Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ichthyosis

Abstract

The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype–genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the epidermis.
Fig. 2: Ceramide pathway in the epidermis.
Fig. 3: Cholesterol and dolichol synthesis pathways in the epidermis.
Fig. 4: Symptomatic presentation of the ichthyoses.
Fig. 5: Decision tree for the diagnosis of ichthyosis.
Fig. 6: Histological characteristics of the ichthyoses.

References

  1. Oji, V. et al. Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in Sorze 2009. J. Am. Acad. Dermatol. 63, 607–641 (2010). This publication delivers a general overview of the disease and the first classification of the many forms of ichthyosis, which remains the basis on which all proposed classifications are built.

    Article  Google Scholar 

  2. Oji, V. & Traupe, H. Ichthyosis: clinical manifestations and practical treatment options. Am. J. Clin. Dermatol. 10, 351–364 (2009).

    Article  Google Scholar 

  3. Madison, K. C. Barrier function of the skin: “La Raison d’Être” of the epidermis. J. Invest. Dermatol. 121, 231–241 (2003).

    Article  CAS  Google Scholar 

  4. Kolarsick, P. A., Ann Kolarsick, M. & Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses Assoc. 3, 203–213 (2006). This publication describes an overview of the skin structure.

    Article  Google Scholar 

  5. Ramadon, D., McCrudden, M. T. C., Courtenay, A. J. & Donnelly, R. F. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv. Transl Res. 12, 758 (2022).

    Article  Google Scholar 

  6. Watt, F. M. The stem cell compartment in human interfollicular epidermis. J. Dermatol. Sci. 28, 173–180 (2002).

    Article  CAS  Google Scholar 

  7. Fuchs, E. Epidermal differentiation and keratin gene expression. J. Cell Sci. Suppl. 17, 197–208 (1993).

    Article  CAS  Google Scholar 

  8. Moreci, R. S. & Lechler, T. Epidermal structure and differentiation. Curr. Biol. 30, R144–R149 (2020). This paper provides an in-depth view of keratinocyte differentiation and its crucial role in epidermal formation.

    Article  CAS  Google Scholar 

  9. Maestrini, E. et al. A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel’s syndrome. Nat. Genet. 13, 70–77 (1996).

    Article  CAS  Google Scholar 

  10. Nemes, Z. & Steinert, P. M. Bricks and mortar of the epidermal barrier. Exp. Mol. Med. 31, 5–19 (1999). This publication describes the bricks and mortar molecular model of the stratum corneum.

    Article  CAS  Google Scholar 

  11. Patel, N., Spencer, L. A., English, J. C. & Zirwas, M. J. Acquired ichthyosis. J. Am. Acad. Dermatol. 55, 647–656 (2006).

    Article  Google Scholar 

  12. Schmuth, M. et al. Inherited ichthyoses/generalized Mendelian disorders of cornification. Eur. J. Hum. Genet. 21, 123–133 (2012).

    Article  Google Scholar 

  13. Mazereeuw-Hautier, J. et al. Management of congenital ichthyoses: European guidelines of care, part one. Br. J. Dermatol. 180, 272–281 (2019).

    Article  CAS  Google Scholar 

  14. Mazereeuw-Hautier, J. et al. Management of congenital ichthyoses: European guidelines of care, part two. Br. J. Dermatol. 180, 484–495 (2019).

    Article  CAS  Google Scholar 

  15. Moskowitz, D. G. et al. Pathophysiologic basis for growth failure in children with ichthyosis: an evaluation of cutaneous ultrastructure, epidermal permeability barrier function, and energy expenditure. J. Pediatr. 145, 82–92 (2004).

    Article  CAS  Google Scholar 

  16. DiGiovanna, J. J. & Robinson-Bostom, L. Ichthyosis: etiology, diagnosis, and management. Am. J. Clin. Dermatol. 4, 81–95 (2003).

    Article  Google Scholar 

  17. KEI. Selected government definitions of orphan or rare diseases. KEI briefing note 2020:4 table 1: country definitions of orphan or rare diseases. KEI https://www.keionline.org/wp-content/uploads/KEI-Briefing-Note-2020-4-Defining-Rare-Diseases.pdf (2020).

  18. Brown, S. J. et al. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: further delineation of the skin phenotype in a prospective epidemiological study of 792 school children. Br. J. Dermatol. 161, 884 (2009).

    Article  CAS  Google Scholar 

  19. Amelina, S. S. et al. Prevalence of ichthyosis vulgaris and frequency of FLG R501X and 2282DEL4 mutations in the population of the Rostov region. Bull. Russ. State Med. Univ. 7, 51–55 (2018).

    Google Scholar 

  20. Ziprkowski, L. & Feinstein, A. A survey of ichthyosis vulgaris in Israel. Br. J. Dermatol. 86, 1–8 (1972).

    Article  CAS  Google Scholar 

  21. Kono, M. et al. Comprehensive screening for a complete set of Japanese-population-specific filaggrin gene mutations. Allergy 69, 537–540 (2014).

    Article  CAS  Google Scholar 

  22. Chen, H. et al. Wide spectrum of filaggrin-null mutations in atopic dermatitis highlights differences between Singaporean Chinese and European populations. Br. J. Dermatol. 165, 106–114 (2011).

    Article  CAS  Google Scholar 

  23. Hsu, C. K. et al. Analysis of Taiwanese ichthyosis vulgaris families further demonstrates differences in FLG mutations between European and Asian populations. Br. J. Dermatol. 161, 448–451 (2009).

    Article  CAS  Google Scholar 

  24. Akiyama, M. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics. Br. J. Dermatol. 162, 472–477 (2010).

    Article  CAS  Google Scholar 

  25. Wong, X. F. C. C. et al. Array-based sequencing of filaggrin gene for comprehensive detection of disease-associated variants. J. Allergy Clin. Immunol. 141, 814 (2018).

    Article  Google Scholar 

  26. Afzal, S. et al. A novel nonsense mutation in the STS gene in a Pakistani family with X-linked recessive ichthyosis: including a very rare case of two homozygous female patients. BMC Med. Genet. 21, 20 (2020).

    Article  CAS  Google Scholar 

  27. Craig, W. Y. et al. Prevalence of steroid sulfatase deficiency in California according to race and ethnicity. Prenat. Diagn. 30, 893–898 (2010).

    Article  Google Scholar 

  28. Ingordo, V. et al. Frequency of X-linked ichthyosis in coastal southern Italy: a study on a representative sample of a young male population. Dermatology 207, 148–150 (2003).

    Article  Google Scholar 

  29. Wells, R. S., Kerr, C. B. & Kerr, C. B. Clinical features of autosomal dominant and sex-linked ichthyosis in an English population. Br. Med. J. 1, 947 (1966).

    Article  CAS  Google Scholar 

  30. de Unamuno, P., Martin‐Pascual, A. & Garcia‐Perez, A. X‐linked ichthyosis. Br. J. Dermatol. 97, 53–58 (1977).

    Article  Google Scholar 

  31. Sakura, N., Nishimura, S. I., Matsumoto, T. & Ohsaki, M. Frequency of steroid sulfatase deficiency in Hiroshima. Pediatr. Int. 40, 63–64 (1998).

    Article  CAS  Google Scholar 

  32. Milstone, L. M., Miller, K., Haberman, M. & Dickens, J. Incidence of moderate to severe ichthyosis in the United States. Arch. Dermatol. 148, 1080–1081 (2012).

    Article  Google Scholar 

  33. Hernández-Martín, A. et al. Prevalence of autosomal recessive congenital ichthyosis: a population-based study using the capture-recapture method in Spain. J. Am. Acad. Dermatol. 67, 240–244 (2012).

    Article  Google Scholar 

  34. Dreyfus, I. et al. Prevalence of inherited ichthyosis in France: a study using capture-recapture method. Orphanet J. Rare Dis. 9, 1 (2014). This paper presents an in-depth epidemiological study on the rare forms of ichthyosis.

    Article  Google Scholar 

  35. Kurosawa, M. et al. Results of a nationwide epidemiologic survey of autosomal recessive congenital ichthyosis and ichthyosis syndromes in Japan. J. Am. Acad. Dermatol. 81, 1086–1092.e1 (2019).

    Article  Google Scholar 

  36. Al-Zayir, A. A. & Al-Amro Al-Alakloby, O. M. Clinico-epidemiological features of primary hereditary ichthyoses in the Eastern province of Saudi Arabia. Int. J. Dermatol. 45, 257–264 (2006).

    Article  Google Scholar 

  37. Mohamad, J. et al. Molecular epidemiology of non-syndromic autosomal recessive congenital ichthyosis in a Middle-Eastern population. Exp. Dermatol. 30, 1290–1297 (2021).

    Article  CAS  Google Scholar 

  38. Lima Cunha, D. et al. Unknown mutations and genotype/phenotype correlations of autosomal recessive congenital ichthyosis in patients from Saudi Arabia and Pakistan. Mol. Genet. Genom. Med. 7, 539 (2019).

    Article  Google Scholar 

  39. Hassani, B. et al. Filaggrin gene polymorphisms in Iranian ichthyosis vulgaris and atopic dermatitis patients. Int. J. Dermatol. 57, 1485–1491 (2018).

    Article  CAS  Google Scholar 

  40. Koshy, R., Ranawat, A. & Scaria, V. al mena: a comprehensive resource of human genetic variants integrating genomes and exomes from Arab, Middle Eastern and North African populations. J. Hum. Genet. 62, 889–894 (2017).

    Article  CAS  Google Scholar 

  41. Israeli, S. et al. Molecular analysis of a series of Israeli families with Comèl-Netherton syndrome. Dermatology 228, 183–188 (2014).

    Article  CAS  Google Scholar 

  42. Kamalpour, L. et al. Resource utilization and quality of life associated with congenital ichthyoses. Pediatr. Dermatol. 28, 512–518 (2011).

    Article  Google Scholar 

  43. Murase, C. et al. Cross-sectional survey on disease severity in Japanese patients with harlequin ichthyosis/ichthyosis: syndromic forms and quality-of-life analysis in a subgroup. J. Dermatol. Sci. 92, 127–133 (2018).

    Article  Google Scholar 

  44. Hellström Pigg, M. et al. Spectrum of autosomal recessive congenital ichthyosis in scandinavia: clinical characteristics and novel and recurrent mutations in 132 patients. Acta Derm. Venereol. 96, 932–937 (2016).

    Article  Google Scholar 

  45. Park, J. S. et al. Acquired ichthyosis, asteatotic dermatitis or xerosis? An update on pathoetiology and drug-induced associations. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/JDV.18608 (2022).

    Article  Google Scholar 

  46. Goodman, D. S. et al. Prevalence of cutaneous disease in patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex. J. Am. Acad. Dermatol. 17, 210–220 (1987).

    Article  CAS  Google Scholar 

  47. Pavlović, M. D. et al. The prevalence of cutaneous manifestations in young patients with type 1 diabetes. Diabetes Care 30, 1964–1967 (2007).

    Article  Google Scholar 

  48. Okajima, R., Oliveira, A. C., Smid, J., Casseb, J. & Sanches, J. A. High prevalence of skin disorders among HTLV-1 infected individuals independent of clinical status. PLoS Negl. Trop. Dis. 7, e2546 (2013).

    Article  Google Scholar 

  49. Moore, R. L. & Devere, T. S. Epidermal manifestations of internal malignancy. Dermatol. Clin. 26, 17–29 (2008).

    Article  CAS  Google Scholar 

  50. Voegeli, D. Topical steroids and emollients in atopic eczema–which should be applied first? Pract. Nurs. 28, 14–20 (2017).

    Article  Google Scholar 

  51. Vahlquist, A., Fischer, J. & Törmä, H. Inherited nonsyndromic ichthyoses: an update on pathophysiology, diagnosis and treatment. Am. J. Clin. Dermatol. 19, 51 (2018).

    Article  Google Scholar 

  52. Chu, P. G. & Weiss, L. M. Keratin expression in human tissues and neoplasms. Histopathology 40, 403–439 (2002).

    Article  CAS  Google Scholar 

  53. Rothnagel, J. A. et al. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257, 1128–1130 (1992).

    Article  CAS  Google Scholar 

  54. Rothnagel, J. A. et al. Mutations in the rod domain of keratin 2e in patients with ichthyosis bullosa of Siemens. Nat. Genet. 7, 485–490 (1994).

    Article  CAS  Google Scholar 

  55. Sybert, V. P., Dale, B. A. & Holbrook, K. A. Ichthyosis vulgaris: identification of a defect in synthesis of filaggrin correlated with an absence of keratohyaline granules. J. Invest. Dermatol. 84, 191–194 (1985).

    Article  CAS  Google Scholar 

  56. Brown, S. J. & McLean, W. H. I. One remarkable molecule: filaggrin. J. Invest. Dermatol. 132, 751–762 (2012).

    Article  CAS  Google Scholar 

  57. Kirchmeier, P., Zimmer, A., Bouadjar, B., Rösler, B. & Fischer, J. Whole-exome-sequencing reveals small deletions in CASP14 in patients with autosomal recessive inherited ichthyosis. Acta Derm. Venereol. 97, 102–104 (2017).

    Article  CAS  Google Scholar 

  58. Alef, T. et al. Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J. Invest. Dermatol. 129, 862–869 (2009).

    Article  CAS  Google Scholar 

  59. Boyden, L. M. et al. Mutations in ASPRV1 cause dominantly inherited ichthyosis. Am. J. Hum. Genet. 107, 158 (2020).

    Article  CAS  Google Scholar 

  60. Dahlqvist, J. et al. A single-nucleotide deletion in the POMP 5’ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am. J. Hum. Genet. 86, 596–603 (2010).

    Article  CAS  Google Scholar 

  61. Cassidy, A. J. et al. A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome. Am. J. Hum. Genet. 77, 909–917 (2005).

    Article  CAS  Google Scholar 

  62. Akiyama, M. Acylceramide is a key player in skin barrier function: insight into the molecular mechanisms of skin barrier formation and ichthyosis pathogenesis. FEBS J. 288, 2119–2130 (2021).

    Article  CAS  Google Scholar 

  63. Pappas, A. Epidermal surface lipids. Dermatoendocrinology 1, 72 (2009).

    Article  CAS  Google Scholar 

  64. De Laurenzi, V. et al. Sjögren–Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat. Genet. 12, 52–57 (1996).

    Article  Google Scholar 

  65. Mueller, N. et al. De novo mutation in ELOVL1 causes ichthyosis, acanthosis nigricans, hypomyelination, spastic paraplegia, high frequency deafness and optic atrophy. J. Med. Genet. 56, 164–175 (2019).

    Article  CAS  Google Scholar 

  66. Aldahmesh, M. A. et al. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am. J. Hum. Genet. 89, 745–750 (2011).

    Article  CAS  Google Scholar 

  67. Mauldin, E. A. et al. Cellular and metabolic basis for the ichthyotic phenotype in NIPAL4 (ichthyin)–deficient canines. Am. J. Pathol. 188, 1419–1429 (2018). This paper presents research into the metabolic causes of ichthyosis; its supplementary figures provide a clear overview of the ceramide pathway.

    Article  CAS  Google Scholar 

  68. Lefèvre, C. et al. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum. Mol. Genet. 15, 767–776 (2006).

    Article  Google Scholar 

  69. Ohno, Y. et al. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc. Natl Acad. Sci. USA 112, 7707–7712 (2015).

    Article  CAS  Google Scholar 

  70. Klar, J. et al. Mutations in the fatty acid transport protein 4 gene cause the ichthyosis prematurity syndrome. Am. J. Hum. Genet. 85, 248–253 (2009).

    Article  CAS  Google Scholar 

  71. Yamamoto, H., Hattori, M., Chamulitrat, W., Ohno, Y. & Kihara, A. Skin permeability barrier formation by the ichthyosis-causative gene FATP4 through formation of the barrier lipid ω-O-acylceramide. Proc. Natl Acad. Sci. USA 117, 2914–2922 (2020).

    Article  CAS  Google Scholar 

  72. Jansen, G. A. et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat. Genet. 17, 190–193 (1997).

    Article  CAS  Google Scholar 

  73. Mihalik, S. J. et al. Identification of PAHX, a Refsum disease gene. Nat. Genet. 17, 185–189 (1997).

    Article  CAS  Google Scholar 

  74. Van Den Brink, D. M. et al. Identification of PEX7 as the second gene involved in Refsum disease. Am. J. Hum. Genet. 72, 471–477 (2003).

    Article  Google Scholar 

  75. Rivier, M., Castiel, I., Safonova, I., Ailhaud, G. & Michel, S. Peroxisome proliferator-activated receptor-α enhances lipid metabolism in a skin equivalent model. J. Invest. Dermatol. 114, 681–687 (2000).

    Article  CAS  Google Scholar 

  76. Acuna-Hidalgo, R. et al. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am. J. Hum. Genet. 95, 285–293 (2014).

    Article  CAS  Google Scholar 

  77. Shaheen, R. et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am. J. Hum. Genet. 94, 898–904 (2014).

    Article  CAS  Google Scholar 

  78. Hart, C. E. et al. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet. 80, 931 (2007).

    Article  CAS  Google Scholar 

  79. Boyden, L. M. et al. Mutations in KDSR cause recessive progressive symmetric erythrokeratoderma. Am. J. Hum. Genet. 100, 978–984 (2017).

    Article  CAS  Google Scholar 

  80. Rabionet, M., Gorgas, K. & Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 422–434 (2014).

    Article  CAS  Google Scholar 

  81. Linn, S. C. et al. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem. Soc. Trans. 29, 831 (2001).

    Article  CAS  Google Scholar 

  82. Radner, F. P. W. et al. Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans. PLoS Genet. 9, e1003536 (2013).

    Article  CAS  Google Scholar 

  83. Lefèvre, C. et al. Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Hum. Mol. Genet. 13, 2473–2482 (2004).

    Article  Google Scholar 

  84. Honda, Y. et al. Decreased skin barrier lipid acylceramide and differentiation-dependent gene expression in ichthyosis gene Nipal4-knockout mice. J. Invest. Dermatol. 138, 741–749 (2018).

    Article  CAS  Google Scholar 

  85. Israeli, S. et al. A mutation in LIPN, encoding epidermal lipase N, causes a late-onset form of autosomal-recessive congenital ichthyosis. Am. J. Hum. Genet. 88, 482 (2011).

    Article  CAS  Google Scholar 

  86. Lefèvre, C. et al. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am. J. Hum. Genet. 69, 1002–1012 (2001).

    Article  Google Scholar 

  87. Grall, A. et al. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat. Genet. 44, 140–147 (2012).

    Article  CAS  Google Scholar 

  88. Kien, B. et al. ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J. Lipid Res. 59, 2360–2367 (2018).

    Article  CAS  Google Scholar 

  89. Monies, D. et al. Identification of a novel lethal form of autosomal recessive ichthyosis caused by UDP-glucose ceramide glucosyltransferase deficiency. Clin. Genet. 93, 1252–1253 (2018).

    Article  CAS  Google Scholar 

  90. Lefèvre, C. et al. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum. Mol. Genet. 12, 2369–2378 (2003).

    Article  Google Scholar 

  91. Sidransky, E. et al. The clinical, molecular, and pathological characterisation of a family with two cases of lethal perinatal type 2 Gaucher disease. J. Med. Genet. 33, 132–136 (1996).

    Article  CAS  Google Scholar 

  92. Hirabayashi, T., Murakami, M. & Kihara, A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 869–879 (2019).

    Article  CAS  Google Scholar 

  93. Jobard, F. et al. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum. Mol. Genet. 11, 107–113 (2002).

    Article  CAS  Google Scholar 

  94. Shigehara, Y. et al. Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Hum. Mol. Genet. 25, 4484–4493 (2016).

    CAS  Google Scholar 

  95. Huber, M. et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267, 525–528 (1995).

    Article  CAS  Google Scholar 

  96. Nemes, Z., Marekov, L. N., Fésüs, L. & Steinert, P. M. A novel function for transglutaminase 1: attachment of long-chain ω-hydroxyceramides to involucrin by ester bond formation. Proc. Natl Acad. Sci. USA 96, 8402–8407 (1999).

    Article  CAS  Google Scholar 

  97. Elias, P. M. et al. Basis for the permeability barrier abnormality in lamellar ichthyosis. Exp. Dermatol. 11, 248–256 (2002).

    Article  Google Scholar 

  98. Kuramoto, N. et al. Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J. Clin. Invest. 109, 243–250 (2002).

    Article  CAS  Google Scholar 

  99. Oeffner, F. et al. IFAP syndrome is caused by deficiency in MBTPS2, an intramembrane zinc metalloprotease essential for cholesterol homeostasis and ER stress response. Am. J. Hum. Genet. 84, 459–467 (2009).

    Article  CAS  Google Scholar 

  100. Wang, H. et al. Mutations in SREBF1, encoding sterol regulatory element binding transcription factor 1, cause autosomal-dominant IFAP syndrome. Am. J. Hum. Genet. 107, 34–45 (2020).

    Article  CAS  Google Scholar 

  101. Kö, A., Happle, R., Bornholdt, D., Engel, H. & Grzeschik, K.-H. Mutations in the NSDHL gene, encoding a 3-hydroxysteroid dehydrogenase, cause CHILD syndrome. J. Med. Genet. 90, 339–346 (2000).

    Google Scholar 

  102. Derry, J. M. J. et al. Mutations in a delta 8-delta 7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nat. Genet. 22, 286–290 (1999).

    Article  CAS  Google Scholar 

  103. Heinz, L. et al. Mutations in SULT2B1 cause autosomal-recessive congenital ichthyosis in humans. Am. J. Hum. Genet. 100, 926–939 (2017).

    Article  CAS  Google Scholar 

  104. Nemes, Z., Demény, M., Marekov, L. N., Fésüs, L. & Steinert, P. M. Cholesterol 3-sulfate interferes with cornified envelope assembly by diverting transglutaminase 1 activity from the formation of cross-links and esters to the hydrolysis of glutamine. J. Biol. Chem. 275, 2636–2646 (2000).

    Article  CAS  Google Scholar 

  105. Mohandas, T., Shapiro, L. J., Sparkes, R. S. & Sparkes, M. C. Regional assignment of the steroid sulfatase—X-linked ichthyosis locus: implications for a noninactivated region on the short arm of human X chromosome. Proc. Natl Acad. Sci. USA 76, 5779–5783 (1979).

    Article  CAS  Google Scholar 

  106. Dierks, T. et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme. Cell 113, 435–444 (2003).

    Article  CAS  Google Scholar 

  107. Cosma, M. P. et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113, 445–456 (2003).

    Article  CAS  Google Scholar 

  108. Sprecher, E. et al. A mutation in SNAP29, coding for a SNARE protein involved in intracellular trafficking, causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. Am. J. Hum. Genet. 77, 242–251 (2005).

    Article  CAS  Google Scholar 

  109. Cullinane, A. R. et al. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat. Genet. 42, 303–312 (2010).

    Article  CAS  Google Scholar 

  110. Gissen, P. et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis–renal dysfunction–cholestasis (ARC) syndrome. Nat. Genet. 36, 400–404 (2004).

    Article  CAS  Google Scholar 

  111. Cantagrel, V. & Lefeber, D. J. From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J. Inherit. Metab. Dis. 34, 859 (2011). This paper presents an overview of the disorders of glycosylation, the dolichol pathway and its connection to cholesterol synthesis.

    Article  CAS  Google Scholar 

  112. Al-Gazali, L., Hertecant, J., Algawi, K., El Teraifi, H. & Dattani, M. A new autosomal recessive syndrome of ocular colobomas, ichthyosis, brain malformations and endocrine abnormalities in an inbred Emirati family. Am. J. Med. Genet. A 146A, 813–819 (2008).

    Article  CAS  Google Scholar 

  113. Kranz, C. et al. A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am. J. Hum. Genet. 80, 433 (2007).

    Article  CAS  Google Scholar 

  114. Schenk, B. et al. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J. Clin. Invest. 108, 1687–1695 (2001).

    Article  CAS  Google Scholar 

  115. Ng, B. G. et al. Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome. Am. J. Hum. Genet. 90, 685–688 (2012).

    Article  CAS  Google Scholar 

  116. Brandner, J. M., Haftek, M. & Niessen, C. M. Adherens junctions, desmosomes and tight junctions in epidermal barrier function. Open Dermatol. J. 4, 14–20 (2010).

    CAS  Google Scholar 

  117. Baala, L. et al. Homozygosity mapping of a locus for a novel syndromic ichthyosis to chromosome 3q27-q28. J. Invest. Dermatol. 119, 70–76 (2002).

    Article  CAS  Google Scholar 

  118. Hadj-Rabia, S. et al. Multiplex epithelium dysfunction due to CLDN10 mutation: the HELIX syndrome. Genet. Med. 20, 190–201 (2017).

    Article  Google Scholar 

  119. Boyden, L. M. et al. Dominant de novo mutations in GJA1 cause erythrokeratodermia variabilis et progressiva, without features of oculodentodigital dysplasia. J. Invest. Dermatol. 135, 1540–1547 (2015).

    Article  CAS  Google Scholar 

  120. Richard, G. et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am. J. Hum. Genet. 70, 1341–1348 (2002).

    Article  CAS  Google Scholar 

  121. Richard, G. et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat. Genet. 20, 366–369 (1998).

    Article  CAS  Google Scholar 

  122. Macari, F. et al. Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am. J. Hum. Genet. 67, 1296–1301 (2000).

    Article  CAS  Google Scholar 

  123. Jan, A. Y., Amin, S., Ratajczak, P., Richard, G. & Sybert, V. P. Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J. Invest. Dermatol. 122, 1108–1113 (2004).

    Article  CAS  Google Scholar 

  124. Samuelov, L. et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat. Genet. 45, 1244–1248 (2013).

    Article  CAS  Google Scholar 

  125. McAleer, M. A. et al. Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J. Allergy Clin. Immunol. 136, 1268 (2015).

    Article  CAS  Google Scholar 

  126. Oji, V. et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am. J. Hum. Genet. 87, 274–281 (2010).

    Article  CAS  Google Scholar 

  127. Duchatelet, S. et al. Mutations in PERP cause dominant and recessive keratoderma. J. Invest. Dermatol. 139, 380–390 (2019).

    Article  CAS  Google Scholar 

  128. Basel-Vanagaite, L. et al. Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. Am. J. Hum. Genet. 80, 467 (2007).

    Article  CAS  Google Scholar 

  129. Pigors, M. et al. Loss-of-function mutations in SERPINB8 linked to exfoliative ichthyosis with impaired mechanical stability of intercellular adhesions. Am. J. Hum. Genet. 99, 430–436 (2016).

    Article  CAS  Google Scholar 

  130. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet. 25, 141–142 (2000).

    Article  CAS  Google Scholar 

  131. Deraison, C. et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell 18, 3607 (2007).

    Article  CAS  Google Scholar 

  132. Lin, Z. et al. Loss-of-function mutations in CAST cause peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads. Am. J. Hum. Genet. 96, 440–447 (2015).

    Article  CAS  Google Scholar 

  133. Blaydon, D. C. et al. Mutations in CSTA, encoding cystatin A, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. Am. J. Hum. Genet. 89, 564–571 (2011).

    Article  CAS  Google Scholar 

  134. Alfares, A. et al. Peeling skin syndrome associated with novel variant in FLG2 gene. Am. J. Med. Genet. A 173, 3201–3204 (2017).

    Article  CAS  Google Scholar 

  135. Mohamad, J. et al. Filaggrin 2 deficiency results in abnormal cell-cell adhesion in the cornified cell layers and causes peeling skin syndrome type A. J. Invest. Dermatol. 138, 1736–1743 (2018).

    Article  CAS  Google Scholar 

  136. Takayama, K., Danks, D. M., Salazar, E. P., Cleaver, J. E. & Weber, C. A. DNA repair characteristics and mutations in the ERCC2 DNA repair and transcription gene in a trichothiodystrophy patient. Hum. Mutat. 9, 519–525 (1997).

    Article  CAS  Google Scholar 

  137. Weeda, G. et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet. 60, 320 (1997).

    CAS  Google Scholar 

  138. Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36, 714–719 (2004).

    Article  CAS  Google Scholar 

  139. Kuschal, C. et al. GTF2E2 mutations destabilize the general transcription factor complex TFIIE in individuals with DNA repair-proficient trichothiodystrophy. Am. J. Hum. Genet. 98, 627–642 (2016).

    Article  CAS  Google Scholar 

  140. Corbett, M. A. et al. A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A. J. Med. Genet. 52, 269–274 (2015).

    Article  CAS  Google Scholar 

  141. Haselbach, D. et al. Structure and conformational dynamics of the human spliceosomal bact complex. Cell 172, 454–464.e11 (2018).

    Article  CAS  Google Scholar 

  142. Lear, T. et al. RING finger protein 113A regulates C-X-C chemokine receptor type 4 stability and signaling. Am. J. Physiol. Cell Physiol. 313, C584–C592 (2017).

    Article  Google Scholar 

  143. Botta, E. et al. Protein instability associated with AARS1 and MARS1 mutations causes trichothiodystrophy. Hum. Mol. Genet. 30, 1711–1720 (2021).

    Article  CAS  Google Scholar 

  144. Theil, A. F. et al. Bi-allelic TARS mutations are associated with brittle hair phenotype. Am. J. Hum. Genet. 105, 434–440 (2019).

    Article  CAS  Google Scholar 

  145. Agolini, E. et al. Expansion of the clinical and molecular spectrum of an XPD-related disorder linked to biallelic mutations in ERCC2 gene. Clin. Genet. 99, 842–848 (2021).

    Article  CAS  Google Scholar 

  146. Helman, G. et al. Expanded phenotype of AARS1-related white matter disease. Genet. Med. 23, 2352–2359 (2021).

    Article  CAS  Google Scholar 

  147. La Fay, C. et al. Deep phenotyping of MARS1 (interstitial lung and liver disease) and LARS1 (infantile liver failure syndrome 1) recessive multisystemic disease using human phenotype ontology annotation: overlap and differences. Case report and review of literature. Eur. J. Med. Genet. 64, 104334 (2021).

    Article  Google Scholar 

  148. Montpetit, A. et al. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet. 4, e1000296 (2008).

    Article  Google Scholar 

  149. Alsaif, H. S. et al. Homozygous loss-of-function mutations in AP1B1, encoding beta-1 subunit of adaptor-related protein complex 1, cause MEDNIK-like syndrome. Am. J. Hum. Genet. 105, 1016–1022 (2019).

    Article  CAS  Google Scholar 

  150. Wang, H. et al. Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratodermia. J. Invest. Dermatol. 139, 1089–1097 (2019).

    Article  CAS  Google Scholar 

  151. Nakabayashi, K. et al. Identification of C7orf11 (TTDN1) gene mutations and genetic heterogeneity in nonphotosensitive trichothiodystrophy. Am. J. Hum. Genet. 76, 510 (2005).

    Article  CAS  Google Scholar 

  152. Zhang, Y. et al. TTDN1 is a Plk1-interacting protein involved in maintenance of cell cycle integrity. Cell. Mol. Life Sci. 64, 632–640 (2007).

    Article  CAS  Google Scholar 

  153. Schmuth, M., Gruber, R., Elias, P. M. & Williams, M. L. Ichthyosis update: towards a function-driven model of pathogenesis of the disorders of cornification and the role of corneocyte proteins in these disorders. Adv. Dermatol. 23, 231 (2007).

    Article  Google Scholar 

  154. Albert, A., Alexander, D. & Boesze-Battaglia, K. Cholesterol in the rod outer segment: a complex role in a ‘simple’ system. Chem. Phys. Lipids 199, 94–105 (2016).

    Article  CAS  Google Scholar 

  155. Cortes, V. A. et al. Physiological and pathological implications of cholesterol. Front. Biosci. (Landmark Ed.) 19, 416–428 (2014).

    Article  CAS  Google Scholar 

  156. Gault, C. R., Obeid, L. M. & Hannun, Y. A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23 (2010).

    Article  CAS  Google Scholar 

  157. Delmar, M. & McKenna, W. J. The cardiac desmosome and arrhythmogenic cardiomyopathies. Circ. Res. 107, 700–714 (2010).

    Article  CAS  Google Scholar 

  158. Boyden, L. M. et al. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome. Hum. Mol. Genet. 25, 348 (2016).

    Article  CAS  Google Scholar 

  159. Kurzen, H. et al. Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation 63, 295–304 (1998).

    Article  CAS  Google Scholar 

  160. Martínez, A. D., Acuña, R., Figueroa, V., Maripillan, J. & Nicholson, B. Gap-junction channels dysfunction in deafness and hearing loss. Antioxid. Redox Signal. 11, 309 (2009).

    Article  Google Scholar 

  161. Duncker, S. V. et al. Otoferlin couples to clathrin-mediated endocytosis in mature cochlear inner hair cells. J. Neurosci. 33, 9508–9519 (2013).

    Article  CAS  Google Scholar 

  162. Sidiropoulos, P. N. M. et al. Dynamin 2 mutations in Charcot-Marie-Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination. Brain 135, 1395–1411 (2012).

    Article  Google Scholar 

  163. Malik, K. et al. Ichthyosis molecular fingerprinting shows profound TH17 skewing and a unique barrier genomic signature. J. Allergy Clin. Immunol. 143, 604–618 (2019).

    Article  CAS  Google Scholar 

  164. Paller, A. S. et al. An IL-17–dominant immune profile is shared across the major orphan forms of ichthyosis. J. Allergy Clin. Immunol. 139, 152–165 (2017).

    Article  CAS  Google Scholar 

  165. Tham, K. C. et al. Distinct skin microbiome community structures in congenital ichthyosis. Br. J. Dermatol. 187, 557–570 (2022).

    Article  CAS  Google Scholar 

  166. Traupe, H., Fischer, J. & Oji, V. Nonsyndromic types of ichthyoses-an update. J. Dtsch Dermatol. Ges. 12, 109–121 (2014).

    Google Scholar 

  167. Akiyama, M. ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts. Hum. Mutat. 31, 1090–1096 (2010).

    Article  CAS  Google Scholar 

  168. Rajpopat, S. et al. Harlequin ichthyosis: a review of clinical and molecular findings in 45 cases. Arch. Dermatol. 147, 681–686 (2011).

    Article  Google Scholar 

  169. Shibata, A. & Akiyama, M. Epidemiology, medical genetics, diagnosis and treatment of harlequin ichthyosis in Japan. Pediatr. Int. 57, 516–522 (2015).

    Article  CAS  Google Scholar 

  170. Elias, P. M. et al. Basis for abnormal desquamation and permeability barrier dysfunction in RXLI. J. Invest. Dermatol. 122, 314–319 (2004).

    Article  CAS  Google Scholar 

  171. Simpson, J. K. et al. Genotype–phenotype correlation in a large English cohort of patients with autosomal recessive ichthyosis. Br. J. Dermatol. 182, 729–737 (2020).

    Article  CAS  Google Scholar 

  172. Chiramel, M. J. et al. Genotype of autosomal recessive congenital ichthyosis from a tertiary care center in India. Pediatr. Dermatol. 39, 420–424 (2022).

    Article  Google Scholar 

  173. Sun, Q. et al. The genomic and phenotypic landscape of ichthyosis: an analysis of 1000 kindreds. JAMA Dermatol. 158, 16–25 (2022).

    Article  Google Scholar 

  174. Cuperus, E. et al. Proposal for a 6-step approach for differential diagnosis of neonatal erythroderma. J. Eur. Acad. Dermatol. Venereol. 36, 973–986 (2022). This publication provides a diagnostic approach to ichthyosis in newborns.

    Article  CAS  Google Scholar 

  175. Cakmak, E. & Bagci, G. Chanarin-dorfman syndrome: a comprehensive review. Liver Int. 41, 905–914 (2021).

    Article  CAS  Google Scholar 

  176. Zhou, Y. & Zhang, J. Arthrogryposis–renal dysfunction–cholestasis (ARC) syndrome: from molecular genetics to clinical features. Ital. J. Pediatr. 40, 77 (2014).

    Article  Google Scholar 

  177. Metze, D., Traupe, H. & Süßmuth, K. Ichthyoses—a clinical and pathological spectrum from heterogeneous cornification disorders to inflammation. Dermatopathology 8, 107 (2021).

    Article  Google Scholar 

  178. Ong, C. et al. LEKTI demonstrable by immunohistochemistry of the skin: a potential diagnostic skin test for Netherton syndrome. Br. J. Dermatol. 151, 1253–1257 (2004).

    Article  CAS  Google Scholar 

  179. Smith, V. V., Anderson, G., Malone, M. & Sebire, N. J. Light microscopic examination of scalp hair samples as an aid in the diagnosis of paediatric disorders: retrospective review of more than 300 cases from a single centre. J. Clin. Pathol. 58, 1294–1298 (2005).

    Article  CAS  Google Scholar 

  180. Rodríguez-Pazos, L., Ginarte, M., Vega, A. & Toribio, J. Autosomal recessive congenital ichthyosis. Actas Dermosifiliogr. 104, 270–284 (2017).

    Article  Google Scholar 

  181. Liu, J. et al. Case report: prenatal diagnosis of a fetus with harlequin ichthyosis identifies novel compound heterozygous variants: a case report. Front. Genet. 11, 1756 (2021).

    Article  Google Scholar 

  182. Jian, W. et al. Prenatal diagnose of a fetus with Harlequin ichthyosis in a Chinese family. Taiwan. J. Obstet. Gynecol. 57, 452–455 (2018).

    Article  Google Scholar 

  183. Hongyan, L. et al. Early warning of low maternal unconjugated estriol level by prenatal screening for fetus with X-linked ichthyosis [Chinese]. Zhonghua Fu Chan Ke Za Zhi 57, 407–412 (2022).

    Google Scholar 

  184. Rathore, S., David, L. S., Beck, M. M., Bindra, M. S. & Arunachal, G. Harlequin ichthyosis: prenatal diagnosis of a rare yet severe genetic dermatosis. J. Clin. Diagn. Res. 9, QDO4–QD06 (2015).

    Google Scholar 

  185. Tang, X. et al. Maternal Xp22.31 copy-number variations detected in non-invasive prenatal screening effectively guide the prenatal diagnosis of X-linked ichthyosis. Front. Genet. 13, 934952 (2022).

    Article  CAS  Google Scholar 

  186. Parikh, F. et al. Evolution and utility of preimplantation genetic testing for monogenic disorders in assisted reproduction - a narrative review. J. Hum. Reprod. Sci. 14, 329 (2021).

    Article  CAS  Google Scholar 

  187. Hernández-Martin, A., Aranegui, B., Martin-Santiago, A. & Garcia-Doval, I. A systematic review of clinical trials of treatments for the congenital ichthyoses, excluding ichthyosis vulgaris. J. Am. Acad. Dermatol. 69, 544–549.e8 (2013).

    Article  Google Scholar 

  188. Vahlquist, A., Gånemo, A. & Virtanen, M. Congenital ichthyosis: an overview of current and emerging therapies. Acta Derm. Venereol. 88, 4–14 (2008).

    Article  Google Scholar 

  189. Wohlrab, J. Influence of keratolytics on cutaneous pharmacokinetics of glucocorticoids. J. Dtsch Dermatol. Ges. 19, 554–561 (2021).

    Google Scholar 

  190. Ramírez, M. E. et al. Acute percutaneous lactic acid poisoning in a child. Pediatr. Dermatol. 23, 282–285 (2006).

    Article  Google Scholar 

  191. Madan, R. K. & Levitt, J. A review of toxicity from topical salicylic acid preparations. J. Am. Acad. Dermatol. 70, 788–792 (2014).

    Article  CAS  Google Scholar 

  192. Menter, A. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis. Section 3. Guidelines of care for the management and treatment of psoriasis with topical therapies. J. Am. Acad. Dermatol. 60, 643–659 (2009).

    Article  Google Scholar 

  193. Hanson, B. et al. Ectropion improvement with topical tazarotene in children with lamellar ichthyosis. Pediatr. Dermatol. 34, 584–589 (2017).

    Article  Google Scholar 

  194. Ogawa, M. & Akiyama, M. Successful topical adapalene treatment for the facial lesions of an adolescent case of epidermolytic ichthyosis. J. Am. Acad. Dermatol. 71, e103–e105 (2014).

    Article  Google Scholar 

  195. Hofmann, B., Stege, H., Ruzicka, T. & Lehmann, P. Effect of topical tazarotene in the treatment of congenital ichthyoses. Br. J. Dermatol. 141, 642–646 (1999).

    Article  CAS  Google Scholar 

  196. Nguyen, V., Cunningham, B. B., Eichenfield, L. F., Alió, A. B. & Buka, R. L. Treatment of ichthyosiform diseases with topically applied tazarotene: risk of systemic absorption. J. Am. Acad. Dermatol. 57 (Suppl. 5), S123–S125 (2007).

    Article  Google Scholar 

  197. Teng, J. M. C. et al. The CONTROL study: a randomized, double-blind vehicle-controlled phase 2b study of novel topical isotretinoin formulation demonstrates improvement in recessive X-linked and autosomal recessive lamellar congenital ichthyosis. J. Am. Acad. Dermatol. 87, 1455–1458 (2022).

    Article  CAS  Google Scholar 

  198. Milstone, L. M. Scaly skin and bath pH: rediscovering baking soda. J. Am. Acad. Dermatol. 62, 885–886 (2010).

    Article  Google Scholar 

  199. Traupe, H. & Happle, R. Alopecia ichthyotica. A characteristic feature of congenital ichthyosis. Dermatologica 167, 225–230 (1983).

    Article  CAS  Google Scholar 

  200. Mazereeuw-Hautier, J. et al. Chronic ulceration of the scalp associated with genetically different types of congenital ichthyosis: a series of four cases. Acta Derm. Venereol. 101, 959 (2021).

    Article  Google Scholar 

  201. Ogiso, T. et al. Transfollicular drug delivery: penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J. Drug Target. 10, 369–378 (2002).

    Article  CAS  Google Scholar 

  202. Tada, Y. et al. Treatment patterns, healthcare resource utilization, and costs in patients with moderate-to-severe psoriasis treated with systemic therapy in Japan: a retrospective claims database study. J. Dermatol. 49, 1106–1117 (2022).

    Article  Google Scholar 

  203. Verfaille, C. J., Vanhoutte, F. P., Blanchet-Bardon, C., Van Steensel, M. A. & Steijlen, P. M. Oral liarozole vs. acitretin in the treatment of ichthyosis: a phase II/III multicentre, double-blind, randomized, active-controlled study. Br. J. Dermatol. 156, 965–973 (2007).

    Article  CAS  Google Scholar 

  204. Vahlquist, A. et al. Oral liarozole in the treatment of patients with moderate/severe lamellar ichthyosis: results of a randomized, double-blind, multinational, placebo-controlled phase II/III trial. Br. J. Dermatol. 170, 173–181 (2014).

    Article  CAS  Google Scholar 

  205. Common, J. E. A. et al. Clinical and genetic heterogeneity of erythrokeratoderma variabilis. J. Invest. Dermatol. 125, 920–927 (2005).

    Article  CAS  Google Scholar 

  206. Zaenglein, A. L. et al. Consensus recommendations for the use of retinoids in ichthyosis and other disorders of cornification in children and adolescents. Pediatr. Dermatol. 38, 164 (2021).

    Article  Google Scholar 

  207. Katugampola, R. P. & Finlay, A. Y. Oral retinoid therapy for disorders of keratinization: single-centre retrospective 25 years’ experience on 23 patients. Br. J. Dermatol. 154, 267–276 (2006).

    Article  CAS  Google Scholar 

  208. Stern, R. S. et al. The safety of etretinate as long-term therapy for psoriasis: results of the etretinate follow-up study. J. Am. Acad. Dermatol. 33, 44–52 (1995).

    Article  CAS  Google Scholar 

  209. Digiovanna, J. J., Mauro, T., Milstone, L. M., Schmuth, M. & Toro, J. R. Systemic retinoids in the management of ichthyoses and related skin types. Dermatol. Ther. 26, 26–38 (2013).

    Article  Google Scholar 

  210. Larsen, F. G. et al. Acitretin is converted to etretinate only during concomitant alcohol intake. Br. J. Dermatol. 143, 1164–1169 (2000).

    Article  CAS  Google Scholar 

  211. Baden, H. P., Buxman, M. M., Weinstein, G. D. & Yoder, F. W. Treatment of ichthyosis with isotretinoin. J. Am. Acad. Dermatol. 6, 716–720 (1982).

    Article  CAS  Google Scholar 

  212. Onnis, G. et al. Alitretinoin reduces erythema in inherited ichthyosis. Orphanet J. Rare Dis. 13, 1–6 (2018).

    Article  Google Scholar 

  213. Czarnowicki, T. et al. The major orphan forms of ichthyosis are characterized by systemic T-cell activation and Th-17/Tc-17/Th-22/Tc-22 polarization in blood. J. Invest. Dermatol. 138, 2157–2167 (2018).

    Article  CAS  Google Scholar 

  214. Paller, A. S. Profiling immune expression to consider repurposing therapeutics for the ichthyoses. J. Invest. Dermatol. 139, 535–540 (2019).

    Article  CAS  Google Scholar 

  215. Paller, A. S. et al. The spectrum of manifestations in desmoplakin gene (DSP) spectrin repeat 6 domain mutations: immunophenotyping and response to ustekinumab. J. Am. Acad. Dermatol. 78, 498–505.e2 (2018).

    Article  CAS  Google Scholar 

  216. Sun, Q., Wine Lee, L., Hall, E. K., Choate, K. A. & Elder, R. W. Hair and skin predict cardiomyopathies: carvajal and erythrokeratodermia cardiomyopathy syndromes. Pediatr. Dermatol. 38, 31–38 (2021).

    Article  Google Scholar 

  217. Hernández-Martín, A. et al. Imbalance in T-helper 17 cells and targeted therapy in an infant with SAM-like syndrome. N. Engl. J. Med. 381, 2176–2178 (2019).

    Article  Google Scholar 

  218. Godsel, L. M. et al. Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. J. Clin. Invest. 132, e144363 (2022).

    Article  CAS  Google Scholar 

  219. Yogarajah, J. et al. Efficacy and safety of secukinumab for the treatment of severe ABCA12 deficiency-related ichthyosis in a child. Skin Health Dis. 1, e25 (2021).

    Article  CAS  Google Scholar 

  220. Lefferdink, R. et al. Secukinumab responses vary across the spectrum of congenital ichthyosis in adults. Arch. Dermatol. Res. https://doi.org/10.1007/S00403-022-02325-3 (2022).

    Article  Google Scholar 

  221. Barbieux, C. et al. Netherton syndrome subtypes share IL-17/IL-36 signature with distinct IFN-α and allergic responses. J. Allergy Clin. Immunol. 149, 1358–1372 (2022).

    Article  CAS  Google Scholar 

  222. Wang, J. et al. Successful treatment of Netherton syndrome with dupilumab: a case report and review of the literature. J. Dermatol. 49, 165–167 (2022).

    Article  Google Scholar 

  223. De Palma, A. M. et al. Burden of itch in ichthyosis: a multicentre study in 94 patients. J. Eur. Acad. Dermatol. Venereol. 33, 2095–2100 (2019).

    Article  Google Scholar 

  224. Süßmuth, K. et al. Response to dupilumab in two children with Netherton syndrome: improvement of pruritus and scaling. J. Eur. Acad. Dermatol. Venereol. 35, e152–e155 (2021).

    Article  Google Scholar 

  225. Volc, S., Maier, L., Gritsch, A., Aichelburg, M. C. & Volc-Platzer, B. Successful treatment of Netherton syndrome with ustekinumab in a 15-year-old girl. Br. J. Dermatol. 183, 165–167 (2020).

    Article  CAS  Google Scholar 

  226. Markó, L. et al. Keratinocyte ATP binding cassette transporter expression is regulated by ultraviolet light. J. Photochem. Photobiol. B. 116, 79–88 (2012).

    Article  Google Scholar 

  227. Malhotra, R., Hernández-Martln, A. & Oji, V. Ocular manifestations, complications and management of congenital ichthyoses: a new look. Br. J. Ophthalmol. 102, 586–592 (2018).

    Article  Google Scholar 

  228. Litwin, A. S. et al. Nonsurgical treatment of congenital ichthyosis cicatricial ectropion and eyelid retraction using Restylane hyaluronic acid. Br. J. Dermatol. 173, 601–603 (2015).

    Article  CAS  Google Scholar 

  229. Zachara, M. G., Drozdowski, P. H. & Łatkowski, I. T. Surgical management of ichtyosis-related ectropion. Description of four cases and a Literature review. J. Plast. Surg. Hand Surg. 48, 179–182 (2014).

    Article  Google Scholar 

  230. Martín-Santiago, A., Rodríguez-Pascual, M., Knöpfel, N. & Hernández-Martín, A. Otologic manifestations of autosomal recessive congenital ichthyosis in children. Actas Dermosifiliogr. 106, 733–739 (2015).

    Article  Google Scholar 

  231. Jamal, A., Alsabea, A. & Tarakmeh, M. Effect of ear infections on hearing ability: a narrative review on the complications of otitis media. Cureus 14, e27400 (2022).

    Google Scholar 

  232. Rodríguez-Manchón, S., Pedrón-Giner, C., Cañedo-Villarroya, E., Muñoz-Codoceo, R. A. & Hernández-Martín, Á. Malnutrition in children with ichthyosis: recommendations for monitoring from a multidisciplinary clinic experience. J. Am. Acad. Dermatol. 85, 144–151 (2021).

    Article  Google Scholar 

  233. Sethuraman, G. et al. Vitamin D: a new promising therapy for congenital ichthyosis. Pediatrics 137, e20151313 (2016).

    Article  Google Scholar 

  234. Dreyfus, I. et al. Factors associated with impaired quality of life in adult patients suffering from ichthyosis. Acta Derm. Venereol. 94, 344–346 (2014). This publication reports statistical analysis of the factors affecting QoL in patients with ichthyosis.

    Article  Google Scholar 

  235. Quittkat, H. L., Hartmann, A. S., Düsing, R., Buhlmann, U. & Vocks, S. Body dissatisfaction, importance of appearance, and body appreciation in men and women over the lifespan. Front. Psychiatry 10, 864 (2019).

    Article  Google Scholar 

  236. Dreyfus, I. et al. Burden of inherited ichthyosis: a French national survey. Acta Derm. Venereol. 95, 326–328 (2015).

    Article  Google Scholar 

  237. Mazereeuw-Hautier, J. et al. Factors influencing quality of life in patients with inherited ichthyosis: a qualitative study in adults using focus groups. Br. J. Dermatol. 166, 646–648 (2012).

    Article  CAS  Google Scholar 

  238. Cortés, H. et al. Increased risk of depression and impairment in quality of life in patients with lamellar ichthyosis. Dermatol. Ther. 34, e14628 (2021).

    Article  Google Scholar 

  239. Cannon Homaei, S. et al. ADHD symptoms in neurometabolic diseases: underlying mechanisms and clinical implications. Neurosci. Biobehav. Rev. 132, 838–856 (2022).

    Article  CAS  Google Scholar 

  240. Bodemer, C. et al. Short- and medium-term efficacy of specific hydrotherapy in inherited ichthyosis. Br. J. Dermatol. 165, 1087–1094 (2011).

    Article  CAS  Google Scholar 

  241. Young, I. D. & Hughes, H. E. Sex-linked mental retardation, short stature, obesity and hypogonadism: report of a family. J. Ment. Defic. Res. 26, 153–162 (1982).

    CAS  Google Scholar 

  242. Amano, R., Ohtsuka, Y. & Ohtahara, S. Monozygotic twin patients with congenital ichthyosis, microcephalus, spastic quadriplegia, myoclonus, and EEG abnormalities. Pediatr. Neurol. 12, 255–259 (1995).

    Article  CAS  Google Scholar 

  243. Jagell, S. F., Holmgren, G. & Hofer, P. Congenital ichthyosis with alopecia, eclabion, ectropion and mental retardation–a new genetic syndrome. Clin. Genet. 31, 102–108 (1987).

    Article  CAS  Google Scholar 

  244. Harper, P. S., Marks, R., Dykes, P. J. & Young, I. D. Ichthyosis, hepatosplenomegaly, and cerebellar degeneration in a sibship. J. Med. Genet. 17, 212–215 (1980).

    Article  CAS  Google Scholar 

  245. Passwell, J. H., Goodman, R. M., Ziprkowski, M. & Cohen, B. E. Congenital ichthyosis, mental retardation, dwarfism and renal impairment: a new syndrome. Clin. Genet. 8, 59–65 (1975).

    Article  CAS  Google Scholar 

  246. Clayton-Smith, J. & Donnai, D. A new recessive syndrome of unusual facies, digital abnormalities, and ichthyosis. J. Med. Genet. 26, 339–342 (1989).

    Article  CAS  Google Scholar 

  247. Capra, R. et al. Two sisters with multiple sclerosis, lamellar ichthyosis, beta thalassaemia minor and a deficiency of factor VIII. J. Neurol. 240, 336–338 (1993).

    Article  CAS  Google Scholar 

  248. Gunal, I., Taymaz, A., Karatosun, V., Toylu, A. & Degirmenci, B. Mixed sclerosing dysplasia of the bone associated with ovarian and skin problems. Clin. Orthop. Relat. Res. 436, 270–276 (2005).

    Article  Google Scholar 

  249. Liao, H. et al. Filaggrin mutations are genetic modifying factors exacerbating X-linked ichthyosis. J. Invest. Dermatol. 127, 2795–2798 (2007).

    Article  CAS  Google Scholar 

  250. Mohamad, J. et al. Phenotypic suppression of acral peeling skin syndrome in a patient with autosomal recessive congenital ichthyosis. Exp. Dermatol. 29, 742–748 (2020).

    Article  CAS  Google Scholar 

  251. Ngcungcu, T. et al. Duplicated enhancer region increases expression of CTSB and segregates with keratolytic winter erythema in South African and Norwegian families. Am. J. Hum. Genet. 100, 737–750 (2017).

    Article  CAS  Google Scholar 

  252. Bochner, R. et al. Calpain 12 function revealed through the study of an atypical case of autosomal recessive congenital ichthyosis. J. Invest. Dermatol. 137, 385–393 (2017).

    Article  CAS  Google Scholar 

  253. Joosten, M. D. W., Clabbers, J. M. K., Jonca, N., Mazereeuw-Hautier, J. & Gostyński, A. H. New developments in the molecular treatment of ichthyosis: review of the literature. Orphanet J. Rare Dis. 17, 269 (2022).

    Article  CAS  Google Scholar 

  254. Kallis, P., Bisbee, E., Garganta, C. & Schoch, J. J. Rapid improvement of skin lesions in CHILD syndrome with topical 5% simvastatin ointment. Pediatr. Dermatol. 39, 151–152 (2022).

    Article  Google Scholar 

  255. Paller, A. S. et al. Pathogenesis-based therapy reverses cutaneous abnormalities in an inherited disorder of distal cholesterol metabolism. J. Invest. Dermatol. 131, 2242–2248 (2011).

    Article  CAS  Google Scholar 

  256. Atzmony, L. et al. Topical cholesterol/lovastatin for the treatment of porokeratosis: a pathogenesis-directed therapy. J. Am. Acad. Dermatol. 82, 123–131 (2020).

    Article  CAS  Google Scholar 

  257. Chulpanova, D. S. et al. Current strategies for the gene therapy of autosomal recessive congenital ichthyosis and other types of inherited ichthyosis. Int. J. Mol. Sci. 23, 2506 (2022). This review discusses the treatment of ichthyosis with an emphasis on novel gene therapy studies.

    Article  CAS  Google Scholar 

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04047732 (2022).

  259. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01545323 (2022).

  260. Plank, R. et al. Transglutaminase 1 replacement therapy successfully mitigates the autosomal recessive congenital ichthyosis phenotype in full-thickness skin disease equivalents. J. Invest. Dermatol. 139, 1191–1195 (2019).

    Article  CAS  Google Scholar 

  261. Aufenvenne, K. et al. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts. Am. J. Hum. Genet. 93, 620–630 (2013).

    Article  CAS  Google Scholar 

  262. Valentin, F. et al. Development of a pathogenesis-based therapy for peeling skin syndrome type 1. Br. J. Dermatol. 184, 1123–1131 (2021).

    Article  CAS  Google Scholar 

  263. Zani, M. B., Sant’Ana, A. M., Tognato, R. C., Chagas, J. R. & Puzer, L. Human tissue kallikreins-related peptidases are targets for the treatment of skin desquamation diseases. Front. Med. 8, 777619 (2022).

    Article  Google Scholar 

  264. Liddle, J. et al. A potent and selective kallikrein-5 inhibitor delivers high pharmacological activity in skin from patients with netherton syndrome. J. Invest. Dermatol. 141, 2272–2279 (2021).

    Article  CAS  Google Scholar 

  265. Crumrine, D. et al. Mutations in recessive congenital ichthyoses illuminate the origin and functions of the corneocyte lipid envelope. J. Invest. Dermatol. 139, 760–768 (2019).

    Article  CAS  Google Scholar 

  266. Veit, J. G. S. et al. Characterization of CYP26B1-selective inhibitor, DX314, as a potential therapeutic for keratinization disorders. J. Invest. Dermatol. 141, 72–83.e6 (2021).

    Article  CAS  Google Scholar 

  267. Kurosawa, M. et al. Epidemiology and clinical characteristics of bullous congenital ichthyosiform erythroderma (keratinolytic ichthyosis) in Japan: results from a nationwide survey. J. Am. Acad. Dermatol. 68, 278–283 (2013).

    Article  Google Scholar 

  268. Müller, F. B. et al. A human keratin 10 knockout causes recessive epidermolytic hyperkeratosis. Hum. Mol. Genet. 15, 1133–1141 (2006).

    Article  Google Scholar 

  269. Sybert, V. P. et al. Cyclic ichthyosis with epidermolytic hyperkeratosis: a phenotype conferred by mutations in the 2B domain of keratin K1. Am. J. Hum. Genet. 64, 732 (1999).

    Article  CAS  Google Scholar 

  270. Joh, G. Y. et al. A novel dinucleotide mutation in keratin 10 in the annular epidermolytic ichthyosis variant of bullous congenital ichthyosiform erythroderma. J. Invest. Dermatol. 108, 357–361 (1997).

    Article  CAS  Google Scholar 

  271. Tsubota, A. et al. Keratin 1 gene mutation detected in epidermal nevus with epidermolytic hyperkeratosis. J. Invest. Dermatol. 127, 1371–1374 (2007).

    Article  CAS  Google Scholar 

  272. Paller, S. et al. Genetic and clinical mosaicism in a type of epidermal nevus. N. Engl. J. Med. 331, 1408–1415 (1994).

    Article  CAS  Google Scholar 

  273. Diociaiuti, A. et al. First case of KRT2 epidermolytic nevus and novel clinical and genetic findings in 26 Italian patients with keratinopathic ichthyoses. Int. J. Mol. Sci. 21, 7707 (2020).

    Article  CAS  Google Scholar 

  274. Sprecher, E. et al. Evidence for novel functions of the keratin tail emerging from a mutation causing ichthyosis hystrix. J. Invest. Dermatol. 116, 511–519 (2001).

    Article  CAS  Google Scholar 

  275. Choate, K. A. et al. Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti. J. Clin. Invest. 125, 1703–1707 (2015).

    Article  Google Scholar 

  276. Choate, K. A. et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 330, 94 (2010).

    Article  CAS  Google Scholar 

  277. Lesueur, F. et al. Novel mutations in ALOX12B in patients with autosomal recessive congenital ichthyosis and evidence for genetic heterogeneity on chromosome 17p13. J. Invest. Dermatol. 127, 829–834 (2007).

    Article  CAS  Google Scholar 

  278. Sugiura, K. & Akiyama, M. Lamellar ichthyosis caused by a previously unreported homozygous ALOXE3 mutation in East Asia. Acta Derm. Venereol. 95, 858–859 (2015).

    CAS  Google Scholar 

  279. Laiho, E. et al. Transglutaminase 1 mutations in autosomal recessive congenital ichthyosis: private and recurrent mutations in an isolated population. Am. J. Hum. Genet. 61, 529–538 (1997).

    Article  CAS  Google Scholar 

  280. Kelsell, D. P. et al. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am. J. Hum. Genet. 76, 794–803 (2005).

    Article  CAS  Google Scholar 

  281. Harting, M. et al. Self-healing collodion membrane and mild nonbullous congenital ichthyosiform erythroderma due to 2 novel mutations in the ALOX12B gene. Arch. Dermatol. 144, 351–356 (2008).

    Article  CAS  Google Scholar 

  282. Vahlquist, A. et al. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients. J. Invest. Dermatol. 130, 438–443 (2010).

    Article  CAS  Google Scholar 

  283. Noguera-Morel, L. et al. Two cases of autosomal recessive congenital ichthyosis due to CYP4F22 mutations: expanding the genotype of self-healing collodion baby. Pediatr. Dermatol. 33, e48–e51 (2016).

    Article  Google Scholar 

  284. Raghunath, M. et al. Self-healing collodion baby: a dynamic phenotype explained by a particular transglutaminase-1 mutation. J. Invest. Dermatol. 120, 224–228 (2003).

    Article  CAS  Google Scholar 

  285. Mazereeuw-Hautier, J. et al. Acral self-healing collodion baby: report of a new clinical phenotype caused by a novel TGM1 mutation. Br. J. Dermatol. 161, 456–463 (2009).

    Article  CAS  Google Scholar 

  286. Oji, V. et al. Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: evidence for a temperature-sensitive phenotype. Hum. Mol. Genet. 15, 3083–3097 (2006).

    Article  CAS  Google Scholar 

  287. Takeichi, T. et al. Biallelic mutations in KDSR disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia. J. Invest. Dermatol. 137, 2344 (2017).

    Article  CAS  Google Scholar 

  288. Ma, W. et al. Novel microdeletion in the X chromosome leads to kallmann syndrome, ichthyosis, obesity, and strabismus. Front. Genet. 11, 596 (2020).

    Article  Google Scholar 

  289. Milunsky, J. M., Maher, T. A. & Metzenberg, A. B. Molecular, biochemical, and phenotypic analysis of a hemizygous male with a severe atypical phenotype for X-linked dominant Conradi-Hunermann-Happle syndrome and a mutation in EBP. Am. J. Med. Genet. A 116A, 249–254 (2003).

    Article  Google Scholar 

  290. Gruber, R. et al. Autosomal recessive keratoderma-ichthyosis-deafness (ARKID) syndrome is caused by VPS33B mutations affecting rab protein interaction and collagen modification. J. Invest. Dermatol. 137, 845–854 (2017).

    Article  CAS  Google Scholar 

  291. Norgett, E. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin–intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

    Article  CAS  Google Scholar 

  292. Muttardi, K., Nitoiu, D., Kelsell, D. P., O’Toole, E. A. & Batta, K. Acral peeling skin syndrome associated with a novel CSTA gene mutation. Clin. Exp. Dermatol. 41, 394–398 (2016).

    Article  CAS  Google Scholar 

  293. Titeux, M. et al. Keratitis-ichthyosis-deafness syndrome caused by GJB2 maternal mosaicism. J. Invest. Dermatol. 129, 776–779 (2009).

    Article  CAS  Google Scholar 

  294. Boyden, L. M. et al. Recessive mutations in AP1B1 cause ichthyosis, deafness, and photophobia. Am. J. Hum. Genet. 105, 1023 (2019).

    Article  CAS  Google Scholar 

  295. Wick, M. R. & Patterson, J. W. Cutaneous paraneoplastic syndromes. Semin. Diagn. Pathol. 36, 211–228 (2019).

    Article  Google Scholar 

  296. López Aventín, D., Gallardo, F., Yébenes, M., Lloreta, J. & Pujol, R. M. Acquired ichthyosis associated with primary cutaneous CD30+lymphoproliferative disorders. Eur. J. Dermatol. 24, 105–106 (2014).

    Article  Google Scholar 

  297. Badawy, E. et al. Ichthyosiform mycosis fungoides. Eur. J. Dermatol. 12, 594–596 (2002).

    Google Scholar 

  298. Ramos-e-Silva, M., Carvalho, J. C. & Carneiro, S. C. Cutaneous paraneoplasia. Clin. Dermatol. 29, 541–547 (2011).

    Article  Google Scholar 

  299. Lee, H. W. et al. Acquired ichthyosis associated with an overlap syndrome of systemic sclerosis and systemic lupus erythematosus. J. Dermatol. 33, 52–54 (2006).

    Article  Google Scholar 

  300. Valle, S. L. Dermatologic findings related to human immunodeficiency virus infection in high-risk individuals. J. Am. Acad. Dermatol. 17, 951–961 (1987).

    Article  CAS  Google Scholar 

  301. Holzman, S. B. & Durso, S. C. Nutritional deficiency and acquired ichthyosis. J. Gen. Intern. Med. 32, 1161 (2017).

    Article  Google Scholar 

  302. Menni, S., Boccardi, D. & Brusasco, A. Ichthyosis revealing coeliac disease. Eur. J. Dermatol. 10, 398–399 (2000).

    CAS  Google Scholar 

  303. Sparsa, A. et al. Acquired ichthyosis with pravastatin. J. Eur. Acad. Dermatol. Venereol. 21, 549–550 (2007).

    CAS  Google Scholar 

  304. Errichetti, E., Stinco, G., Pegolo, E. & Patrone, P. Acquired ichthyosis during acitretin therapy for psoriasis vulgaris. J. Eur. Acad. Dermatol. Venereol. 30, 181–182 (2016).

    Article  CAS  Google Scholar 

  305. Riley, C. A., Badri, T. & Hafsi, W. Pityriasis Rotunda. StatPearls [online] https://www.ncbi.nlm.nih.gov/books/NBK459240/ (updated 12 Sep 2022).

  306. Berkowitz, I., Hodkinson, H. J., Kew, M. C. & DiBisceglie, A. M. Pityriasis rotunda as a cutaneous marker of hepatocellular carcinoma: a comparison with its prevalence in other diseases. Br. J. Dermatol. 120, 545–549 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous patient and caregiver for their contribution in Boxes 2 and 3, and the Spanish Association of Ichthyosis Patients (ASIC) for their support.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.H.-M., C.G.-C. and R.G.-S.); Epidemiology (A.H.-M., C.G.-C., E.S. and R.G.-S.); Mechanisms/pathophysiology (C.G.-C., E.S., M.A. and R.G.-S.); Diagnosis/screening/prevention (A.H.-M., C.G.-C., E.S., A.S.P. and R.G.-S.); Management (A.H.-M., E.S., A.S.P., M.A. and J.M.-H.); Quality of life (A.H.-M., C.G.-C., E.S. and A.S.P.); Outlook (A.H.-M., C.G.-C. and R.G.-S.); Overview of the Primer (A.H.-M.).

Corresponding author

Correspondence to Angela Hernández-Martín.

Ethics declarations

Competing interests

The authors declare the following competing interests: A.S.P.: investigator for AbbVie, AnaptysBio, Eli Lilly, Incyte, Janssen, Krystal Biotech, Regeneron Pharmaceuticals Inc. and UCB; consultant with honorarium for AbbVie, Acrotech, Almirall, Amgen, Amryt Pharma, Arcutis Biotherapeutics, Arena Pharmaceuticals, Azitra, BioCryst, BiomX, BMS, BridgeBio, Castle Creek Biosciences, Catawba Research, Eli Lilly, Exicure, Gilead, Incyte, Janssen, Johnson & Johnson, Kamari Pharma, LEO Pharma, Novartis, OM Pharma, Pfizer, Pierre Fabre, RAPT Therapeutics, Regeneron Pharmaceuticals, Inc., Sanofi, Seanergy and UCB; data and safety monitoring board for AbbVie, Abeona Therapeutics, Bausch Health, Galderma and Novan. J.M.-H.: investigator for Sanofi, Mayne Pharma and Timber Pharmaceuticals. A.H.-M.: investigator for Mayne Pharma and Celgene. C.G.-C., E.S., M.A. and R.G.-S. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks I. Hausser, W. Rizzo and M. Schmuth for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Informed consent The authors affirm that human research participants provided informed consent for publication of the images in Fig. 4.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Cerrajero, C., Sprecher, E., Paller, A.S. et al. Ichthyosis. Nat Rev Dis Primers 9, 2 (2023). https://doi.org/10.1038/s41572-022-00412-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00412-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing