Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Osteosarcoma

An Author Correction to this article was published on 30 December 2022

This article has been updated

Abstract

Osteosarcoma is the most common primary malignant tumour of the bone. Osteosarcoma incidence is bimodal, peaking at 18 and 60 years of age, and is slightly more common in males. The key pathophysiological mechanism involves several possible genetic drivers of disease linked to bone formation, causing malignant progression and metastasis. While there have been significant improvements in the outcome of patients with localized disease, with event-free survival outcomes exceeding 60%, in patients with metastatic disease, event-free survival outcomes remain poor at less than 30%. The suspicion of osteosarcoma based on radiographs still requires pathological evaluation of a bone biopsy specimen for definitive diagnosis and CT imaging of the chest should be performed to identify lung nodules. So far, population-based screening and surveillance strategies have not been implemented due to the rarity of osteosarcoma and the lack of reliable markers. Current screening focuses only on groups at high risk such as patients with genetic cancer predisposition syndromes. Management of osteosarcoma requires a multidisciplinary team of paediatric and medical oncologists, orthopaedic and general surgeons, pathologists, radiologists and specialist nurses. Survivors of osteosarcoma require specialized medical follow-up, as curative treatment consisting of chemotherapy and surgery has long-term adverse effects, which also affect the quality of life of patients. The development of osteosarcoma model systems and related research as well as the evaluation of new treatment approaches are ongoing to improve disease outcomes, especially for patients with metastases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical distribution of a primary osteosarcoma tumour.
Fig. 2: Osteosarcoma incidence by age and sex.
Fig. 3: Model of osteosarcomagenesis: key role of oncogenetic drivers.
Fig. 4: Model of osteosarcomagenesis: local tumour microenvironment.
Fig. 5: Potential targets for osteosarcoma treatment.
Fig. 6: Osteoblastic osteosarcoma imaging.
Fig. 7: Osteosarcoma histology.
Fig. 8: Osteosarcoma treatment algorithm.
Fig. 9: Osteosarcoma MAP chemotherapy example.

Similar content being viewed by others

Change history

References

  1. Mirabello, L., Troisi, R. J. & Savage, S. A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer 115, 1531–1543 (2009).

    Article  Google Scholar 

  2. Bielack, S. S. et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776–790 (2002). A study that affirms tumour site and size, primary metastases, response to chemotherapy, and surgical remission as independent prognostic factors in patients with osteosarcoma.

    Article  Google Scholar 

  3. Klein, M. J. & Siegal, G. P. Osteosarcoma: anatomic and histologic variants. Am. J. Clin. Pathol. 125, 555–581 (2006).

    Article  Google Scholar 

  4. Piperdi, S. et al. β-Catenin does not confer tumorigenicity when introduced into partially transformed human mesenchymal stem cells. Sarcoma 2012, 164803 (2012).

    Article  Google Scholar 

  5. Bertoni, F. & Bacchini, P. Classification of bone tumors. Eur. J. Radiol. 27 (Suppl. 1), S74–S76 (1998).

    Article  Google Scholar 

  6. Kager, L. et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 21, 2011–2018 (2003).

    Article  Google Scholar 

  7. Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: current treatment and a collaborative pathway to success. J. Clin. Oncol. 33, 3029–3035 (2015).

    Article  CAS  Google Scholar 

  8. Smith, M. A. et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).

    Article  Google Scholar 

  9. Gill, J. & Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 18, 609–624 (2021).

    Article  Google Scholar 

  10. Mirabello, L., Troisi, R. J. & Savage, S. A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer 125, 229–234 (2009).

    Article  CAS  Google Scholar 

  11. Parkin, D. M., Stiller, C. A., Draper, G. J. & Bieber, C. The international incidence of childhood cancer. Int. J. Cancer 42, 511–520 (1988).

    Article  CAS  Google Scholar 

  12. Mirabello, L. et al. Frequency of pathogenic germline variants in cancer-susceptibility genes in patients with osteosarcoma. JAMA Oncol. 6, 724–734 (2020). This study demonstrates a high frequency of potentially pathogenic germline mutations in patients with osteosarcoma, supporting the role of germline genetic testing.

    Article  Google Scholar 

  13. Glass, A. G. & Fraumeni, J. F. Jr. Epidemiology of bone cancer in children. J. Natl Cancer Inst. 44, 187–199 (1970).

    CAS  Google Scholar 

  14. Czerniak, B. Dorfman and Czerniak’s Bone Tumors E-Book (Elsevier Health Sciences, 2015).

  15. Brown, H. K., Schiavone, K., Gouin, F., Heymann, M.-F. & Heymann, D. Biology of bone sarcomas and new therapeutic developments. Calcif. Tissue Int. 102, 174–195 (2018).

    Article  CAS  Google Scholar 

  16. Cole, S., Gianferante, D. M., Zhu, B. & Mirabello, L. Osteosarcoma: a surveillance, epidemiology, and end results program‐based analysis from 1975 to 2017. Cancer 128, 2107–2118 (2022).

    Article  Google Scholar 

  17. Ilcisin, L. A. S. et al. Poverty, race, ethnicity, and survival among U.S. children with non-metastatic osteosarcoma treated on EURAMOS-1: a report from the Children’s Oncology Group. J. Clin. Oncol. 40, 10004 (2022).

    Article  Google Scholar 

  18. Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015).

    Article  CAS  Google Scholar 

  19. Vlachos, A., Rosenberg, P. S., Atsidaftos, E., Alter, B. P. & Lipton, J. M. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood 119, 3815–3819 (2012).

    Article  CAS  Google Scholar 

  20. Wang, L. L. et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J. Natl Cancer Inst. 95, 669–674 (2003).

    Article  CAS  Google Scholar 

  21. Lu, L., Jin, W. & Wang, L. L. RECQ DNA helicases and osteosarcoma. Adv. Exp. Med. Biol. 1258, 37–54 (2020).

    Article  CAS  Google Scholar 

  22. Hameed, M. & Mandelker, D. Tumor syndromes predisposing to osteosarcoma. Adv. Anat. Pathol. 25, 217–222 (2018).

    Article  Google Scholar 

  23. Calvert, G. T. et al. At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma 2012, 152382 (2012).

    Article  Google Scholar 

  24. Mirabello, L. et al. Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes Control 22, 899–908 (2011).

    Article  Google Scholar 

  25. Tucker, M. A. et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N. Engl. J. Med. 317, 588–593 (1987).

    Article  CAS  Google Scholar 

  26. Cundy, T. Paget’s disease of bone. Metabolism 80, 5–14 (2018).

    Article  CAS  Google Scholar 

  27. Ruggieri, P., Sim, F. H., Bond, J. R. & Krishnan Unni, K. Malignancies in fibrous dysplasia. Cancer 73, 1411–1424 (1994).

    Article  CAS  Google Scholar 

  28. Picci, P. et al. Late sarcoma development after curettage and bone grafting of benign bone tumors. Eur. J. Radiol. 77, 19–25 (2011).

    Article  Google Scholar 

  29. Jones, K. B. Osteosarcomagenesis: modeling cancer initiation in the mouse. Sarcoma 2011, 694136 (2011).

    Article  Google Scholar 

  30. Mutsaers, A. J. & Walkley, C. R. Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone 62, 56–63 (2014).

    Article  Google Scholar 

  31. Lin, Y. H. et al. Osteosarcoma: molecular pathogenesis and iPSC modeling. Trends Mol. Med. 23, 737–755 (2017).

    Article  CAS  Google Scholar 

  32. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    Article  Google Scholar 

  33. Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014). The majority of TP53 loss in osteosarcoma occurs through intron 1 rearrangements or deletions rather than through point mutations.

    Article  CAS  Google Scholar 

  34. Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl Acad. Sci. USA 111, E5564–E5573 (2014).

    Article  CAS  Google Scholar 

  35. Sayles, L. C. et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 9, 46–63 (2019). A study that defines potentially actionable molecular subtypes of osteosarcoma.

    Article  CAS  Google Scholar 

  36. Wu, C. C. et al. Immuno-genomic landscape of osteosarcoma. Nat. Commun. 11, 1008 (2020). Molecular profiling of samples from patients with osteosarcoma characterizes immune subsets, including immune enrichment among older patients.

    Article  CAS  Google Scholar 

  37. Rajan, S. et al. Remarkably stable copy-number profiles in osteosarcoma revealed using single-cell DNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.08.30.458268 (2021).

    Article  Google Scholar 

  38. Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat. Commun. 8, 15936 (2017).

    Article  CAS  Google Scholar 

  39. Overholtzer, M. et al. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc. Natl Acad. Sci. USA 100, 11547–11552 (2003). One of the first studies to show that p53 mutations correlate with high levels of genomic instability in osteosarcomas.

    Article  CAS  Google Scholar 

  40. Eischen, C. M. Genome stability requires p53. Cold Spring Harb. Perspect. Med. 6, a026096 (2016).

    Article  Google Scholar 

  41. Hanel, W. & Moll, U. M. Links between mutant p53 and genomic instability. J. Cell. Biochem. 113, 433–439 (2012).

    Article  CAS  Google Scholar 

  42. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    Article  CAS  Google Scholar 

  43. Lawlor, R. T. et al. Alternative lengthening of telomeres (ALT) influences survival in soft tissue sarcomas: a systematic review with meta-analysis. BMC Cancer 19, 232 (2019).

    Article  Google Scholar 

  44. Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).

    Article  CAS  Google Scholar 

  45. Tellez-Gabriel, M. et al. Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip. Eur. J. Cell Biol. 96, 110–118 (2017).

    Article  CAS  Google Scholar 

  46. Bénédicte Brounais, L.-R. & Frédéric, L. In Bone Cancer 221–239, Ch. 18 (Academic Press, 2022).

  47. Lan, M. et al. Extracellular vesicles-mediated signaling in the osteosarcoma microenvironment: roles and potential therapeutic targets. J. Bone Oncol. 12, 101–104 (2018).

    Article  Google Scholar 

  48. Cackowski, F. C. et al. Osteoclasts are important for bone angiogenesis. Blood 115, 140–149 (2010).

    Article  CAS  Google Scholar 

  49. Endo-Munoz, L., Evdokiou, A. & Saunders, N. A. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim. Biophys. Acta 1826, 434–442 (2012).

    CAS  Google Scholar 

  50. Khanna, C. et al. Toward a drug development path that targets metastatic progression in osteosarcoma. Clin. Cancer Res. 20, 4200–4209 (2014).

    Article  Google Scholar 

  51. Heymann, M.-F., Lézot, F. & Heymann, D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell. Immunol. https://doi.org/10.1016/j.cellimm.2017.10.011 (2017).

    Article  Google Scholar 

  52. Brown, H. K., Tellez-Gabriel, M. & Heymann, D. Cancer stem cells in osteosarcoma. Cancer Lett. 386, 189–195 (2017).

    Article  CAS  Google Scholar 

  53. Grunewald, T. G. et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol. Med. 12, e11131 (2020).

    Article  Google Scholar 

  54. Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).

    Article  CAS  Google Scholar 

  55. Guo, J. et al. Single-cell profiling of tumor microenvironment heterogeneity in osteosarcoma identifies a highly invasive subcluster for predicting prognosis. Front. Oncol. 12, 732862 (2022).

    Article  Google Scholar 

  56. Mazumdar, A. et al. Exploring the role of osteosarcoma-derived extracellular vesicles in pre-metastatic niche formation and metastasis in the 143-B xenograft mouse osteosarcoma model. Cancers https://doi.org/10.3390/cancers12113457 (2020).

    Article  Google Scholar 

  57. Stamatopoulos, A. et al. Mesenchymal stromal cells for bone sarcoma treatment: roadmap to clinical practice. J. Bone Oncol. 16, 100231 (2019).

    Article  Google Scholar 

  58. Perrot, P. et al. Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS ONE 5, e10999 (2010).

    Article  Google Scholar 

  59. Cortini, M., Avnet, S. & Baldini, N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 405, 90–99 (2017).

    Article  CAS  Google Scholar 

  60. Baglio, S. R. et al. Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin. Cancer Res. 23, 3721–3733 (2017).

    Article  CAS  Google Scholar 

  61. Tu, B., Du, L., Fan, Q. M., Tang, Z. & Tang, T. T. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett. 325, 80–88 (2012).

    Article  CAS  Google Scholar 

  62. Gross, A. C. et al. IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight https://doi.org/10.1172/jci.insight.99791 (2018).

    Article  Google Scholar 

  63. Mazumdar, A. et al. Osteosarcoma-derived extracellular vesicles induce lung fibroblast reprogramming. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21155451 (2020).

    Article  Google Scholar 

  64. Zhang, W. et al. Adaptive fibrogenic reprogramming of osteosarcoma stem cells promotes metastatic growth. Cell Rep. 24, 1266–1277.e5 (2018).

    Article  Google Scholar 

  65. Yui, Y., Kumai, J., Watanabe, K., Wakamatsu, T. & Sasagawa, S. Lung fibrosis is a novel therapeutic target to suppress lung metastasis of osteosarcoma. Int. J. Cancer https://doi.org/10.1002/ijc.34008 (2022).

    Article  Google Scholar 

  66. Kurzman, I. D. et al. Adjuvant therapy for osteosarcoma in dogs: results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin. Cancer Res. 1, 1595–1601 (1995).

    CAS  Google Scholar 

  67. Meyers, P. A. et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children’s Oncology Group. J. Clin. Oncol. 26, 633–638 (2008).

    Article  CAS  Google Scholar 

  68. Kleinerman, E. S. et al. Phase II study of liposomal muramyl tripeptide in osteosarcoma: the cytokine cascade and monocyte activation following administration. J. Clin. Oncol. 10, 1310–1316 (1992).

    Article  CAS  Google Scholar 

  69. Mason, N. J. et al. Immunotherapy with a HER2-targeting listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. Clin. Cancer Res. 22, 4380–4390 (2016).

    Article  CAS  Google Scholar 

  70. Chen, K. et al. Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr. Blood Cancer 51, 349–355 (2008).

    Article  CAS  Google Scholar 

  71. Goldstein, S. D., Trucco, M., Bautista Guzman, W., Hayashi, M. & Loeb, D. M. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget 7, 21114–21123 (2016).

    Article  Google Scholar 

  72. Khanna, C. et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 10, 182–186 (2004).

    Article  CAS  Google Scholar 

  73. Bulut, G. et al. Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 31, 269–281 (2012).

    Article  CAS  Google Scholar 

  74. Ren, L. et al. Dysregulation of Ezrin phosphorylation prevents metastasis and alters cellular metabolism in osteosarcoma. Cancer Res. 72, 1001–1012 (2012).

    Article  CAS  Google Scholar 

  75. Morrow, J. J. et al. Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat. Med. 24, 176–185 (2018).

    Article  CAS  Google Scholar 

  76. Ichikawa, J. et al. Thrombin induces osteosarcoma growth, a function inhibited by low molecular weight heparin in vitro and in vivo. Cancer 118, 2494–2506 (2012).

    Article  CAS  Google Scholar 

  77. Charan, M. et al. Tumor secreted ANGPTL2 facilitates recruitment of neutrophils to the lung to promote lung pre-metastatic niche formation and targeting ANGPTL2 signaling affects metastatic disease. Oncotarget 11, 510–522 (2020).

    Article  Google Scholar 

  78. Navet, B. et al. The intrinsic and extrinsic implications of RANKL/RANK signaling in osteosarcoma: from tumor initiation to lung metastases. Cancers https://doi.org/10.3390/cancers10110398 (2018).

    Article  Google Scholar 

  79. Church, A. J. et al. Clinical impact of molecular tumor profiling in pediatric, adolescent, and young adult patients with extra-cranial solid malignancies: an interim report from the GAIN/iCat2 study. J. Clin. Oncol. 39, 10005 (2021).

    Article  Google Scholar 

  80. Suehara, Y. et al. Clinical genomic sequencing of pediatric and adult osteosarcoma reveals distinct molecular subsets with potentially targetable alterations. Clin. Cancer Res. 25, 6346–6356 (2019).

    Article  CAS  Google Scholar 

  81. Meyers, P. A. et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival — a report from the Children’s Oncology Group. J. Clin. Oncol. 26, 633–638 (2008).

    Article  CAS  Google Scholar 

  82. Bielack, S. S. et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 Good Response Randomized Controlled Trial. J. Clin. Oncol. 33, 2279–2287 (2015).

    Article  CAS  Google Scholar 

  83. Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  Google Scholar 

  84. Tawbi, H. A. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18, 1493–1501 (2017).

    Article  CAS  Google Scholar 

  85. Le Cesne, A. et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study. Eur. J. Cancer 119, 151–157 (2019).

    Article  Google Scholar 

  86. Hingorani, P. et al. ABBV-085, antibody–drug conjugate targeting LRRC15, is effective in osteosarcoma: a report by the pediatric preclinical testing consortium. Mol. Cancer Ther. 20, 535–540 (2021).

    Article  CAS  Google Scholar 

  87. Hingorani, P. et al. Trastuzumab deruxtecan, antibody-drug conjugate targeting HER2, is effective in pediatric malignancies: a report by the pediatric preclinical testing consortium. Mol. Cancer Ther. 21, 1318–1325 (2022).

    Article  CAS  Google Scholar 

  88. Lange, S. et al. A chimeric GM-CSF/IL18 receptor to sustain CAR T-cell function. Cancer Discov. 11, 1661–1671 (2021).

    Article  CAS  Google Scholar 

  89. Tullius, B. P., Setty, B. A. & Lee, D. A. In Current Advances in Osteosarcoma: Clinical Perspectives: Past, Present and Future (eds Kleinerman, E. S. & Gorlick, R.) 141–154 (Springer International Publishing, 2020).

  90. Kendsersky, N. M. et al. The B7-H3–targeting antibody–drug conjugate m276-SL-PBD is potently effective against pediatric cancer preclinical solid tumor models. Clin. Cancer Res. 27, 2938–2946 (2021).

    Article  CAS  Google Scholar 

  91. Hingorani, P. et al. Abstract LB-217: Preclinical evaluation of trastuzumab deruxtecan (T-DXd; DS-8201a), a HER2 antibody-drug conjugate, in pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC).Cancer Res. 80 (Suppl. 16), LB-217 (2020).

    Article  Google Scholar 

  92. Bayles, I. et al. Ex vivo screen identifies CDK12 as a metastatic vulnerability in osteosarcoma. J. Clin. Invest. 129, 4377–4392 (2019).

    Article  Google Scholar 

  93. Chang, L.-S. et al. Targeting protein translation by rocaglamide and didesmethylrocaglamide to treat MPNST and other sarcomas. Mol. Cancer Ther. 19, 731–741 (2020).

    Article  CAS  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04040205 (2022).

  95. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03242382 (2022).

  96. Teven, C. M., Farina, E. M., Rivas, J. & Reid, R. R. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis. 1, 199–213 (2014).

    Article  Google Scholar 

  97. Ikebuchi, Y. Coupling of bone resorption and formation by RANKL reverse signalling. Nature https://doi.org/10.1038/s41586-018-0482-7 (2018).

    Article  Google Scholar 

  98. Li, Y. S., Liu, Q., He, H. B. & Luo, W. The possible role of insulin-like growth factor-1 in osteosarcoma. Curr. Probl. Cancer 43, 228–235 (2019).

    Article  Google Scholar 

  99. Regan, D. P. et al. Losartan blocks osteosarcoma-elicited monocyte recruitment, and combined with the kinase inhibitor toceranib, exerts significant clinical benefit in canine metastatic osteosarcoma. Clin. Cancer Res. 28, 662–676 (2022).

    Article  CAS  Google Scholar 

  100. Nomura, M. et al. Tegavivint and the β-catenin/ALDH axis in chemotherapy-resistant and metastatic osteosarcoma. J. Natl Cancer Inst. 111, 1216–1227 (2019).

    Article  CAS  Google Scholar 

  101. Meltzer, P. S. & Helman, L. J. New horizons in the treatment of osteosarcoma. N. Engl. J. Med. 385, 2066–2076 (2021).

    Article  CAS  Google Scholar 

  102. Zhou, Y. et al. The effect of pathological fractures on the prognosis of patients with osteosarcoma: a meta-analysis of 14 studies. Oncotarget 8, 73037–73049 (2017).

    Article  Google Scholar 

  103. Papagelopoulos, P. J. et al. Current concepts in the evaluation and treatment of osteosarcoma. Orthopedics 23, 858–867 (2000).

    Article  CAS  Google Scholar 

  104. Strauss, S. J. et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 32, 1520–1536 (2021).

    Article  CAS  Google Scholar 

  105. Casali, P. G. et al. Bone sarcomas: ESMO–PaedCan–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv79–iv95 (2018).

    Article  CAS  Google Scholar 

  106. WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Soft Tissue and Bone Tumours (International Agency for Research on Cancer, 2020).

  107. Meyer, J. S. et al. Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group Bone Tumor Committee. Pediatr. Blood Cancer 51, 163–170 (2008).

    Article  Google Scholar 

  108. Wolf, R. E. & Enneking, W. F. The staging and surgery of musculoskeletal neoplasms. Orthop. Clin. North. Am. 27, 473–481 (1996).

    Article  CAS  Google Scholar 

  109. Sheth, D. S. et al. Conventional and dedifferentiated parosteal osteosarcoma. Diagnosis, treatment, and outcome. Cancer 78, 2136–2145 (1996).

    Article  CAS  Google Scholar 

  110. Grimer, R. J. et al. Periosteal osteosarcoma — a European review of outcome. Eur. J. Cancer 41, 2806–2811 (2005).

    Article  Google Scholar 

  111. Roberts, R. D. et al. Provocative questions in osteosarcoma basic and translational biology: a report from the Children’s Oncology Group. Cancer 125, 3514–3525 (2019).

    Article  Google Scholar 

  112. Gorlick, R., Janeway, K., Lessnick, S., Randall, R. L. & Marina, N. Children’s Oncology Group’s 2013 blueprint for research: bone tumors. Pediatr. Blood Cancer 60, 1009–1015 (2013).

    Article  Google Scholar 

  113. Aljubran, A. H., Griffin, A., Pintilie, M. & Blackstein, M. Osteosarcoma in adolescents and adults: survival analysis with and without lung metastases. Ann. Oncol. 20, 1136–1141 (2009).

    Article  CAS  Google Scholar 

  114. Marina, N. M. et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 17, 1396–1408 (2016). An international randomized clinical trial fails to show benefit of addition of I/E to MAP chemotherapy in the primary treatment of osteosarcoma.

    Article  Google Scholar 

  115. Rosen, G., Murphy, M. L., Huvos, A. G., Gutierrez, M. & Marcove, R. C. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer 37, 1–11 (1976).

    Article  CAS  Google Scholar 

  116. Rosen, G. et al. Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 49, 1221–1230 (1982).

    Article  CAS  Google Scholar 

  117. Bishop, M. W. et al. Assessing the prognostic significance of histologic response in osteosarcoma: a comparison of outcomes on CCG-782 and INT0133 — a report from the Children’s Oncology Group Bone Tumor Committee. Pediatr. Blood Cancer 63, 1737–1743 (2016). This study validates the prognostic significance of pathological treatment response in osteosarcoma following neoadjuvant chemotherapy.

    Article  Google Scholar 

  118. Bacci, G. et al. Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity. Cancer 97, 3068–3075 (2003).

    Article  CAS  Google Scholar 

  119. Meyers, P. A. et al. Intensification of preoperative chemotherapy for osteogenic sarcoma: results of the Memorial Sloan-Kettering (T12) protocol. J. Clin. Oncol. 16, 2452–2458 (1998).

    Article  CAS  Google Scholar 

  120. Villani, A. et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 17, 1295–1305 (2016).

    Article  CAS  Google Scholar 

  121. Diessner, B. J. et al. Nearly half of TP53 germline variants predicted to be pathogenic in patients with osteosarcoma are de novo: a report from the Children’s Oncology Group. JCO Precis. Oncol. 4, 1187–1195 (2020).

    Article  Google Scholar 

  122. Kratz, C. P. et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin. Cancer Res. 23, e38–e45 (2017).

    Article  CAS  Google Scholar 

  123. Marees, T. et al. Risk of second malignancies in survivors of retinoblastoma: more than 40 years of follow-up. J. Natl Cancer Inst. 100, 1771–1779 (2008).

    Article  Google Scholar 

  124. Hendrickson, P. G. et al. Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: a hereditary cancer registry study. Cancer Med. 9, 7954–7963 (2020).

    Article  CAS  Google Scholar 

  125. Smeland, S. et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 109, 36–50 (2019).

    Article  Google Scholar 

  126. Kempf-Bielack, B. et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J. Clin. Oncol. 23, 559–568 (2005).

    Article  Google Scholar 

  127. Jaffe, N., Puri, A. & Gelderblom, H. Osteosarcoma: evolution of treatment paradigms. Sarcoma 2013, 203531 (2013).

    Article  Google Scholar 

  128. Anninga, J. K. et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur. J. Cancer 47, 2431–2445 (2011).

    Article  CAS  Google Scholar 

  129. Bielack, S. S. et al. Osteosarcoma: the same old drugs or more. J. Clin. Oncol. 26, 3102–3103 (2008).

    Article  Google Scholar 

  130. Chou, A. J. et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer 115, 5339–5348 (2009).

    Article  CAS  Google Scholar 

  131. Brard, C. et al. Sarcome-13/OS2016 trial protocol: a multicentre, randomised, open-label, phase II trial of mifamurtide combined with postoperative chemotherapy for patients with newly diagnosed high-risk osteosarcoma. BMJ Open 9, e025877 (2019).

    Article  Google Scholar 

  132. Grimer, R. J. et al. Osteosarcoma over the age of forty. Eur. J. Cancer 39, 157–163 (2003).

    Article  CAS  Google Scholar 

  133. Ferrari, S. et al. EURO-B.O.S.S.: a European study on chemotherapy in bone-sarcoma patients aged over 40: Outcome in primary high-grade osteosarcoma. Tumori 104, 30–36 (2018).

    Article  CAS  Google Scholar 

  134. Picci, P. et al. Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J. Clin. Oncol. 12, 2699–2705 (1994).

    Article  CAS  Google Scholar 

  135. Ruggieri, P. et al. Outcome of expandable prostheses in children. J. Pediatr. Orthop. 33, 244–253 (2013).

    Article  Google Scholar 

  136. Tate, R., Gerrand, C. & Hale, J. Tibial turn-up procedure as an alternative to rotationplasty in a 4-year-old with osteosarcoma of the distal femur. J. Pediatr. Orthop. B 24, 50–55 (2015).

    Article  Google Scholar 

  137. Hebert, J. S., Rehani, M. & Stiegelmar, R. Osseointegration for lower-limb amputation: a systematic review of clinical outcomes. JBJS Rev. 5, e10 (2017).

    Article  Google Scholar 

  138. Ciernik, I. F. et al. Proton-based radiotherapy for unresectable or incompletely resected osteosarcoma. Cancer 117, 4522–4530 (2011).

    Article  Google Scholar 

  139. Matsunobu, A. et al. Impact of carbon ion radiotherapy for unresectable osteosarcoma of the trunk. Cancer 118, 4555–4563 (2012).

    Article  Google Scholar 

  140. Seidensaal, K. et al. The role of combined ion-beam radiotherapy (CIBRT) with protons and carbon ions in a multimodal treatment strategy of inoperable osteosarcoma. Radiother. Oncol. 159, 8–16 (2021).

    Article  CAS  Google Scholar 

  141. NCCN. Treatment by cancer type. NCCN https://www.nccn.org/guidelines/category_1 (2022).

  142. Gentet, J. C. et al. Ifosfamide and etoposide in childhood osteosarcoma. A phase II study of the French Society of Paediatric Oncology. Eur. J. Cancer 33, 232–237 (1997).

    Article  CAS  Google Scholar 

  143. Lee, J. A. et al. Higher gemcitabine dose was associated with better outcome of osteosarcoma patients receiving gemcitabine-docetaxel chemotherapy. Pediatr. Blood Cancer 63, 1552–1556 (2016).

    Article  CAS  Google Scholar 

  144. Miser, J. S. et al. Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J. Clin. Oncol. 5, 1191–1198 (1987).

    Article  CAS  Google Scholar 

  145. Rodríguez-Galindo, C. et al. Treatment of refractory osteosarcoma with fractionated cyclophosphamide and etoposide. J. Pediatr. Hematol. Oncol. 24, 250–255 (2002).

    Article  Google Scholar 

  146. Davis, L. E. et al. Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J. Clin. Oncol. 37, 1424–1431 (2019).

    Article  CAS  Google Scholar 

  147. Grignani, G. et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann. Oncol. 23, 508–516 (2012).

    Article  CAS  Google Scholar 

  148. Italiano, A. et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 446–455 (2020).

    Article  CAS  Google Scholar 

  149. Xie, L. et al. Apatinib for advanced osteosarcoma after failure of standard multimodal therapy: an open label phase II clinical trial. Oncologist 24, e542–e550 (2019).

    Article  CAS  Google Scholar 

  150. Gaspar, N. et al. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncol. 22, 1312–1321 (2021).

    Article  CAS  Google Scholar 

  151. Duffaud, F. et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 20, 120–133 (2019).

    Article  CAS  Google Scholar 

  152. Lagmay, J. P. et al. Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through Children’s Cancer Group, Pediatric Oncology Group, and Children’s Oncology Group: learning from the past to move forward. J. Clin. Oncol. 34, 3031–3038 (2016).

    Article  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04154189 (2022).

  154. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  Google Scholar 

  155. Hecker-Nolting, S., Langer, T., Blattmann, C., Kager, L. & Bielack, S. S. Current insights into the management of late chemotherapy toxicities in pediatric osteosarcoma patients. Cancer Manag. Res. 13, 8989–8998 (2021).

    Article  CAS  Google Scholar 

  156. Mason, G. E. et al. Quality of life following amputation or limb preservation in patients with lower extremity bone sarcoma. Front. Oncol. 3, 210 (2013).

    Article  Google Scholar 

  157. Kratz, C. P. et al. Predisposition to cancer in children and adolescents. Lancet Child Adolesc. Health 5, 142–154 (2021).

    Article  Google Scholar 

  158. Leone, G., Pagano, L., Ben-Yehuda, D. & Voso, M. T. Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica 92, 1389–1398 (2007).

    Article  CAS  Google Scholar 

  159. Boddu, P. et al. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 1, 1312–1323 (2017).

    Article  Google Scholar 

  160. Armstrong, G. T. et al. Late mortality among 5-year survivors of childhood cancer: a summary from the childhood cancer survivor study. J. Clin. Oncol. 27, 2328–2338 (2009).

    Article  CAS  Google Scholar 

  161. Mancilla, T. R., Iskra, B. & Aune, G. J. Doxorubicin-induced cardiomyopathy in children. Compr. Physiol. 9, 905–931 (2019).

    Article  Google Scholar 

  162. Bhagat, A. & Kleinerman, E. S. Anthracycline-induced cardiotoxicity: causes, mechanisms, and prevention. Adv. Exp. Med. Biol. 1257, 181–192 (2020).

    Article  CAS  Google Scholar 

  163. Rawat, P. S., Jaiswal, A., Khurana, A., Bhatti, J. S. & Navik, U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother. 139, 111708 (2021).

    Article  CAS  Google Scholar 

  164. Armenian, S. H. et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 16, e123–e136 (2015).

    Article  Google Scholar 

  165. Bock, M. J. et al. Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: a report from the Pediatric Heart Transplant Study (PHTS) group. Pediatr. Transpl. https://doi.org/10.1111/petr.12923 (2017).

    Article  Google Scholar 

  166. Shugh, S. B. & Ryan, T. D. Heart transplantation in survivors of childhood cancer. Transl Pediatr. 8, 314–321 (2019).

    Article  Google Scholar 

  167. Curigliano, G. et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 31, 171–190 (2020).

    Article  CAS  Google Scholar 

  168. Moke, D. J. et al. Prevalence and risk factors for cisplatin-induced hearing loss in children, adolescents, and young adults: a multi-institutional North American cohort study. Lancet Child Adolesc. Health 5, 274–283 (2021).

    Article  CAS  Google Scholar 

  169. Romano, A. et al. Assessment and management of platinum-related ototoxicity in children treated for cancer. Cancers https://doi.org/10.3390/cancers12051266 (2020).

    Article  Google Scholar 

  170. Clemens, E. et al. Recommendations for ototoxicity surveillance for childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCare Consortium. Lancet Oncol. 20, e29–e41 (2019).

    Article  Google Scholar 

  171. Skinner, R. Late renal toxicity of treatment for childhood malignancy: risk factors, long-term outcomes, and surveillance. Pediatr. Nephrol. 33, 215–225 (2018).

    Article  Google Scholar 

  172. Laws, H. J. et al. Impfen bei Immundefizienz : Anwendungshinweise zu den von der Ständigen Impfkommission empfohlenen Impfungen. (III) Impfen bei hämatologischen und onkologischen Erkrankungen (antineoplastische Therapie, Stammzelltransplantation), Organtransplantation und Asplenie [German]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63, 588–644 (2020).

    Article  Google Scholar 

  173. Pittet, L. F. & Posfay-Barbe, K. M. Vaccination of immune compromised children-an overview for physicians. Eur. J. Pediatr. 180, 2035–2047 (2021).

    Article  Google Scholar 

  174. Bader, M. S. Herpes zoster: diagnostic, therapeutic, and preventive approaches. Postgrad. Med. 125, 78–91 (2013).

    Article  Google Scholar 

  175. van Santen, H. M. et al. Reproductive complications in childhood cancer survivors. Pediatr. Clin. North Am. 67, 1187–1202 (2020).

    Article  Google Scholar 

  176. Oktay, K. et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J. Clin. Oncol. 36, 1994–2001 (2018).

    Article  Google Scholar 

  177. Stokke, J., Sung, L., Gupta, A., Lindberg, A. & Rosenberg, A. R. Systematic review and meta-analysis of objective and subjective quality of life among pediatric, adolescent, and young adult bone tumor survivors. Pediatr. Blood Cancer 62, 1616–1629 (2015).

    Article  Google Scholar 

  178. Edelmann, M. N. et al. Neurocognitive and patient-reported outcomes in adult survivors of childhood osteosarcoma. JAMA Oncol. 2, 201–208 (2016).

    Article  Google Scholar 

  179. Bekkering, W. P. et al. Quality of life after bone sarcoma surgery around the knee: a long-term follow-up study. Eur. J. Cancer Care https://doi.org/10.1111/ecc.12603 (2017).

    Article  Google Scholar 

  180. Koirala, P. et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci. Rep. 6, 30093 (2016).

    Article  CAS  Google Scholar 

  181. Landuzzi, L., Manara, M. C., Lollini, P. L. & Scotlandi, K. Patient derived xenografts for genome-driven therapy of osteosarcoma. Cells https://doi.org/10.3390/cells10020416 (2021).

    Article  Google Scholar 

  182. Higuchi, T. et al. Osteosarcoma patient-derived orthotopic xenograft (PDOX) models used to identify novel and effective therapeutics: a review. Anticancer. Res. 41, 5865–5871 (2021).

    Article  CAS  Google Scholar 

  183. Loh, A. H. P. et al. Combinatorial screening using orthotopic patient derived xenograft-expanded early phase cultures of osteosarcoma identify novel therapeutic drug combinations. Cancer Lett. 442, 262–270 (2019).

    Article  CAS  Google Scholar 

  184. Lilienthal, I. & Herold, N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: a review of current and future strategies. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21186885 (2020).

    Article  Google Scholar 

  185. DeRenzo, C. & Gottschalk, S. Genetically modified T-cell therapy for osteosarcoma: into the roaring 2020s. Adv. Exp. Med. Biol. 1257, 109–131 (2020).

    Article  CAS  Google Scholar 

  186. Wang, Y. et al. Comprehensive surfaceome profiling to identify and validate novel cell-surface targets in osteosarcoma. Mol. Cancer Ther. https://doi.org/10.1158/1535-7163.Mct-21-0836 (2022).

    Article  Google Scholar 

  187. Whittle, S. B. et al. Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: a report from the Children’s Oncology Group New Agents for Osteosarcoma Task Force. Pediatr. Blood Cancer 68, e29188 (2021).

    Article  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05135975 (2022).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04055220 (2022).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04833582 (2022).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04417062 (2021).

  192. FDA. Considerations for the inclusion of adolescent patients in adult oncology clinical trials: guidance for industry. FDA https://bit.ly/2IMiAdT (2019).

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03635632 (2021).

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04539366 (2022).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03721068 (2022).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00902044 (2021).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03618381 (2022).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04483778 (2022).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04897321 (2022).

  200. Gianferante, D. M., Mirabello, L. & Savage, S. A. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat. Rev. Endocrinol. 13, 480–491 (2017).

    Article  CAS  Google Scholar 

  201. Meyers, P. A. & Gorlick, R. Osteosarcoma. Pediatr. Clin. North. Am. 44, 973–989 (1997).

    Article  CAS  Google Scholar 

  202. Kansara, M., Teng, M. W., Smyth, M. J. & Thomas, D. M. Translational biology of osteosarcoma. Nat. Rev. Cancer 14, 722–735 (2014).

    Article  CAS  Google Scholar 

  203. Jubelin, C. et al. Biological evidence of cancer stem-like cells and recurrent disease in osteosarcoma. Cancer Drug Resist. 5, 184–198 (2022).

    CAS  Google Scholar 

  204. Ségaliny, A. I., Tellez-Gabriel, M., Heymann, M. F. & Heymann, D. Receptor tyrosine kinases: characterisation, mechanism of action and therapeutic interests for bone cancers. J. Bone Oncol. 4, 1–12 (2015).

    Article  Google Scholar 

  205. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  206. Ségaliny, A. I. et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int. J. Cancer 137, 73–85 (2015).

    Article  Google Scholar 

  207. Ory, B. et al. Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma‐bearing mice. Cancer 104, 2522–2529 (2005).

    Article  CAS  Google Scholar 

  208. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

    Article  CAS  Google Scholar 

  209. Jia, S.-F., Worth, L. L. & Kleinerman, E. S. A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin. Exp. Metastasis 17, 501–506 (1999).

    Article  CAS  Google Scholar 

  210. Khanna, C. et al. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin. Exp. Metastasis 18, 261–271 (2000).

    Article  CAS  Google Scholar 

  211. Boyle, D. B. & Coupar, B. E. H. Identification and cloning of the Fowlpox virus thymidine kinase gene using Vaccinia virus. J. Gen. Virol. 67, 1591–1600 (1986).

    Article  CAS  Google Scholar 

  212. Fan, T. M., Roberts, R. D. & Lizardo, M. M. Understanding and modeling metastasis biology to improve therapeutic strategies for combating osteosarcoma progression. Front. Oncol. https://doi.org/10.3389/fonc.2020.00013 (2020).

    Article  Google Scholar 

  213. Zhao, S. et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene 34, 5069–5079 (2015).

    Article  CAS  Google Scholar 

  214. Mendoza, A. et al. Modeling metastasis biology and therapy in real time in the mouse lung. J. Clin. Invest. 120, 2979–2988 (2010).

    Article  CAS  Google Scholar 

  215. Lizardo, M. M. & Sorensen, P. H. Practical considerations in studying metastatic lung colonization in osteosarcoma using the pulmonary metastasis assay. J. Vis. Exp. https://doi.org/10.3791/56332 (2018).

    Article  Google Scholar 

  216. Tsai, Y. C. et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat. Med. 13, 1504–1509 (2007).

    Article  CAS  Google Scholar 

  217. Lizardo, M. M. et al. Upregulation of glucose-regulated protein 78 in metastatic cancer cells is necessary for lung metastasis progression. Neoplasia 18, 699–710 (2016).

    Article  CAS  Google Scholar 

  218. Morrow, J. J. et al. mTOR inhibition mitigates enhanced mRNA translation associated with the metastatic phenotype of osteosarcoma cells in vivo. Clin. Cancer Res. 22, 6129–6141 (2016).

    Article  CAS  Google Scholar 

  219. Yu, P. Y. et al. Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing’s sarcoma, and rhabdomyosarcoma. PLoS ONE 12, e0181885 (2017).

    Article  Google Scholar 

  220. Gillet, J.-P. et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl Acad. Sci. USA 108, 18708–18713 (2011).

    Article  CAS  Google Scholar 

  221. Wilding, J. L. & Bodmer, W. F. Cancer cell lines for drug discovery and development. Cancer Res. 74, 2377–2384 (2014).

    Article  CAS  Google Scholar 

  222. Phan, N. et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun. Biol. https://doi.org/10.1038/s42003-019-0305-x (2019).

    Article  Google Scholar 

  223. Stewart, E. et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549, 96–100 (2017).

    Article  CAS  Google Scholar 

  224. Houghton, P. J. et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49, 928–940 (2007).

    Article  Google Scholar 

  225. Morton, C. L. & Houghton, P. J. Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247–250 (2007).

    Article  CAS  Google Scholar 

  226. Mundi, P. S. et al. Pre-clinical validation of an RNA-based precision oncology platform for patient-therapy alignment in a diverse set of human malignancies resistant to standard treatments. Preprint at bioRxiv https://doi.org/10.1101/2021.10.03.462951 (2021).

    Article  Google Scholar 

  227. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  CAS  Google Scholar 

  228. Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).

    Article  CAS  Google Scholar 

  229. Jacques, C. et al. Murine models of bone sarcomas. Methods Mol. Biol. 1914, 331–342 (2019).

    Article  CAS  Google Scholar 

  230. Wang, Z. Q., Liang, J., Schellander, K., Wagner, E. F. & Grigoriadis, A. E. c-fos-induced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos. Cancer Res. 55, 6244–6251 (1995).

    CAS  Google Scholar 

  231. Fenger, J. M., London, C. A. & Kisseberth, W. C. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 55, 69–85 (2014).

    Article  CAS  Google Scholar 

  232. Gardner, H. L. et al. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun. Biol. 2, 266 (2019).

    Article  Google Scholar 

  233. LeBlanc, A. K. et al. Perspectives from man’s best friend: National Academy of Medicine’s Workshop on Comparative Oncology. Sci. Transl Med. 8, 324ps325 (2016).

    Article  Google Scholar 

  234. Paoloni, M. et al. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 10, 625 (2009).

    Article  Google Scholar 

  235. Dow, S. A role for dogs in advancing cancer immunotherapy research. Front. Immunol. 10, 2935 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

R.G. is supported as the H. Grant Taylor, M.D., W.W. Sutow, M.D. and Margaret P. Sullivan, M.D. Distinguished Chair in Paediatrics. J.G. and R.G. both acknowledge the support of the Foster Foundation, Swim Across America Inc., the Osteosarcoma Institute, the QuadW Foundation and the Barbara Epstein Foundation. A.M.F. is supported by the Tom Prince Cancer Trust, the Bone Cancer Research Trust, Sarcoma UK, the Cancer Research UK University College London Experimental Cancer Medicine Centre, the RNOH Research and Development Department, and the National Institute for Health Research, University College London Hospitals Biomedical Research Centre. H.C.B. acknowledges support by Triumph Over Kid Cancer Foundation (to Valerae Lewis), A Shelter for Cancer Families, formerly Amshwand Sarcoma Cancer Foundation (to the Sarcoma Medical Oncology Department at MD Anderson Cancer Center), QuadW Foundation (to the Sarcoma Oncology Group), and Cancer Prevention Research Institute of Texas. S.S. is funded in part by the National Institute for Health Research, University College London Hospitals Biomedical Research Centre. J.A.L. acknowledges the support of the Osteosarcoma Institute, the Rally Foundation, and the Make It Better (MIB) Agents. R.D.R. is supported by the National Institutes of Health/National Cancer Institute, the Osteosarcoma Institute, the Hyundai Hope on Wheels Foundation, the CancerFREE Kids Foundation, Steps for Sarcoma, and the St. Baldrick’s Foundation. D.H. acknowledges support from ICO Cancer Center, France (ref# “DorSarc-2018-ICO-DH”), Ouest Valorisation SATT (France) and the Bone Cancer Research Trust (UK). K.J. acknowledges support from Pan Mass Challenge and philanthropic funds supporting osteosarcoma research at Dana-Farber Cancer Institute. The work of S.B. is charitably supported by Förderkreis krebskranke Kinder Stuttgart e.V. We are very thankful to W.-L. Wang and A. Lazar of the Division of Pathology at MD Anderson Cancer Center for providing the histology figures as well as their descriptions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all sections of the Primer. Overview of Primer (R.G.).

Corresponding author

Correspondence to Richard Gorlick.

Ethics declarations

Competing interests

Since 2019, S.B. has been on Advisory Boards for Eli Lilly, Ipsen, Hoffmann La Roche, Bayer Healthcare, Boehringer Ingelheim, EISAI and MAP Biopharma. All other authors declare no competing interests.

Peer review

Peer Review information

Nature Reviews Disease Primers thanks G. Stein, K. Ogura, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beird, H.C., Bielack, S.S., Flanagan, A.M. et al. Osteosarcoma. Nat Rev Dis Primers 8, 77 (2022). https://doi.org/10.1038/s41572-022-00409-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00409-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer