structural insight. Angew. Chem. Int. Ed. 56, 8441–8445 (2017).

    CAS  Google Scholar 

  177. Namgung, R. et al. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun. 5, 3702 (2014).

    CAS  PubMed  Google Scholar 

  178. Mochida, Y. et al. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano 8, 6724–6738 (2014).

    CAS  PubMed  Google Scholar 

  179. Benny, O. et al. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat. Biotechnol. 26, 799–807 (2008). A polymer–drug conjugate nanoparticle affords oral bioavailability of the conjugated therapeutic, mitigating the neurotoxicity associated with systemic administration of the active agent.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee, U. Y. et al. Facile synthesis of multimeric micelles. Angew. Chem. Int. Ed. 51, 7287–7291 (2012).

    CAS  Google Scholar 

  181. Shen, Y. et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J. Am. Chem. Soc. 132, 4259–4265 (2010). The self-assembly of polymer–drug conjugates into liposome-like nanocapsules enables the simultaneous encapsulation of a hydrophilic agent in the aqueous core.

    CAS  PubMed  Google Scholar 

  182. Boott, C. E., Gwyther, J., Harniman, R. L., Hayward, D. W. & Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem. 9, 785–792 (2017).

    CAS  PubMed  Google Scholar 

  183. Yang, M. et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. 50, 2597–2600 (2011).

    CAS  Google Scholar 

  184. Ahn, S. et al. Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan. J. Control. Release 170, 226–232 (2013).

    CAS  PubMed  Google Scholar 

  185. Colson, Y. L. & Grinstaff, M. W. Biologically responsive polymeric nanoparticles for drug delivery. Adv. Mater. 24, 3878–3886 (2012).

    CAS  PubMed  Google Scholar 

  186. Sprogoe, K., Mortensen, E., Karpf, D. B. & Leff, J. A. The rationale and design of transcon growth hormone for the treatment of growth hormone deficiency. Endocr. Connect. 6, R171–R181 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Gilfoyle, D., Mortensen, E., Christoffersen, E. D., Leff, J. A. & Beckert, M. A first-in-man phase 1 trial for long-acting TransCon Growth Hormone. Growth Horm. IGF Res. 39, 34–39 (2018).

    CAS  PubMed  Google Scholar 

  188. Chan, J. M. et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc. Natl Acad. Sci. USA 107, 2213–2218 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Crielaard, B. J. et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew. Chem. Int. Ed. 51, 7254–7258 (2012).

    CAS  Google Scholar 

  190. Peng, Z. H. & Kopecek, J. Enhancing accumulation and penetration of HPMA copolymer-doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer. J. Am. Chem. Soc. 137, 6726–6729 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Miller, K., Erez, R., Segal, E., Shabat, D. & Satchi-Fainaro, R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew. Chem. Int. Ed. 48, 2949–2954 (2009).

    CAS  Google Scholar 

  192. Wang, T. et al. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 10, 3496–3508 (2016).

    CAS  PubMed  Google Scholar 

  193. Zhu, L., Wang, T., Perche, F., Taigind, A. & Torchilin, V. P. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc. Natl Acad. Sci. USA 110, 17047–17052 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Pang, X. et al. pH-responsive polymer-drug conjugates: design and progress. J. Control. Release 222, 116–129 (2016).

    CAS  PubMed  Google Scholar 

  195. Quan, L. D. et al. Development of a macromolecular prodrug for the treatment of inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic efficacy. Arthritis Res. Ther. 12, R170 (2010).

    PubMed  PubMed Central  Google Scholar 

  196. Zhu, S. et al. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style. Biomaterials 31, 1360–1371 (2010).

    CAS  PubMed  Google Scholar 

  197. Du, J. Z., Du, X. J., Mao, C. Q. & Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 133, 17560–17563 (2011). The triggered switch of nanocarrier surface charge from positive to negative promotes cancer cell internalization.

    CAS  PubMed  Google Scholar 

  198. Takahashi, A. et al. NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci. 104, 920–925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Mukai, H. et al. A first-in-human phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Invest. New Drugs 35, 307–314 (2017).

    CAS  PubMed  Google Scholar 

  200. Hu, X., Liu, G., Li, Y., Wang, X. & Liu, S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 137, 362–368 (2015). Upon intracellular release of disulfide-linked camptothecin, a hydrophobic-to-hydrophilic transition of the nanocarrier polymer matrix enables the exchange of water for magnetic resonance imaging.

    CAS  PubMed  Google Scholar 

  201. Luo, C. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 16, 5401–5408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    CAS  PubMed  Google Scholar 

  203. Arroyo-Crespo, J. J. et al. Anticancer activity driven by drug linker modification in a polyglutamic acid-based combination-drug conjugate. Adv. Funct. Mater. 28, 13 (2018).

    Google Scholar 

  204. Tong, R., Hemmati, H. D., Langer, R. & Kohane, D. S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134, 8848–8855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Li, H. J. et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10, 6753–6761 (2016). Upon exposure to the mildly acidic tumour microenvironment, trigger-responsive nanoassemblies dissociate into smaller dendrimer components, enabling the optimization of both plasma half-life and tumour penetration.

    CAS  PubMed  Google Scholar 

  206. Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    CAS  PubMed  Google Scholar 

  207. Yang, J. & Kopecek, J. The light at the end of the tunnel-second generation HPMA conjugates for cancer treatment. Curr. Opin. Colloid Interface Sci 31, 30–42 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Seymour, L. W. et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol. 20, 1668–1676 (2002).

    CAS  PubMed  Google Scholar 

  209. Duncan, R. Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 61, 1131–1148 (2009).

    CAS  PubMed  Google Scholar 

  210. Williams, R. Discontinued drugs in 2008: oncology drugs. Expert Opin. Investig. Drugs 18, 1581–1594 (2009).

    CAS  PubMed  Google Scholar 

  211. Xu, H. et al. Targeted polymer-drug conjugates: current progress and future perspective. Colloids Surf. B Biointerfaces 136, 729–734 (2015).

    CAS  PubMed  Google Scholar 

  212. Yao, V. J. et al. Ligand-targeted theranostic nanomedicines against cancer. J. Control. Release 240, 267–286 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Srinivasarao, M. & Low, P. S. Ligand-targeted drug delivery. Chem. Rev. 117, 12133–12164 (2017).

    CAS  PubMed  Google Scholar 

  214. Miura, Y. et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 7, 8583–8592 (2013).

    CAS  PubMed  Google Scholar 

  215. Oh, S. S. et al. Synthetic aptamer-polymer hybrid constructs for programmed drug delivery into specific target cells. J. Am. Chem. Soc. 136, 15010–15015 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Park, J. et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano 8, 3347–3356 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Wei, X. et al. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery. Angew. Chem. Int. Ed. 54, 3023–3027 (2015).

    CAS  Google Scholar 

  219. Zhang, C. et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 35, 456–465 (2014).

    CAS  PubMed  Google Scholar 

  220. Morris, C. J., Smith, M. W., Griffiths, P. C., McKeown, N. B. & Gumbleton, M. Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide. J. Control. Release 151, 83–94 (2011).

    CAS  PubMed  Google Scholar 

  221. Ma, K. et al. Pamam-triamcinolone acetonide conjugate as a nucleus-targeting gene carrier for enhanced transfer activity. Biomaterials 30, 6109–6118 (2009).

    CAS  PubMed  Google Scholar 

  222. Cuchelkar, V., Kopeckova, P. & Kopecek, J. Novel HPMA copolymer-bound constructs for combined tumor and mitochondrial targeting. Mol. Pharm. 5, 776–786 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Greco, F. & Vicent, M. J. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev. 61, 1203–1213 (2009).

    CAS  PubMed  Google Scholar 

  224. Conway, D. & Cohen, J. A. Combination therapy in multiple sclerosis. Lancet Neurol. 9, 299–308 (2010).

    PubMed  Google Scholar 

  225. Cahn, A. & Cefalu, W. T. Clinical considerations for use of initial combination therapy in type 2 diabetes. Diabetes Care 39, (Suppl. 2), S137–S145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Tallarida, R. J. Drug synergism: its detection and applications. J. Pharmacol. Exp. Ther. 298, 865–872 (2001).

    CAS  PubMed  Google Scholar 

  227. Xiao, H. et al. Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. J. Control. Release 163, 304–314 (2012).

    CAS  PubMed  Google Scholar 

  228. Aryal, S., Hu, C. M. & Zhang, L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol. Pharm. 8, 1401–1407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Pathak, R. K. & Dhar, S. A nanoparticle cocktail: temporal release of predefined drug combinations. J. Am. Chem. Soc. 137, 8324–8327 (2015). A polymer–drug conjugate nanocarrier is developed for the concurrent delivery of a cocktail of therapeutic agents at predefined ratios and with differential release kinetics.

    CAS  PubMed  Google Scholar 

  230. Luo, S. et al. Precise ratiometric control of dual drugs through a single macromolecule for combination therapy. Mol. Pharm. 12, 2318–2327 (2015).

    CAS  PubMed  Google Scholar 

  231. Yuan, Y., Liu, J. & Liu, B. Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew. Chem. Int. Ed. 53, 7163–7168 (2014). This report describes the rational design of a sophisticated multifunctional polymer therapeutic that enables targeted and image-guided chemotherapy, as well as photodynamic therapy.

    CAS  Google Scholar 

  232. Li, Y. et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5, 4712 (2014).

    CAS  PubMed  Google Scholar 

  233. Janib, S. M., Moses, A. S. & MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Huang, C. H., Nwe, K., Al Zaki, A., Brechbiel, M. W. & Tsourkas, A. Biodegradable polydisulfide dendrimer nanoclusters as mri contrast agents. ACS Nano 6, 9416–9424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang, Y. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    CAS  PubMed  Google Scholar 

  236. Cheng, Z., Thorek, D. L. & Tsourkas, A. Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. Int. Ed. 49, 346–350 (2010).

    CAS  Google Scholar 

  237. Wu, C. et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 50, 3430–3434 (2011).

    CAS  Google Scholar 

  238. Rong, Y. et al. Multicolor fluorescent semiconducting polymer dots with narrow emissions and high brightness. ACS Nano 7, 376–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Li, X., Takashima, M., Yuba, E., Harada, A. & Kono, K. PEGylated pamam dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials 35, 6576–6584 (2014).

    CAS  PubMed  Google Scholar 

  240. Swierczewska, M., Lee, K. C. & Lee, S. What is the future of PEGylated therapies? Expert Opin. Emerg. Drugs 20, 531–536 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Release 244, 184–193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Baumann, A., Tuerck, D., Prabhu, S., Dickmann, L. & Sims, J. Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis? Drug Discov. Today 19, 1623–1631 (2014).

    CAS  PubMed  Google Scholar 

  243. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    CAS  PubMed  Google Scholar 

  244. Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 244, 108–121 (2016).

    CAS  PubMed  Google Scholar 

  246. Hansen, A. E. et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9, 6985–6995 (2015).

    CAS  PubMed  Google Scholar 

  247. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  248. Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl Med. 7, 314ra183 (2015).

    PubMed  PubMed Central  Google Scholar 

  249. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    CAS  PubMed  Google Scholar 

  250. Arrieta, O. et al. High liposomal doxorubicin tumour tissue distribution, as determined by radiopharmaceutical labelling with (99m)Tc-LD, is associated with the response and survival of patients with unresectable pleural mesothelioma treated with a combination of liposomal doxorubicin and cisplatin. Cancer Chemother. Pharmacol. 74, 211–215 (2014).

    CAS  PubMed  Google Scholar 

  251. Ramanathan, R. K. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res. 23, 3638–3648 (2017).

    CAS  PubMed  Google Scholar 

  252. Lee, H. et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 23, 4190–4202 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Lee, H. et al. Companion diagnostic 64Cu-liposome positron emission tomography enables characterization of drug delivery to tumors and predicts response to cancer nanomedicines. Theranostics 8, 2300–2312 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Gabizon, A. et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54, 987–992 (1994).

    CAS  PubMed  Google Scholar 

  255. Symon, Z. et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 86, 72–78 (1999).

    CAS  PubMed  Google Scholar 

  256. Lammers, T. et al. Cancer nanomedicine: is targeting our target? Nat. Rev. Mater. 1, 16069 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. MacEwan, S. R. & Chilkoti, A. From composition to cure: a systems engineering approach to anticancer drug carriers. Angew. Chem. Int. Ed. 56, 6712–6733 (2017).

    CAS  Google Scholar 

  259. Duncan, R. Polymer therapeutics at a crossroads? Finding the path for improved translation in the twenty-first century. J. Drug Target. 25, 759–780 (2017).

    CAS  PubMed  Google Scholar 

  260. Tsuchiya, K. et al. Tumor-targeted chemotherapy with SMANCS in lipiodol for renal cell carcinoma: longer survival with larger size tumors. Urology 55, 495–500 (2000).

    CAS  PubMed  Google Scholar 

  261. Dijkgraaf, E. M. et al. A phase 1/2 study combining gemcitabine, PEGintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget 6, 32228–32243 (2015).

    PubMed  PubMed Central  Google Scholar 

  262. Chen, X. et al. Extended PEGinterferon alfa-2a (pegasys) therapy in Chinese patients with HBeAg-negative chronic hepatitis B. J. Med. Virol. 86, 1705–1713 (2014).

    CAS  PubMed  Google Scholar 

  263. Kosaka, Y. et al. Phase III placebo-controlled, double-blind, randomized trial of PEGfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving docetaxel/cyclophosphamide chemotherapy. Support. Care Cancer 23, 1137–1143 (2015).

    PubMed  PubMed Central  Google Scholar 

  264. Freda, P. U. et al. Long-term treatment with pegvisomant as monotherapy in patients with acromegaly: experience from ACROSTUDY. Endocr. Pract. 21, 264–274 (2015).

    PubMed  PubMed Central  Google Scholar 

  265. Autrata, R. et al. Intravitreal pegaptanib combined with diode laser therapy for stage 3 + retinopathy of prematurity in zone I and posterior zone II. Eur. J. Ophthalmol. 22, 687–694 (2012).

    PubMed  Google Scholar 

  266. Mease, P. J. et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann. Rheum. Dis. 73, 48–55 (2014).

    CAS  PubMed  Google Scholar 

  267. Baraf, H. S. et al. Tophus burden reduction with pegloticase: results from phase 3 randomized trials and open-label extension in patients with chronic gout refractory to conventional therapy. Arthritis Res. Ther. 15, R137 (2013).

    PubMed  PubMed Central  Google Scholar 

  268. Kieseier, B. C. et al. PEGinterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. Mult. Scler. 21, 1025–1035 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Konkle, B. A. et al. PEGylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood 126, 1078–1085 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Thomas, J. et al. Pegvaliase for the treatment of phenylketonuria: results of a long-term phase 3 clinical trial program (PRISM). Mol. Genet. Metab. 124, 27–38 (2018).

    CAS  PubMed  Google Scholar 

  271. Coyle, T. E. et al. Phase I study of BAY 94-9027, a PEGylated B-domain-deleted recombinant factor VIII with an extended half-life, in subjects with hemophilia A. J. Thromb. Haemost. 12, 488–496 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Giangrande, P. et al. Clinical evaluation of glycoPEGylated recombinant FVIII: efficacy and safety in severe haemophilia A. Thromb. Haemost. 117, 252–261 (2017).

    PubMed  Google Scholar 

  273. Angiolillo, A. L. et al. Pharmacokinetic and pharmacodynamic properties of calaspargase pegol Escherichia coli L-asparaginase in the treatment of patients with acute lymphoblastic leukemia: results from Children’s Oncology Group Study AALL07P4. J. Clin. Oncol. 32, 3874–3882 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Bowser, J. L., Lee, J. W., Yuan, X. & Eltzschig, H. K. The hypoxia-adenosine link during inflammation. J. Appl. Physiol. 123, 1303–1320 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Hingorani, S. R. et al. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 36, 359–366 (2018).

    CAS  PubMed  Google Scholar 

  276. Szlosarek, P. W. et al. Arginine deprivation with PEGylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol. 3, 58–66 (2017).

    PubMed  Google Scholar 

  277. Mussai, F. et al. Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target. Blood 125, 2386–2396 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Sands, E., Kivitz, A. J., DeHaan, W., Johnston, L. & Kishimoto, T. K. Initial phase 2 clinical data of SEL-212 in symptomatic gout patients: monthly dosing of a PEGylated uricase (PEGsiticase) with SVP-rapamycin enables sustained reduction of serum uric acid levels by mitigating formation of anti-drug antibodies. Arthritis Rheumatol. 69, 2 (2017).

    Google Scholar 

  279. Misra, H., Lickliter, J., Kazo, F. & Abuchowski, A. PEGylated carboxyhemoglobin bovine (SANGUINATE): results of a phase I clinical trial. Artif. Organs 38, 702–707 (2014).

    CAS  PubMed  Google Scholar 

  280. Burrage, L. C. et al. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency. Hum. Mol. Genet. 24, 6417–6427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Chamberlain, C. et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 76, 1837–1844 (2017).

    CAS  PubMed  Google Scholar 

  282. Drolet, D. W., Green, L. S., Gold, L. & Janjic, N. Fit for the eye: aptamers in ocular disorders. Nucleic Acid. Ther. 26, 127–146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Chhabra, E. S. et al. Evaluation of enhanced in vitro plasma stability of a novel long acting recombinant FVIIIFc-VWF-XTEN fusion protein. Blood 126, 3 (2015).

    Google Scholar 

  284. Ludwig, H. et al. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a phase IIa study. Leukemia 31, 997–1000 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Jaffe, G. J. et al. A phase 1 study of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology 123, 78–85 (2016).

    PubMed  Google Scholar 

  286. Chen, X. et al. Polyethylene glycol loxenatide injections added to metformin effectively improve glycemic control and exhibit favorable safety in type 2 diabetic patients. J. Diabetes 9, 158–167 (2017).

    CAS  PubMed  Google Scholar 

  287. Plummer, R. et al. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer 104, 593–598 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Paz-Ares, L. et al. Phase III trial comparing paclitaxel poliglumex versus docetaxel in the second-line treatment of non-small-cell lung cancer. Br. J. Cancer 98, 1608–1613 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Pham, E. et al. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer Res. 21, 808–818 (2015).

    CAS  PubMed  Google Scholar 

  290. Hamaguchi, T. et al. Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin. Cancer Res. 16, 5058–5066 (2010).

    CAS  PubMed  Google Scholar 

  291. Thellenberg-Karlsson, C. et al. Bone-targeted novel cytotoxic polybisphosphonate conjugate in castration-resistant prostate cancer: a multicenter phase 1 study. Anticancer Res. 36, 6499–6504 (2016).

    CAS  PubMed  Google Scholar 

  292. Liu, Z., Marquez, M., Nilsson, S. & Holmberg, A. R. Incubation with somatostatin, 5-aza decitabine and trichostatin up-regulates somatostatin receptor expression in prostate cancer cells. Oncol. Rep. 20, 151–154 (2008).

    CAS  PubMed  Google Scholar 

  293. Fares, F., Azzam, N., Fares, B., Larsen, S. & Lindkaer-Jensen, S. Benzene-poly-carboxylic acid complex, a novel anti-cancer agent induces apoptosis in human breast cancer cells. PLOS ONE 9, e85156 (2014).

    PubMed  PubMed Central  Google Scholar 

  294. Starpharma Holdings Limited. Starpharma to commence DEP® cabazitaxel phase 1/2 trial. Starpharma http://www.starpharma.com/news/356 (2018).

  295. Bhasi, K. et al. Modeling suggests synergistic treatment effect following combination therapy of NKTR-214 and NKTR-262 in tumor bearing mice. J. Pharmacokinet. Pharmacodyn. 44, S89 (2017).

    Google Scholar 

  296. Ueno, T. et al. Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). Int. J. Nanomed. 9, 3005–3012 (2014).

    CAS  Google Scholar 

  297. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl Med. 1, 10–29 (2016).

    PubMed  PubMed Central  Google Scholar 

  298. Eskow Jaunarajs, K. L. et al. Rotigotine polyoxazoline conjugate SER-214 provides robust and sustained antiparkinsonian benefit. Mov. Disord. 28, 1675–1682 (2013).

    CAS  PubMed  Google Scholar 

  299. Santi, D. V., Schneider, E. L. & Ashley, G. W. Macromolecular prodrug that provides the irinotecan (CPT-11) active-metabolite SN-38 with ultralong half-life, low C(max), and low glucuronide formation. J. Med. Chem. 57, 2303–2314 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the National Institutes of Health (R01EB017722, R01CA227433), the National Science Foundation (DGE-1247312 (I.E.), DMR-1507081), the Michael A. Bell Family Distinguished Chair in Healthcare Innovation at Brigham and Women’s Hospital (Y.L.C.) and the Distinguished Professor of Translational Research Chair at Boston University (M.W.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yolonda L. Colson or Mark W. Grinstaff.

Ethics declarations

Competing interests

M.W.G. and I.E. are co-inventors on a patent application describing a new polymer for drug conjugation (US20170369643A1) owned by Boston University and available for license.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bioactives

Molecules that elicit a biological response.

Excipient

A non-active substance formulated with an active pharmaceutical ingredient to enhance physicochemical characteristics such as stability and solubility.

Opsonization

The process by which foreign materials are coated with opsonin proteins to enhance their phagocytic uptake and clearance.

Semi-telechelic

A polymer with one reactive end group.

Zwitterionic

An electrically neutral molecule with at least one positive and one negative functional group.

Biodistribution

The distribution of a molecule within the body.

AUC

The area under the plasma drug concentration versus time curve. Larger AUC values are indicative of increased drug exposure.

C max

The maximal concentration of drug achieved after administration.

Therapeutic index

The ratio of the dose needed to elicit a toxic side effect relative to the dose needed to elicit a therapeutic effect. A larger therapeutic index is indicative of a safer drug.

Avidity

The cumulative strength of a binding interaction.

Theranostic

A system that combines therapeutic and imaging modalities for both treatment and diagnosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekladious, I., Colson, Y.L. & Grinstaff, M.W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 18, 273–294 (2019). https://doi.org/10.1038/s41573-018-0005-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-018-0005-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research