Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Multiple myeloma

Abstract

Multiple myeloma (MM) is a haematological lymphoid malignancy involving tumoural plasma cells and is usually characterized by the presence of a monoclonal immunoglobulin protein. MM is the second most common haematological malignancy, with an increasing global incidence. It remains incurable because most patients relapse or become refractory to treatments. MM is a genetically complex disease with high heterogeneity that develops as a multistep process, involving acquisition of genetic alterations in the tumour cells and changes in the bone marrow microenvironment. Symptomatic MM is diagnosed using the International Myeloma Working Group criteria as a bone marrow infiltration of ≥10% clonal plasma cells, and the presence of at least one myeloma-defining event, either standard CRAB features (hypercalcaemia, renal failure, anaemia and/or lytic bone lesions) or biomarkers of imminent organ damage. Younger and fit patients are considered eligible for transplant. They receive an induction, followed by consolidation with high-dose melphalan and autologous haematopoietic cell transplantation, and maintenance therapy. In older adults (ineligible for transplant), the combination of daratumumab, lenalidomide and dexamethasone is the preferred option. If relapse occurs and requires further therapy, the choice of therapy will be based on previous treatment and response and now includes immunotherapies, such as bi-specific monoclonal antibodies and chimeric antigen receptor T cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence of multiple myeloma in 2022.
Fig. 2: Representation of multiple myeloma bone marrow niche.
Fig. 3: Suggested algorithm for the management of multiple myeloma.
Fig. 4: Approved treatment regimens for multiple myeloma.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Bladé, J. et al. Extramedullary disease in multiple myeloma: a systematic literature review. Blood Cancer J. 12, 45 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kyle, R. A. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 78, 21–33 (2003).

    Article  PubMed  Google Scholar 

  4. Alaggio, R. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36, 1720–1748 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wadhera, R. K. & Rajkumar, S. V. Prevalence of monoclonal gammopathy of undetermined significance: a systematic review. Mayo Clin. Proc. 85, 933–942 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Han, J.-h et al. Prevalence of monoclonal gammopathy of undetermined significance in a large population with annual medical check-ups in China. Blood Cancer J. 10, 34 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hungria, V. T. et al. Observational study of multiple myeloma in Latin America. Ann. Hematol. 96, 65–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Colunga-Pedraza, P. R., Gomez-Cruz, G. B., Colunga-Pedraza, J. E. & Ruiz-Argüelles, G. J. Geographic hematology: some observations in Mexico. Acta Haematol. 140, 114–120 (2018).

    Article  PubMed  Google Scholar 

  9. Turesson, I. et al. Rapidly changing myeloma epidemiology in the general population: increased incidence, older patients, and longer survival. Eur. J. Haematol. https://doi.org/10.1111/ejh.13083 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cowan, A. J. et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. JAMA Oncol. 4, 1221–1227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Padala, S. A. et al. Epidemiology, staging, and management of multiple myeloma. Med. Sci. 9, 3 (2021).

    CAS  Google Scholar 

  12. di Martino, E. et al. Incidence trends for twelve cancers in younger adults – a rapid review. Br. J. Cancer 126, 1374–1386 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ludwig, H., Novis Durie, S., Meckl, A., Hinke, A. & Durie, B. Multiple myeloma incidence and mortality around the globe; interrelations between health access and quality, economic resources, and patient empowerment. Oncologist 25, e1406–e1413 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou, L. et al. Measuring the global, regional, and national burden of multiple myeloma from 1990 to 2019. BMC Cancer 21, 606 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang, J. et al. The epidemiological landscape of multiple myeloma: a global cancer registry estimate of disease burden, risk factors, and temporal trends. Lancet Haematol. 9, e670–e677 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Ibrahim, A. et al. Management of multiple myeloma in the Middle East: unmet needs, challenges and perspective. Clin. Hematol. Int. 4, 127–132 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Costa, L. J. et al. Recent trends in multiple myeloma incidence and survival by age, race, and ethnicity in the United States. Blood Adv. 1, 282–287 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blattner, W. A., Blair, A. & Mason, T. J. Multiple myeloma in the United States, 1950–1975. Cancer 48, 2547–2554 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Mateos, M. V. et al. Global disparities in patients with multiple myeloma: a rapid evidence assessment. Blood Cancer J. 13, 109 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Davey Smith, G., Neaton, J. D., Wentworth, D., Stamler, R. & Stamler, J. Mortality differences between black and white men in the USA: contribution of income and other risk factors among men screened for the MRFIT. MRFIT Research Group. Multiple Risk Factor Intervention Trial. Lancet 351, 934–939 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Ailawadhi, S. et al. Disease and outcome disparities in multiple myeloma: exploring the role of race/ethnicity in the Cooperative Group clinical trials. Blood Cancer J. 8, 67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bhutani, M., Lonial, S. & Mikhael, J. Disparities in multiple myeloma among African Americans. J. Natl Med. Assoc. 115, S26–S31 (2023).

    PubMed  Google Scholar 

  23. Ailawadhi, S. et al. Racial disparities in treatment patterns and outcomes among patients with multiple myeloma: a SEER-Medicare analysis. Blood Adv. 3, 2986–2994 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ailawadhi, S. et al. Outcome disparities in multiple myeloma: a SEER-based comparative analysis of ethnic subgroups. Br. J. Haematol. 158, 91–98 (2012).

    Article  PubMed  Google Scholar 

  25. Waxman, A. J. et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood 116, 5501–5506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirtane, K. & Lee, S. J. Racial and ethnic disparities in hematologic malignancies. Blood 130, 1699–1705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leukemia & Lymphoma Society. Facts 2022-2023. Updated Data on Blood Cancers. Leukemia & Lymphoma Society https://www.lls.org/booklet/facts-updated-data-blood-cancers (2023).

  28. Sant, M. et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol. 15, 931–942 (2014).

    Article  PubMed  Google Scholar 

  29. Chang-Chan, D. Y. et al. Trends of incidence, mortality and survival of multiple myeloma in Spain. A twenty-three-year population-based study. Clin. Transl. Oncol. 23, 1429–1439 (2021).

    Article  PubMed  Google Scholar 

  30. Ocias, L. F. et al. Trends in hematological cancer in the elderly in Denmark, 1980-2012. Acta Oncol. 55, 98–107 (2016).

    Article  PubMed  Google Scholar 

  31. Canadian Cancer Statistics. A 2022 special report on cancer prevalence. Health Promot. Chronic Dis. Prev. Can. 43, 49 (2023).

    Article  Google Scholar 

  32. Sergentanis, T. N. et al. Risk factors for multiple myeloma: a systematic review of meta-analyses. Clin. Lymphoma Myeloma Leuk. 15, 563–577.e3 (2015).

    Article  PubMed  Google Scholar 

  33. Lindqvist, E. K. et al. Personal and family history of immune-related conditions increase the risk of plasma cell disorders: a population-based study. Blood 118, 6284–6291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertelsen, L. D. et al. Geographical and ecological analyses of multiple myeloma in Denmark: identification of potential hotspot areas and impact of urbanisation. Eur. J. Haematol. 110, 289–295 (2023).

    Article  PubMed  Google Scholar 

  35. McShane, C. M. et al. Prior autoimmune disease and risk of monoclonal gammopathy of undetermined significance and multiple myeloma: a systematic review. Cancer Epidemiol. Biomark. Prev. 23, 332–342 (2014).

    Article  CAS  Google Scholar 

  36. Brown, L. M., Gridley, G., Check, D. & Landgren, O. Risk of multiple myeloma and monoclonal gammopathy of undetermined significance among white and black male United States veterans with prior autoimmune, infectious, inflammatory, and allergic disorders. Blood 111, 3388–3394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grulich, A. E., Wan, X., Law, M. G., Coates, M. & Kaldor, J. M. Risk of cancer in people with AIDS. AIDS 13, 839–843 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Dal Maso, L. & Franceschi, S. Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies. Cancer Epidemiol. Biomark. Prev. 15, 2078–2085 (2006).

    Article  CAS  Google Scholar 

  39. De Roos, A. J. et al. Pooled study of occupational exposure to aromatic hydrocarbon solvents and risk of multiple myeloma. Occup. Env. Med. 75, 798–806 (2018).

    Article  Google Scholar 

  40. Blair, A., Zahm, S. H., Pearce, N. E., Heineman, E. F. & Fraumeni, J. F. Jr Clues to cancer etiology from studies of farmers. Scand. J. Work. Environ. Health 18, 209–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Khuder, S. A. & Mutgi, A. B. Meta-analyses of multiple myeloma and farming. Am. J. Ind. Med. 32, 510–516 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Perrotta, C., Staines, A. & Cocco, P. Multiple myeloma and farming. A systematic review of 30 years of research. Where next? J. Occup. Med. Toxicol. 3, 27 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Merhi, M. et al. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. Cancer Causes Control. 18, 1209–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Georgakopoulou, R. et al. Occupational exposure and multiple myeloma risk: an updated review of meta-analyses. J. Clin. Med. 10, 4179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jephcote, C., Brown, D., Verbeek, T. & Mah, A. A systematic review and meta-analysis of haematological malignancies in residents living near petrochemical facilities. Environ. Health 19, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ichimaru, M., Ishimaru, T., Mikami, M. & Matsunaga, M. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950-76: relationship to radiation dose absorbed by marrow. J. Natl Cancer Inst. 69, 323–328 (1982).

    CAS  PubMed  Google Scholar 

  47. Wright, J. D. et al. Pelvic radiotherapy and the risk of secondary leukemia and multiple myeloma. Cancer 116, 2486–2492 (2010).

    Article  PubMed  Google Scholar 

  48. Preston, D. L. et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat. Res. 137, S68–S97 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Baris, D. et al. Socioeconomic status and multiple myeloma among US Blacks and Whites. Am. J. Public. Health 90, 1277–1281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Landgren, O. et al. Obesity is associated with an increased risk of monoclonal gammopathy of undetermined significance among Black and White women. Blood 116, 1056–1059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marinac, C. R. et al. Body mass index throughout adulthood, physical activity, and risk of multiple myeloma: a prospective analysis in three large cohorts. Br. J. Cancer 118, 1013–1019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Birmann, B. M. et al. Young adult and usual adult body mass index and multiple myeloma risk: a pooled analysis in the International Multiple Myeloma Consortium (IMMC). Cancer Epidemiol. Biomark. Prev. 26, 876–885 (2017).

    Article  Google Scholar 

  53. Choa, R., Panaroni, C., Bhatia, R. & Raje, N. It is worth the weight: obesity and the transition from monoclonal gammopathy of undetermined significance to multiple myeloma. Blood Adv. 7, 5510–5523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tentolouris, A., Ntanasis-Stathopoulos, I. & Terpos, E. Obesity and multiple myeloma: emerging mechanisms and perspectives. Semin. Cancer Biol. 92, 45–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Ragbourne, S. C., Maghsoodi, N., Streetly, M. & Crook, M. A. The association between metabolic syndrome and multiple myeloma. Acta Haematol. 144, 24–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  57. Wang, B. et al. Body mass index and overall survival of patients with newly diagnosed multiple myeloma. Cancers 14, 5331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vogl, D. T. et al. Effect of obesity on outcomes after autologous hematopoietic stem cell transplantation for multiple myeloma. Biol. Blood Marrow Transplant. 17, 1765–1774 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marinac, C. R., Ghobrial, I. M., Birmann, B. M., Soiffer, J. & Rebbeck, T. R. Dissecting racial disparities in multiple myeloma. Blood Cancer J. 10, 19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pertesi, M. et al. Genetic predisposition for multiple myeloma. Leukemia 34, 697–708 (2020).

    Article  PubMed  Google Scholar 

  61. VanValkenburg, M. E. et al. Family history of hematologic malignancies and risk of multiple myeloma: differences by race and clinical features. Cancer Causes Control. 27, 81–91 (2016).

    Article  PubMed  Google Scholar 

  62. Brown, L. M. et al. Multiple myeloma and family history of cancer among blacks and whites in the U.S. Cancer 85, 2385–2390 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 44, 58–61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mitchell, J. S. et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 7, 12050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rand, K. A. et al. A meta-analysis of multiple myeloma risk regions in African and European ancestry populations identifies putatively functional loci. Cancer Epidemiol. Biomark. Prev. 25, 1609–1618 (2016).

    Article  CAS  Google Scholar 

  66. Chubb, D. et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat. Genet. 45, 1221–1225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clavero, E. et al. Polymorphisms within autophagy-related genes as susceptibility biomarkers for multiple myeloma: a meta-analysis of three large cohorts and functional characterization. Int. J. Mol. Sci. 24, 8500 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Went, M. et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 9, 3707 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Du, Z. et al. A meta-analysis of genome-wide association studies of multiple myeloma among men and women of African ancestry. Blood Adv. 4, 181–190 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Macauda, A. et al. Identification of novel genetic loci for risk of multiple myeloma by functional annotation. Leukemia 37, 2326–2329 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Magrangeas, F. et al. A genome-wide association study identifies a novel locus for bortezomib-induced peripheral neuropathy in European patients with multiple myeloma. Clin. Cancer Res. 22, 4350–4355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johnson, D. C. et al. Genome-wide association study identifies variation at 6q25.1 associated with survival in multiple myeloma. Nat. Commun. 7, 10290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Macauda, A. et al. Expression quantitative trait loci of genes predicting outcome are associated with survival of multiple myeloma patients. Int. J. Cancer 149, 327–336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gonzalez, D. et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 110, 3112–3121 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Corre, J., Munshi, N. & Avet-Loiseau, H. Genetics of multiple myeloma: another heterogeneity level? Blood 125, 1870–1876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bergsagel, P. L. & Kuehl, W. M. Molecular pathogenesis and a consequent classification of multiple myeloma. J. Clin. Oncol. 23, 6333–6338 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Barwick, B. G., Gupta, V. A., Vertino, P. M. & Boise, L. H. Cell of origin and genetic alterations in the pathogenesis of multiple myeloma. Front. Immunol. 10, 1121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bustoros, M. et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J. Clin. Oncol. 38, 2380–2389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barwick, B. G. et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat. Commun. 10, 1911 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rustad, E. H. et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 1, 258–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kalkat, M. et al. MYC deregulation in primary human cancers. Genes 8, 151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Avet-Loiseau, H. et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 98, 3082–3086 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Walker, B. A. et al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J. 4, e191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Misund, K. et al. MYC dysregulation in the progression of multiple myeloma. Leukemia 34, 322–326 (2020).

    Article  PubMed  Google Scholar 

  85. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walker, B. A. et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J. Clin. Oncol. 33, 3911–3920 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Bergsagel, P. L. & Kuehl, W. M. Chromosome translocations in multiple myeloma. Oncogene 20, 5611–5622 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Walker, B. A. et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 33, 159–170 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, Y. et al. The prognostic role of 1q21 gain/amplification in newly diagnosed multiple myeloma: the faster, the worse. Cancer 129, 1005–1016 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Misund, K. et al. Clonal evolution after treatment pressure in multiple myeloma: heterogenous genomic aberrations and transcriptomic convergence. Leukemia 36, 1887–1897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat. Commun. 6, 6997 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Maura, F. et al. Role of AID in the temporal pattern of acquisition of driver mutations in multiple myeloma. Leukemia 34, 1476–1480 (2020).

    Article  PubMed  Google Scholar 

  93. Hoang, P. H., Cornish, A. J., Dobbins, S. E., Kaiser, M. & Houlston, R. S. Mutational processes contributing to the development of multiple myeloma. Blood Cancer J. 9, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Maura, F. et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia 32, 1044–1048 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maura, F. et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 10, 3835 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bolli, N. et al. Genomic patterns of progression in smoldering multiple myeloma. Nat. Commun. 9, 3363 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Oben, B. et al. Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities. Nat. Commun. 12, 1861 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aktas Samur, A. et al. In-depth analysis of alternative splicing landscape in multiple myeloma and potential role of dysregulated splicing factors. Blood Cancer J. 12, 171 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kawano, Y. et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol. Rev. 263, 160–172 (2015).

    Article  PubMed  Google Scholar 

  100. Giannakoulas, N., Ntanasis-Stathopoulos, I. & Terpos, E. The role of marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma. Int. J. Mol. Sci. 22, 4462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. de Jong, M. M. E. et al. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat. Immunol. 22, 769–780 (2021).

    Article  PubMed  Google Scholar 

  102. Hideshima, T. & Anderson, K. C. Signaling pathway mediating myeloma cell growth and survival. Cancers 13, 216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G. & Anderson, K. C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat. Rev. Cancer 7, 585–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Neri, P. & Bahlis, N. J. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma. Curr. Cancer Drug. Targets 12, 776–796 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Bou Zerdan, M. et al. Adhesion molecules in multiple myeloma oncogenesis and targeted therapy. Int. J. Hematol. Oncol. 11, IJH39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Prabhala, R. H. et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115, 5385–5392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Noonan, K. et al. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 116, 3554–3563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bailur, J. K. et al. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight 4, e127807 (2019).

    Article  PubMed Central  Google Scholar 

  109. Schinke, C. et al. Characterizing the role of the immune microenvironment in multiple myeloma progression at a single-cell level. Blood Adv. 6, 5873–5883 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zelle-Rieser, C. et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J. Hematol. Oncol. 9, 116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Friedrich, M. J. et al. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell 41, 711–725.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Beyer, M. et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107, 3940–3949 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Favaloro, J. et al. Myeloma skews regulatory T and pro-inflammatory T helper 17 cell balance in favor of a suppressive state. Leuk. Lymphoma 55, 1090–1098 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Gorgun, G. T. et al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121, 2975–2987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Malek, E. et al. Myeloid-derived suppressor cells: the green light for myeloma immune escape. Blood Rev. 30, 341–348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Berardi, S. et al. Multiple myeloma macrophages: pivotal players in the tumor microenvironment. J. Oncol. 2013, 183602 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Beider, K. et al. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 5, 11283–11296 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. John, L. et al. Resolving the spatial architecture of myeloma and its microenvironment at the single-cell level. Nat. Commun. 14, 5011 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pazina, T. et al. Alterations of NK cell phenotype in the disease course of multiple myeloma. Cancer 13, 226 (2021).

    Article  CAS  Google Scholar 

  120. Ratta, M. et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100, 230–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Leone, P. et al. Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing. Blood 126, 1443–1451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chauhan, D. et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 16, 309–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chesi, M. et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13, 167–180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Larrayoz, M. et al. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat. Med. 29, 632–645 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chahin, M., Branham, Z., Fox, A., Leurinda, C. & Keruakous, A. R. Clinical considerations for immunoparesis in multiple myeloma. Cancers 14, 2278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bernstein, Z. S., Kim, E. B. & Raje, N. Bone disease in multiple myeloma: biologic and clinical implications. Cells 11, 2308 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Terpos, E., Ntanasis-Stathopoulos, I., Gavriatopoulou, M. & Dimopoulos, M. A. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J. 8, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Roodman, G. D. Pathogenesis of myeloma bone disease. Blood Cell Mol. Dis. 32, 290–292 (2004).

    Article  CAS  Google Scholar 

  130. Zhou, F., Meng, S., Song, H. & Claret, F. X. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev. 27, 261–267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Groen, R. W. et al. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica 96, 1653–1661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Colombo, M. et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia 27, 1009–1018 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Hay, E. et al. N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/β-catenin signaling, osteoblast function, and bone formation. Mol. Cell Biol. 29, 953–964 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Noll, J. E. et al. Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells. Haematologica 99, 163–171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Qiang, Y. W., Barlogie, B., Rudikoff, S. & Shaughnessy, J. D. Jr Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 42, 669–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Winkler, D. G. et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22, 6267–6276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Terpos, E., Berenson, J., Cook, R. J., Lipton, A. & Coleman, R. E. Prognostic variables for survival and skeletal complications in patients with multiple myeloma osteolytic bone disease. Leukemia 24, 1043–1049 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Silbermann, R. & Roodman, G. D. Myeloma bone disease: pathophysiology and management. J. Bone Oncol. 2, 59–69 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Blade, J. et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch. Intern. Med. 158, 1889–1893 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Courant, M. et al. Incidence, prognostic impact and clinical outcomes of renal impairment in patients with multiple myeloma: a population-based registry. Nephrol. Dial. Transplant. 36, 482–490 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Dimopoulos, M. A., Kastritis, E., Rosinol, L., Blade, J. & Ludwig, H. Pathogenesis and treatment of renal failure in multiple myeloma. Leukemia 22, 1485–1493 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Sanders, P. W. Mechanisms of light chain injury along the tubular nephron. J. Am. Soc. Nephrol. 23, 1777–1781 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Ying, W. Z. et al. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J. Clin. Invest. 129, 2792–2806 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Burnette, B. L., Leung, N. & Rajkumar, S. V. Renal improvement in myeloma with bortezomib plus plasma exchange. N. Engl. J. Med. 364, 2365–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Kastritis, E. et al. Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N. Engl. J. Med. 385, 46–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Bhutani, M., Foureau, D. M., Atrash, S., Voorhees, P. M. & Usmani, S. Z. Extramedullary multiple myeloma. Leukemia 34, 1–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Xia, Y. et al. Characteristics and prognostic value of extramedullary chromosomal abnormalities in extramedullary myeloma. Chin. Med. J. 135, 2500–2502 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dahl, I. M., Rasmussen, T., Kauric, G. & Husebekk, A. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br. J. Haematol. 116, 273–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Blimark, C. et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica 100, 107–113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Augustson, B. M. et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom Medical Research Council trials between 1980 and 2002 – Medical Research Council Adult Leukaemia Working Party. J. Clin. Oncol. 23, 9219–9226 (2005).

    Article  PubMed  Google Scholar 

  151. Ludwig, H. et al. Recommendations for vaccination in multiple myeloma: a consensus of the European Myeloma Network. Leukemia 35, 31–44 (2021).

    Article  PubMed  Google Scholar 

  152. Terpos, E. et al. Low neutralizing antibody responses against SARS-CoV-2 in older patients with myeloma after the first BNT162b2 vaccine dose. Blood 137, 3674–3676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Blade, J. & Rosinol, L. Complications of multiple myeloma. Hematol. Oncol. Clin. North. Am. 21, 1231–1246 (2007).

    Article  PubMed  Google Scholar 

  154. Liu, L. et al. Multiple myeloma hinders erythropoiesis and causes anaemia owing to high levels of CCL3 in the bone marrow microenvironment. Sci. Rep. 10, 20508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Eby, C. Pathogenesis and management of bleeding and thrombosis in plasma cell dyscrasias. Br. J. Haematol. 145, 151–163 (2009).

    Article  PubMed  Google Scholar 

  156. Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538–e548 (2014). This article provides the criteria for the diagnosis of multiple myeloma.

    Article  PubMed  Google Scholar 

  157. Dimopoulos, M. et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 117, 4701–4705 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Fernández de Larrea, C. et al. Primary plasma cell leukemia: consensus definition by the International Myeloma Working Group according to peripheral blood plasma cell percentage. Blood Cancer J. 11, 192 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Dejoie, T. et al. Serum free light chains, not urine specimens, should be used to evaluate response in light-chain multiple myeloma. Blood 128, 2941–2948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dimopoulos, M. A. et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 32, 309–322 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Hillengass, J. et al. International Myeloma Working Group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 20, e302–e312 (2019).

    Article  PubMed  Google Scholar 

  162. Terpos, E. et al. Treatment of multiple myeloma-related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 22, e119–e130 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Dimopoulos, M. A. et al. Management of multiple myeloma-related renal impairment: recommendations from the International Myeloma Working Group. Lancet Oncol. 24, e293–e311 (2023).

    Article  PubMed  Google Scholar 

  164. Fermand, J. P. et al. Monoclonal gammopathy of clinical significance: a novel concept with therapeutic implications. Blood 132, 1478–1485 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Theodorakakou, F. et al. Prevalence of MGCS among patients with monoclonal gammopathies. Hemasphere 7, e908 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Greipp, P. R. et al. International staging system for multiple myeloma. J. Clin. Oncol. 23, 3412–3420 (2005).

    Article  PubMed  Google Scholar 

  167. Palumbo, A. et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J. Clin. Oncol. 33, 2863–2869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. D’Agostino, M. et al. Second Revision of the International Staging System (R2-ISS) for overall survival in multiple myeloma: a European Myeloma Network (EMN) report within the HARMONY project. J. Clin. Oncol. 40, 3406–3418 (2022). A refined international staging system that allows better evaluation of MM prognosis.

    Article  PubMed  Google Scholar 

  169. Hofste Op Bruinink, D. et al. Identification of high-risk multiple myeloma with a plasma cell leukemia-like transcriptomic profile. J. Clin. Oncol. 40, 3132–3150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. van Beers, E. H. et al. Analytical validation of SKY92 for the identification of high-risk multiple myeloma. J. Mol. Diagn. 23, 120–129 (2021).

    Article  PubMed  Google Scholar 

  171. Sonneveld, P. et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood 127, 2955–2962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Facon, T., Leleu, X. & Manier, S. How I treat multiple myeloma in geriatric patients. Blood 143, 224–232 (2024).

    Article  CAS  PubMed  Google Scholar 

  173. Kostopoulos, I. V. et al. Circulating plasma cells in newly diagnosed multiple myeloma: prognostic and more. J. Clin. Oncol. 41, 708–710 (2023).

    Article  PubMed  Google Scholar 

  174. Garces, J. J. et al. Circulating tumor cells for the staging of patients with newly diagnosed transplant-eligible multiple myeloma. J. Clin. Oncol. 40, 3151–3161 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Kumar, S. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17, e328–e346 (2016).

    Article  PubMed  Google Scholar 

  176. Cavo, M. et al. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 18, e206–e217 (2017).

    Article  PubMed  Google Scholar 

  177. Bianchi, G. et al. Impact of optimal follow-up of monoclonal gammopathy of undetermined significance on early diagnosis and prevention of myeloma-related complications. Blood 116, 2019–2025 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sigurdardottir, E. E. et al. The role of diagnosis and clinical follow-up of monoclonal gammopathy of undetermined significance on survival in multiple myeloma. JAMA Oncol. 1, 168–174 (2015).

    Article  PubMed  Google Scholar 

  179. Goyal, G. et al. Impact of prior diagnosis of monoclonal gammopathy on outcomes in newly diagnosed multiple myeloma. Leukemia 33, 1273–1277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kyle, R. A. et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 346, 564–569 (2002).

    Article  PubMed  Google Scholar 

  181. Kyle, R. A. et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 356, 2582–2590 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Mateos, M. V. et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 10, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Cowan, A. et al. Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study. Lancet Haematol. 10, e203–e212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lakshman, A. et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 8, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Termini, R. et al. Circulating tumor and immune cells for minimally invasive risk stratification of smoldering multiple myeloma. Clin. Cancer Res. 28, 4771–4781 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Visram, A. et al. Assessing the prognostic utility of smoldering multiple myeloma risk stratification scores applied serially post diagnosis. Blood Cancer J. 11, 186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Mateos, M. V. et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N. Engl. J. Med. 369, 438–447 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Mateos, M. V. et al. Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex): long-term follow-up of a randomised, controlled, phase 3 trial. Lancet Oncol. 17, 1127–1136 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Lonial, S. et al. Randomized trial of lenalidomide versus observation in smoldering multiple myeloma. J. Clin. Oncol. 38, 1126–1137 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Chen, L. Y., Drayson, M., Bunce, C. & Ramasamy, K. Monoclonal gammopathy of increasing significance: time to screen? Haematologica 108, 1476–1486 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. El-Khoury, H. et al. Prevalence of monoclonal gammopathies and clinical outcomes in a high-risk US population screened by mass spectrometry: a multicentre cohort study. Lancet Haematol. 9, e340–e349 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hallen, J. Frequency of “abnormal” serum globulins (M-components) in the aged. Acta Med. Scand. 173, 737–744 (1963).

    Article  CAS  PubMed  Google Scholar 

  193. Kyle, R. A. et al. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 354, 1362–1369 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Lee, D. J. et al. Mass spectrometry-detected MGUS is associated with obesity and other novel modifiable risk factors in a high-risk population. Blood Adv. 8, 1737–1746 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rognvaldsson, S. et al. Iceland screens, treats, or prevents multiple myeloma (iStopMM): a population-based screening study for monoclonal gammopathy of undetermined significance and randomized controlled trial of follow-up strategies. Blood Cancer J. 11, 94 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Thorsteinsdottir, S. et al. Prevalence of smoldering multiple myeloma based on nationwide screening. Nat. Med. 29, 467–472 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ludwig, H., Kainz, S., Schreder, M., Zojer, N. & Hinke, A. SLiM CRAB criteria revisited: temporal trends in prognosis of patients with smoldering multiple myeloma who meet the definition of ‘biomarker-defined early multiple myeloma’ – a systematic review with meta-analysis. EClinicalMedicine 58, 101910 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Sonneveld, P. et al. Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 390, 301–313 (2023).

    Article  PubMed  Google Scholar 

  199. Moreau, P. et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394, 29–38 (2019). This study established the quadruplet D-VTd combination for induction and consolidation chemotherapy in transplant-eligible patients.

    Article  CAS  PubMed  Google Scholar 

  200. Voorhees, P. M. et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood 136, 936–945 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gay, F. et al. Results of the phase III randomized IsKia trial: isatuximab-carfilzomib-lenalidomide-dexamethasone vs carfilzomib-lenalidomide-dexamethasone as pre-transplant induction and post-transplant consolidation in newly diagnosed multiple myeloma patients [abstract]. Blood 142 (Suppl. 1), 4 (2023).

    Article  Google Scholar 

  202. Cavo, M. et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 376, 2075–2085 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Durie, B. G. M. et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 389, 519–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Moreau, P. et al. VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013-04 trial. Blood 127, 2569–2574 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Attal, M. et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N. Engl. J. Med. 376, 1311–1320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Richardson, P. G. et al. Triplet therapy, transplantation, and maintenance until progression in myeloma. N. Engl. J. Med. 387, 132–147 (2022). This study confirmed that AHCT remains a standard front-line treatment for transplant-eligible patients in the triplet era.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Perrot, A. et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood 132, 2456–2464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cavo, M. et al. Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): a multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 7, e456–e468 (2020).

    Article  PubMed  Google Scholar 

  209. Hari, P. et al. Long-term follow-up of BMT CTN 0702 (STaMINA) of postautologous hematopoietic cell transplantation (autoHCT) strategies in the upfront treatment of multiple myeloma (MM) [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 8506 (2020).

    Article  Google Scholar 

  210. McCarthy, P. L. et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J. Clin. Oncol. 35, 3279–3289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gay, F. et al. Efficacy of carfilzomib lenalidomide dexamethasone (KRd) with or without transplantation in newly diagnosed myeloma according to risk status: results from the FORTE trial [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 8002 (2019).

    Article  Google Scholar 

  212. Kaiser, M. F. et al. Daratumumab, cyclophosphamide, bortezomib, lenalidomide, and dexamethasone as induction and extended consolidation improves outcome in ultra-high-risk multiple myeloma. J. Clin. Oncol. 41, 3945–3955 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Palumbo, A. et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: an International Myeloma Working Group report. Blood 125, 2068–2074 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Facon, T. et al. A simplified frailty scale predicts outcomes in transplant-ineligible patients with newly diagnosed multiple myeloma treated in the FIRST (MM-020) trial. Leukemia 34, 224–233 (2020).

    Article  PubMed  Google Scholar 

  215. Facon, T. et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N. Engl. J. Med. 380, 2104–2115 (2019). This study led to the approval of DRd, which is considered the preferred option for transplant-ineligible patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kumar, S. K. et al. Daratumumab plus lenalidomide and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) alone in transplant-ineligible patients with newly diagnosed multiple myeloma (NDMM): updated analysis of the phase 3 MAIA study [abstract]. Blood 140 (Suppl. 1), 10150–10153 (2022).

    Article  Google Scholar 

  217. Munshi, N. C. et al. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol. 3, 28–35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Avet-Loiseau, H. et al. Evaluation of sustained minimal residual disease negativity with daratumumab-combination regimens in relapsed and/or refractory multiple myeloma: analysis of POLLUX and CASTOR. J. Clin. Oncol. 39, 1139–1149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Manier, S. et al. A dexamethasone sparing-regimen with daratumumab and lenalidomide in frail patients with newly-diagnosed multiple myeloma: efficacy and safety analysis of the phase 3 IFM2017-03 trial. Blood 140, 1369–1370 (2022).

    Article  Google Scholar 

  220. Benboubker, L. et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N. Engl. J. Med. 371, 906–917 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. Manier, S. et al. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 14, 100–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Dimopoulos, M. A. et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 1319–1331 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Dimopoulos, M. et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study. Lancet 396, 186–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Moreau, P. et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. Lancet 397, 2361–2371 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Dimopoulos, M. A. et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 22, 801–812 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Attal, M. et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet 394, 2096–2107 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Richardson, P. G. et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncol. 20, 781–794 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Dimopoulos, M. A. et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 17, 27–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Yong, K. L. et al. Carfilzomib or bortezomib in combination with cyclophosphamide and dexamethasone followed by carfilzomib maintenance for patients with multiple myeloma after one prior therapy: results from a multicenter, phase II, randomized, controlled trial (MUK five). Haematologica 106, 2694–2706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Garderet, L. et al. Pomalidomide, cyclophosphamide, and dexamethasone for relapsed multiple myeloma. Blood 132, 2555–2563 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Dimopoulos, M. A. et al. Elotuzumab plus pomalidomide and dexamethasone for relapsed/refractory multiple myeloma: final overall survival analysis from the randomized phase II ELOQUENT-3 trial. J. Clin. Oncol. 41, 568–578 (2023).

    Article  CAS  PubMed  Google Scholar 

  232. Grosicki, S. et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial. Lancet 396, 1563–1573 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Rodriguez-Otero, P. et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N. Engl. J. Med. 388, 1002–1014 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. San-Miguel, J. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. 389, 335–347 (2023).

    Article  CAS  PubMed  Google Scholar 

  235. Mateos, M. V. et al. LocoMMotion: a prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia 36, 1371–1376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gandhi, U. H. et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 33, 2266–2275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lonial, S. et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 21, 207–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Moreau, P. et al. Updated results from MajesTEC-1: phase 1/2 study of teclistamab, a B-cell maturation antigen x CD3 bispecific antibody, in relapsed/refractory multiple myeloma. Blood 138, 896–896 (2021).

    Article  Google Scholar 

  239. Lesokhin, A. M. et al. Initial safety results for MagnetisMM-3: a phase 2 trial of elranatamab, a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, in patients (pts) with relapsed/refractory (R/R) multiple myeloma (MM) [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 8006 (2022).

    Article  Google Scholar 

  240. Munshi, N. C. et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): initial KarMMa results [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 8503 (2020).

    Article  Google Scholar 

  241. Madduri, D. et al. Results from CARTITUDE-1: a phase 1b/2 study of JNJ-4528, a CAR-T cell therapy directed against B-cell maturation antigen (BCMA), in patients with relapsed and/or refractory multiple myeloma (R/R MM) [abstract]. Blood 134 (Suppl. 1), 577 (2019).

    Article  Google Scholar 

  242. Chari, A. et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N. Engl. J. Med. 387, 2232–2244 (2022).

    Article  CAS  PubMed  Google Scholar 

  243. Chari, A. et al. Oral selinexor–dexamethasone for triple-class refractory multiple myeloma. N. Engl. J. Med. 381, 727–738 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Harrison, S. et al. T(11;14) and high BCL2 expression are predictive biomarkers of response to venetoclax in combination with bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma: biomarker analyses from the phase 3 Bellini study [abstract]. Blood 134 (Suppl. 1), 142 (2019).

    Article  Google Scholar 

  245. Lin, Y. et al. Idecabtagene vicleucel for relapsed and refractory multiple myeloma: post hoc 18-month follow-up of a phase 1 trial. Nat. Med. 29, 2286–2294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Giesen, N. et al. A phase 2 clinical trial of combined BRAF/MEK inhibition for BRAFV600E-mutated multiple myeloma. Blood 141, 1685–1690 (2023).

    Article  CAS  PubMed  Google Scholar 

  247. Terpos, E. et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 100, 1254–1266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Berenson, J. et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 12, 225–235 (2011).

    Article  PubMed  Google Scholar 

  249. Leigh, B. R., Kurtts, T. A., Mack, C. F., Matzner, M. B. & Shimm, D. S. Radiation therapy for the palliation of multiple myeloma. Int. J. Radiat. Oncol. Biol. Phys. 25, 801–804 (1993).

    Article  CAS  PubMed  Google Scholar 

  250. Zhang, X., Donnan, P., Bell, S. & Guthrie, B. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease: Systematic review and meta-analysis. BMC Nephrol. 18, 256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Stacul, F. et al. Iodine-based contrast media, multiple myeloma and monoclonal gammopathies: literature review and ESUR Contrast Media Safety Committee guidelines. Eur. Radiol. 28, 683–691 (2018).

    Article  PubMed  Google Scholar 

  252. Ebrahim, S. Clinical and public health perspectives and applications of health-related quality of life measurement. Soc. Sci. Med. 41, 1383–1394 (1995).

    Article  CAS  PubMed  Google Scholar 

  253. Johnsen, A. T., Tholstrup, D., Petersen, M. A., Pedersen, L. & Groenvold, M. Health related quality of life in a nationally representative sample of haematological patients. Eur. J. Haematol. 83, 139–148 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Fischer, J. et al. The influence of baseline characteristics, treatment and depression on health-related quality of life in patients with multiple myeloma: a prospective observational study. BMC Cancer 22, 1032 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Osborne, T. R. et al. What issues matter most to people with multiple myeloma and how well are we measuring them? A systematic review of quality of life tools. Eur. J. Haematol. 89, 437–457 (2012).

    Article  PubMed  Google Scholar 

  256. Cocks, K. et al. An international field study of the reliability and validity of a disease-specific questionnaire module (the QLQ-MY20) in assessing the quality of life of patients with multiple myeloma. Eur. J. Cancer 43, 1670–1678 (2007).

    Article  CAS  PubMed  Google Scholar 

  257. Herdman, M. et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 20, 1727–1736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. LeBlanc, M. R., Hirschey, R., Leak Bryant, A., LeBlanc, T. W. & Smith, S. K. How are patient-reported outcomes and symptoms being measured in adults with relapsed/refractory multiple myeloma? A systematic review. Qual. Life Res. 29, 1419–1431 (2020).

    Article  PubMed  Google Scholar 

  259. Salek, S. et al. The reporting, use, and validity of patient-reported outcomes in multiple myeloma in clinical trials: a systematic literature review. Cancers 14, 6007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Fragola, M. Patient-reported outcomes and assessment of quality of life: a focus on multiple myeloma. J. Adv. Pract. Oncol. 11, 513–520 (2020).

    PubMed  PubMed Central  Google Scholar 

  261. Engelhardt, M. et al. Real-world evaluation of health-related quality of life in patients with multiple myeloma from Germany. Clin. Lymphoma Myeloma Leuk. 21, e160–e175 (2021).

    Article  PubMed  Google Scholar 

  262. Chakraborty, R., Hamilton, B. K., Hashmi, S. K., Kumar, S. K. & Majhail, N. S. Health-related quality of life after autologous stem cell transplantation for multiple myeloma. Biol. Blood Marrow Transplant. 24, 1546–1553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Abonour, R. et al. Impact of post-transplantation maintenance therapy on health-related quality of life in patients with multiple myeloma: data from the Connect® MM Registry. Ann. Hematol. 97, 2425–2436 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Martin, T. G. et al. Teclistamab improves patient-reported symptoms and health-related quality of life in relapsed or refractory multiple myeloma: results from the phase II MajesTEC-1 study. Clin. Lymphoma Myeloma Leuk. 24, 194–202 (2024).

    Article  CAS  PubMed  Google Scholar 

  265. Delforge, M. et al. Health-related quality of life with idecabtagene vicleucel in relapsed and refractory multiple myeloma. Blood Adv. 6, 1309–1318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Visram, A. et al. Comparison of the efficacy in clinical trials versus effectiveness in the real-world of treatments for multiple myeloma: a population-based cohort study [abstract]. Blood 142 (Suppl. 1), 541 (2023).

    Article  Google Scholar 

  267. Mian, H. et al. The prevalence and outcomes of frail older adults in clinical trials in multiple myeloma: a systematic review. Blood Cancer J. 13, 6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Cook, G. et al. Dynamic frailty assessment in transplant non-eligible newly diagnosed myeloma patients: initial data from UK Myeloma Research Alliance (UK-MRA) Myeloma XIV (FiTNEss): a frailty-adjusted therapy study [abstract]. Blood 142 (Suppl. 1), 4748 (2023).

    Article  Google Scholar 

  269. Mian, H. et al. Dynamic frailty risk assessment among older adults with multiple myeloma: a population-based cohort study. Blood Cancer J. 13, 76 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Marcon, C. et al. Experts’ consensus on the definition and management of high risk multiple myeloma. Front. Oncol. 12, 1096852 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Hagen, P., Zhang, J. & Barton, K. High-risk disease in newly diagnosed multiple myeloma: beyond the R-ISS and IMWG definitions. Blood Cancer J. 12, 83 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Rajkumar, S. V. & Harousseau, J. L. Next-generation multiple myeloma treatment: a pharmacoeconomic perspective. Blood 128, 2757–2764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Gormley, N. et al. Recommendations on eliminating racial disparities in multiple myeloma therapies: a step toward achieving equity in healthcare. Blood Cancer Discov. 2, 119–124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  274. International Myeloma Foundation. Diversity in Clinical Trials. International Myeloma Foundation www.myeloma.org/clinical-trials/diversity-clinical-trials (2024).

  275. Argyriou, A. A., Iconomou, G. & Kalofonos, H. P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112, 1593–1599 (2008).

    Article  CAS  PubMed  Google Scholar 

  276. Frenzel, L. et al. Venous thromboembolism prophylaxis and multiple myeloma patients in real-life: results of a large survey and clinical guidance recommendations from the IFM group. Thromb. Res. 233, 153–164 (2024).

    Article  CAS  PubMed  Google Scholar 

  277. Lecat, C. S. Y. et al. High patient satisfaction and increased physical activity following a remote multidisciplinary team multiple myeloma clinic. Support. Care Cancer 31, 127 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Hillengass, M., Joseph, J., McCarthy, J. & Hillengass, J. Physical activity in multiple myeloma: a review of the current literature. J. Adv. Pract. Oncol. 14, 153–158 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Cella, D., Kallich, J., McDermott, A. & Xu, X. The longitudinal relationship of hemoglobin, fatigue and quality of life in anemic cancer patients: results from five randomized clinical trials. Ann. Oncol. 15, 979–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  280. Raje, N. S. et al. Consensus guidelines and recommendations for infection prevention in multiple myeloma: a report from the International Myeloma Working Group. Lancet Haematol. 9, e143–e161 (2022).

    Article  CAS  PubMed  Google Scholar 

  281. Cordonnier, C. et al. Vaccination of haemopoietic stem cell transplant recipients: guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 19, e200–e212 (2019).

    Article  PubMed  Google Scholar 

  282. Winston, D. J. et al. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: an international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet 391, 2116–2127 (2018).

    Article  PubMed  Google Scholar 

  283. El Chaer, F. et al. American Society of Transplantation and Cellular Therapy Series: #7 – management of respiratory syncytial virus infections in hematopoietic cell transplant recipients. Transplant. Cell. Ther. 29, 730–738 (2023).

    Article  PubMed  Google Scholar 

  284. Terpos, E. et al. Management of patients with multiple myeloma and COVID-19 in the post pandemic era: a consensus paper from the European Myeloma Network (EMN). Leukemia 37, 1175–1185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  286. Rejeski, K. et al. The CAR-HEMATOTOX score as a prognostic model of toxicity and response in patients receiving BCMA-directed CAR-T for relapsed/refractory multiple myeloma. J. Hematol. Oncol. 16, 88 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Reynolds, G. et al. Infections following bispecific antibodies in myeloma: a systematic review and meta-analysis. Blood Adv. 7, 5898–5903 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. V. Melo (University of Adelaide, Australia) for her critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.M. and F.M.); Epidemiology (M.M. and F.M.); Mechanisms/pathophysiology (M.M., F.M., N.J.B. and P.N.); Diagnosis, screening and prevention (M.M., F.M. and E.T.); Management (M.M., F.M. and S.M.); Quality of life (M.M., F.M., V.T.M.H. and N.M.); Outlook (M.M. and F.M.).

Corresponding authors

Correspondence to Florent Malard or Mohamad Mohty.

Ethics declarations

Competing interests

F.M. reports honoraria from BMS, Therakos/Mallinckrodt, Sanofi, JAZZ Pharmaceuticals, Gilead, Novartis, AstraZeneca and MSD, all outside the scope of this work. P.N. reports honoraria from Pfizer, BMS, Janssen and Sanofi, and is a consultant/advisory board member for BMS and Janssen. N.J.B. reports honoraria from Amgen, BMS, Sanofi, Pfizer and Janssen, and is a consultant/advisory board member for BMS, Janssen and Pfizer. V.T.M.H. reports honoraria from AbbVie, Amgen, BMS, GSK, Janssen, Sanofi and Takeda. S.M. reports consulting activity and research fundings from Abbvie, Adaptive Biotechnology, Amgen, Bristol Myers Squibb, GlaxoSmithKline, Janssen, Novartis, Pfizer, Regeneron, Roche, Sanofi and Takeda. M.M. reports grants, lecture honoraria and research support from Adaptive Biotechnologies, Amgen, Astellas, BMS-Celgene, GlaxoSmithKline, Janssen, JAZZ Pharmaceuticals, Novartis, Pfizer, Takeda and Sanofi, all outside the scope of this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks J. S. Miguel; R. Gupta; K. L. Yong, who co-reviewed with E. Boyle; M.-S. Raab, who co-reviewed with J. Frenking; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malard, F., Neri, P., Bahlis, N.J. et al. Multiple myeloma. Nat Rev Dis Primers 10, 45 (2024). https://doi.org/10.1038/s41572-024-00529-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00529-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing