Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Small round cell sarcomas

Abstract

Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1–non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical distribution of SRCSs.
Fig. 2: Potential cellular origin of SRCSs.
Fig. 3: Fusion oncogenes in SRCSs and related malignancies.
Fig. 4: Models of metastasis in SRCSs.
Fig. 5: The tumour microenvironment in SRCSs.
Fig. 6: Radiological presentation in SRCSs.
Fig. 7: Proposed algorithm for molecular diagnosis of SRCS.
Fig. 8: Pathology and histomorphology of SRCS.

Similar content being viewed by others

References

  1. Antonescu, C. Round cell sarcomas beyond Ewing: emerging entities. Histopathology 64, 26–37 (2014).

    PubMed  Google Scholar 

  2. Sbaraglia, M., Bellan, E. & Dei Tos, A. P. The 2020 WHO classification of soft tissue tumours: news and perspectives. Pathologica 113, 70–84 (2021).

    PubMed  Google Scholar 

  3. Maki, R. G., Grohar, P. J. & Antonescu, C. R. Ewing sarcoma and related FET family translocation-associated round cell tumors: a century of clinical and scientific progress. Genes Chromosomes Cancer https://doi.org/10.1002/gcc.23050 (2022).

    Article  PubMed  Google Scholar 

  4. Dickson, B. C. Undifferentiated small round cell sarcomas of bone. Surg. Pathol. Clin. 14, 679–694 (2021).

    PubMed  Google Scholar 

  5. Carter, C. S. & Patel, R. M. Important recently characterized non-Ewing small round cell tumors. Surg. Pathol. Clin. 12, 191–215 (2019).

    PubMed  Google Scholar 

  6. Miettinen, M. et al. New fusion sarcomas: histopathology and clinical significance of selected entities. Hum. Pathol. 86, 57–65 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Grünewald, T. G. P. et al. Ewing sarcoma. Nat. Rev. Dis. Primers 4, 5 (2018).

    PubMed  Google Scholar 

  8. Gerald, W. L. & Haber, D. A. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin. Cancer Biol. 15, 197–205 (2005).

    CAS  PubMed  Google Scholar 

  9. Pierron, G. et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat. Genet. 44, 461–466 (2012). This paper describes for the first time BCORCCNB3 sarcomas as biologically distinct from Ewing sarcoma.

    CAS  PubMed  Google Scholar 

  10. Koelsche, C. et al. DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1-NFATc2 fusion from Ewing sarcoma. J. Cancer Res. Clin. Oncol. 145, 1273–1281 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Koelsche, C. et al. Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information. Mod. Pathol. 31, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Antonescu, C. R. et al. Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am. J. Surg. Pathol. 41, 941–949 (2017). This paper describes for the first time CIC-rearranged sarcomas as distinct entities from other mimics such as Ewing sarcoma.

    PubMed  PubMed Central  Google Scholar 

  13. Baldauf, M. C. et al. Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets. Oncotarget 9, 1587–1601 (2018).

    PubMed  Google Scholar 

  14. Watson, S. et al. Transcriptomic definition of molecular subgroups of small round cell sarcomas. J. Pathol. 245, 29–40 (2018). This paper combines the unbiased identification of gene fusions with unsupervised gene expression analyses to identify biologically homogeneous groups of tumours including CIC-rearranged, BCOR-rearranged and EWSR1NFATC2 or FUSNFATC2 sarcomas.

    CAS  PubMed  Google Scholar 

  15. Kallen, M. E. & Hornick, J. L. The 2020 WHO classification: what’s new in soft tissue tumor pathology? Am. J. Surg. Pathol. 45, e1–e23 (2021).

    PubMed  Google Scholar 

  16. WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours: WHO Classification of Tumours 5th edn Vol. 3 (IARC Press, 2020).

  17. Gerald, W. L. & Rosai, J. Case 2. Desmoplastic small cell tumor with divergent differentiation. Pediatr. Pathol. 9, 177–183 (1989). This paper is the first description of a DSRCT.

    CAS  PubMed  Google Scholar 

  18. Delattre, O. et al. The Ewing family of tumors–a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N. Engl. J. Med. 331, 294–299 (1994).

    CAS  PubMed  Google Scholar 

  19. Koelsche, C. et al. Sarcoma classification by DNA methylation profiling. Nat. Commun. 12, 498 (2021). In this paper, methylation profiling demonstrates independent clustering of BCOR-rearranged sarcomas, CIC-rearranged sarcomas and Ewing sarcoma, highlighting their distinct nature.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lettieri, C. K., Garcia-Filion, P. & Hingorani, P. Incidence and outcomes of desmoplastic small round cell tumor: results from the Surveillance, Epidemiology, and End Results database. J. Cancer Epidemiol. 2014, 680126 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. de Pinieux, G. et al. Nationwide incidence of sarcomas and connective tissue tumors of intermediate malignancy over four years using an expert pathology review network. PLoS ONE 16, e0246958 (2021). This paper contains the most solid epidemiological information for SRCSs to date.

    PubMed  PubMed Central  Google Scholar 

  22. Worch, J. et al. Racial differences in the incidence of mesenchymal tumors associated with EWSR1 translocation. Cancer Epidemiol. Biomark. Prev. 20, 449–453 (2011).

    CAS  Google Scholar 

  23. Wong, H. H. et al. Desmoplastic small round cell tumour: characteristics and prognostic factors of 41 patients and review of the literature. Clin. Sarcoma Res. 3, 14 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Honoré, C. et al. Can we cure patients with abdominal desmoplastic small round cell tumor? Results of a retrospective multicentric study on 100 patients. Surg. Oncol. 29, 107–112 (2019).

    PubMed  Google Scholar 

  25. Honoré, C. et al. Abdominal desmoplastic small round cell tumor: multimodal treatment combining chemotherapy, surgery, and radiotherapy is the best option. Ann. Surg. Oncol. 22, 1073–1079 (2015).

    PubMed  Google Scholar 

  26. Lal, D. R. et al. Results of multimodal treatment for desmoplastic small round cell tumors. J. Pediatr. Surg. 40, 251–255 (2005).

    PubMed  Google Scholar 

  27. Romeo, S. et al. Malignant fibrous histiocytoma and fibrosarcoma of bone: a re-assessment in the light of currently employed morphological, immunohistochemical and molecular approaches. Virchows Arch. 461, 561–570 (2012).

    CAS  PubMed  Google Scholar 

  28. Wang, W.-L. et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod. Pathol. 25, 1378–1383 (2012).

    CAS  PubMed  Google Scholar 

  29. Szuhai, K. et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin. Cancer Res. 15, 2259–2268 (2009). This paper is the first description of the EWSR1NFATC2 fusion.

    CAS  PubMed  Google Scholar 

  30. Wang, G. Y. et al. EWSR1-NFATC2 translocation-associated sarcoma clinicopathologic findings in a rare aggressive primary bone or soft tissue tumor. Am. J. Surg. Pathol. 43, 1112–1122 (2019).

    PubMed  Google Scholar 

  31. Cohen, J. N. et al. EWSR1-NFATC2 gene fusion in a soft tissue tumor with epithelioid round cell morphology and abundant stroma: a case report and review of the literature. Hum. Pathol. 81, 281–290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshida, A. et al. CIC-rearranged sarcomas: a study of 20 cases and comparisons with Ewing sarcomas. Am. J. Surg. Pathol. 40, 313–323 (2016).

    PubMed  Google Scholar 

  33. Italiano, A. et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 51, 207–218 (2012).

    CAS  PubMed  Google Scholar 

  34. Cohen-Gogo, S. et al. Ewing-like sarcomas with BCOR-CCNB3 fusion transcript: a clinical, radiological and pathological retrospective study from the Société Française des Cancers de L’Enfant. Pediatr. Blood Cancer 61, 2191–2198 (2014).

    PubMed  Google Scholar 

  35. Peters, T. L. et al. BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod. Pathol. 28, 575–586 (2015).

    CAS  PubMed  Google Scholar 

  36. Puls, F. et al. BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am. J. Surg. Pathol. 38, 1307–1318 (2014).

    PubMed  Google Scholar 

  37. Kyriazoglou, A. & Bagos, P. Meta-analysis of BCOR rearranged sarcomas: challenging the therapeutic approach. Acta Oncol. 60, 721–726 (2021).

    CAS  PubMed  Google Scholar 

  38. Postel-Vinay, S. et al. Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat. Genet. 44, 323–327 (2012).

    CAS  PubMed  Google Scholar 

  39. Grünewald, T. G. P. et al. Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nat. Genet. 47, 1073–1078 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Ballinger, M. L. et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 17, 1261–1271 (2016).

    PubMed  Google Scholar 

  41. Lin, S.-H. et al. Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma. PLoS ONE 15, e0237792 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillani, R. et al. Germline predisposition to pediatric Ewing sarcoma is characterized by inherited pathogenic variants in DNA damage repair genes. Am. J. Hum. Genet. 109, 1026–1037 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, J., Lee, K. & Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 16, 1973–1979 (1998).

    CAS  PubMed  Google Scholar 

  44. Murphy, A. J. et al. A new molecular variant of desmoplastic small round cell tumor: significance of WT1 immunostaining in this entity. Hum. Pathol. 39, 1763–1770 (2008).

    CAS  PubMed  Google Scholar 

  45. Reynolds, P. A. et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev. 17, 2094–2107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kyriazoglou, A. et al. A case series of BCOR sarcomas with a new splice variant of BCOR/CCNB3 fusion gene. In Vivo 34, 2947–2954 (2020).

    PubMed  PubMed Central  Google Scholar 

  47. Tirode, F. et al. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11, 421–429 (2007).

    CAS  PubMed  Google Scholar 

  48. Tanaka, M. et al. Ewing’s sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors. J. Clin. Invest. 124, 3061–3074 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sole, A. et al. Unraveling Ewing sarcoma tumorigenesis originating from patient-derived mesenchymal stem cells. Cancer Res. 81, 4994–5006 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Surdez, D. et al. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 39, 810–826.e9 (2021).

    CAS  PubMed  Google Scholar 

  51. Lessnick, S. L., Dacwag, C. S. & Golub, T. R. The Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell 1, 393–401 (2002).

    CAS  PubMed  Google Scholar 

  52. Kang, H.-J. et al. EWS-WT1 oncoprotein activates neuronal reprogramming factor ASCL1 and promotes neural differentiation. Cancer Res. 74, 4526–4535 (2014).

    CAS  PubMed  Google Scholar 

  53. Kawamura-Saito, M. et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum. Mol. Genet. 15, 2125–2137 (2006).

    CAS  PubMed  Google Scholar 

  54. Yoshimoto, T. et al. CIC-DUX4 induces small round cell sarcomas distinct from Ewing sarcoma. Cancer Res. 77, 2927–2937 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamada, Y. et al. Histological and immunohistochemical characteristics of undifferentiated small round cell sarcomas associated with CIC-DUX4 and BCOR-CCNB3 fusion genes. Virchows Arch. 470, 373–380 (2017).

    CAS  PubMed  Google Scholar 

  56. Kao, Y.-C. et al. BCOR-CCNB3 fusion positive sarcomas: a clinicopathologic and molecular analysis of 36 cases with comparison to morphologic spectrum and clinical behavior of other round cell sarcomas. Am. J. Surg. Pathol. 42, 604–615 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Sbaraglia, M., Righi, A., Gambarotti, M. & Dei Tos, A. P. Ewing sarcoma and Ewing-like tumors. Virchows Arch. 476, 109–119 (2020).

    CAS  PubMed  Google Scholar 

  58. Roy, A. et al. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat. Commun. 6, 8891 (2015).

    CAS  PubMed  Google Scholar 

  59. Ueno-Yokohata, H. et al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat. Genet. 47, 861–863 (2015).

    CAS  PubMed  Google Scholar 

  60. Hoang, L. N. et al. Novel high-grade endometrial stromal sarcoma: a morphologic mimicker of myxoid leiomyosarcoma. Am. J. Surg. Pathol. 41, 12–24 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Antonescu, C. R. et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors–molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 53, 183–193 (2014).

    CAS  PubMed  Google Scholar 

  62. Kao, Y.-C. et al. Recurrent BCOR internal tandem duplication and YWHAE-NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy: overlapping genetic features with clear cell sarcoma of kidney. Am. J. Surg. Pathol. 40, 1009–1020 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Santiago, T., Clay, M. R., Allen, S. J. & Orr, B. A. Recurrent BCOR internal tandem duplication and BCOR or BCL6 expression distinguish primitive myxoid mesenchymal tumor of infancy from congenital infantile fibrosarcoma. Mod. Pathol. 30, 884–891 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sturm, D. et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164, 1060–1072 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouchoucha, Y. et al. Intra- and extra-cranial BCOR-ITD tumours are separate entities within the BCOR-rearranged family. J. Pathol. Clin. Res. 8, 217–232 (2022).

    PubMed  PubMed Central  Google Scholar 

  66. Ladanyi, M. & Gerald, W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 54, 2837–2840 (1994). This paper is the first description of the EWSR1WT1 fusion in DSRCT.

    CAS  PubMed  Google Scholar 

  67. Schoolmeester, J. K. et al. EWSR1-WT1 gene fusions in neoplasms other than desmoplastic small round cell tumor: a report of three unusual tumors involving the female genital tract and review of the literature. Mod. Pathol. 34, 1912–1920 (2021).

    CAS  PubMed  Google Scholar 

  68. Pižem, J. et al. FUS-NFATC2 or EWSR1-NFATC2 fusions are present in a large proportion of simple bone cysts. Am. J. Surg. Pathol. 44, 1623–1634 (2020).

    PubMed  Google Scholar 

  69. Mastrangelo, T. et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 19, 3799–3804 (2000).

    CAS  PubMed  Google Scholar 

  70. Bridge, J. A. et al. Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod. Pathol. 32, 1593–1604 (2019).

    PubMed  Google Scholar 

  71. Siegfried, A. et al. EWSR1-PATZ1 gene fusion may define a new glioneuronal tumor entity. Brain Pathol. 29, 53–62 (2019).

    CAS  PubMed  Google Scholar 

  72. Lopez-Nunez, O. et al. The spectrum of rare central nervous system (CNS) tumors with EWSR1-non-ETS fusions: experience from three pediatric institutions with review of the literature. Brain Pathol. 31, 70–83 (2021).

    CAS  PubMed  Google Scholar 

  73. Al-Obaidy, K. I. et al. EWSR1-PATZ1 fusion renal cell carcinoma: a recurrent gene fusion characterizing thyroid-like follicular renal cell carcinoma. Mod. Pathol. 34, 1921–1934 (2021).

    CAS  PubMed  Google Scholar 

  74. Antonescu, C. R. et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 49, 1114–1124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang, S.-C. et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 54, 267–275 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Agaram, N. P. et al. EWSR1-PBX3: a novel gene fusion in myoepithelial tumors. Genes Chromosomes Cancer 54, 63–71 (2015).

    CAS  PubMed  Google Scholar 

  77. Jiao, Y. et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3, 709–722 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Yamamoto, Y., Abe, A. & Emi, N. Clarifying the impact of polycomb complex component disruption in human cancers. Mol. Cancer Res. 12, 479–484 (2014).

    CAS  PubMed  Google Scholar 

  79. Bettegowda, C. et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333, 1453–1455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sugita, S. et al. NUTM2A-CIC fusion small round cell sarcoma: a genetically distinct variant of CIC-rearranged sarcoma. Hum. Pathol. 65, 225–230 (2017).

    CAS  PubMed  Google Scholar 

  81. Huang, S.-C. et al. Recurrent CIC gene abnormalities in angiosarcomas: a molecular study of 120 cases with concurrent investigation of PLCG1, KDR, MYC, and FLT4 gene alterations. Am. J. Surg. Pathol. 40, 645–655 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Brohl, A. S. et al. The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 10, e1004475 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Specht, K. et al. Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am. J. Surg. Pathol. 40, 433–442 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Panagopoulos, I. et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 52, 610–618 (2013).

    CAS  PubMed  Google Scholar 

  85. Kao, Y.-C. et al. NTRK3 overexpression in undifferentiated sarcomas with YWHAE and BCOR genetic alterations. Mod. Pathol. 33, 1341–1349 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yoshida, A. et al. Expanding the clinicopathologic and molecular spectrum of BCOR-associated sarcomas in adults. Histopathology 76, 509–520 (2020).

    PubMed  Google Scholar 

  87. Aldera, A. P. & Govender, D. Gene of the month: BCOR. J. Clin. Pathol. 73, 314–317 (2020).

    CAS  PubMed  Google Scholar 

  88. Oliveira, A. M. et al. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and ploidy analysis of 23 cases. Mod. Pathol. 13, 900–908 (2000).

    CAS  PubMed  Google Scholar 

  89. Antonescu, C. R. et al. Specificity of TLS-CHOP rearrangement for classic myxoid/round cell liposarcoma. J. Mol. Diagn. 2, 132–138 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, L. et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 51, 127–139 (2012).

    CAS  PubMed  Google Scholar 

  91. Karlsson, J., Valind, A. & Gisselsson, D. BCOR internal tandem duplication and YWHAE-NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney. Genes Chromosomes Cancer 55, 120–123 (2016).

    CAS  PubMed  Google Scholar 

  92. Alholle, A. et al. Genetic analyses of undifferentiated small round cell sarcoma identifies a novel sarcoma subtype with a recurrent CRTC1-SS18 gene fusion. J. Pathol. 245, 186–196 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Antonescu, C. R., Agaram, N. P., Sung, Y.-S., Zhang, L. & Dickson, B. C. Undifferentiated round cell sarcomas with novel SS18-POU5F1 fusions. Genes Chromosomes Cancer 59, 620–626 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Diolaiti, D. et al. A recurrent novel MGA-NUTM1 fusion identifies a new subtype of high-grade spindle cell sarcoma. Cold Spring Harb. Mol. Case Stud. 4, a003194 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dickson, B. C. et al. NUTM1 gene fusions characterize a subset of undifferentiated soft tissue and visceral tumors. Am. J. Surg. Pathol. 42, 636–645 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Seligson, N. D. et al. Multiscale-omic assessment of EWSR1-NFATc2 fusion positive sarcomas identifies the mTOR pathway as a potential therapeutic target. NPJ Precis. Oncol. 5, 43 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mangray, S. et al. Clinicopathologic features of a series of primary renal CIC-rearranged sarcomas with comprehensive molecular analysis. Am. J. Surg. Pathol. 42, 1360–1369 (2018).

    PubMed  Google Scholar 

  98. Le Loarer, F. et al. Advances in the classification of round cell sarcomas. Histopathology 80, 33–53 (2022).

    PubMed  Google Scholar 

  99. Slotkin, E. K. et al. Comprehensive molecular profiling of desmoplastic small round cell tumor. Mol. Cancer Res. 19, 1146–1155 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, C.-C. et al. Multi-site desmoplastic small round cell tumors are genetically related and immune-cold. NPJ Precis. Oncol. 6, 21 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Devecchi, A. et al. The genomics of desmoplastic small round cell tumor reveals the deregulation of genes related to DNA damage response, epithelial-mesenchymal transition, and immune response. Cancer Commun. 38, 70 (2018).

    Google Scholar 

  102. Chow, W. A. et al. Recurrent secondary genomic alterations in desmoplastic small round cell tumors. BMC Med. Genet. 21, 101 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sydow, S. et al. Genomic and transcriptomic characterization of desmoplastic small round cell tumors. Genes Chromosomes Cancer 60, 595–603 (2021).

    CAS  PubMed  Google Scholar 

  104. Perret, R. et al. NFATc2-rearranged sarcomas: clinicopathologic, molecular, and cytogenetic study of 7 cases with evidence of AGGRECAN as a novel diagnostic marker. Mod. Pathol. 33, 1930–1944 (2020).

    CAS  PubMed  Google Scholar 

  105. Nacev, B. A. et al. The epigenomics of sarcoma. Nat. Rev. Cancer 20, 608–623 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Arimura, Y. et al. Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome. Nucleic Acids Res. 46, 10007–10018 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Soon, G. S. & Petersson, F. Beware of immunohistochemistry–report of a cytokeratin-, desmin- and INI-1-negative pelvic desmoplastic small round cell tumor in a 51 year old woman. Int. J. Clin. Exp. Pathol. 8, 973–982 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Lu, C. & Allis, C. D. SWI/SNF complex in cancer. Nat. Genet. 49, 178–179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kohashi, K. & Oda, Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 108, 547–552 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lindén, M. et al. FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex. EMBO Rep. 20, e45766 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Tomazou, E. M. et al. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep. 10, 1082–1095 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sheffield, N. C. et al. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat. Med. 23, 386–395 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fan, Z. et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat. Cell Biol. 11, 1002–1009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bosnakovski, D. et al. Inactivation of the CIC-DUX4 oncogene through P300/CBP inhibition, a therapeutic approach for CIC-DUX4 sarcoma. Oncogenesis 10, 68 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Choi, S. H. et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res. 44, 5161–5173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bosnakovski, D. et al. A novel P300 inhibitor reverses DUX4-mediated global histone H3 hyperacetylation, target gene expression, and cell death. Sci. Adv. 5, eaaw7781 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Okimoto, R. A. et al. CIC-DUX4 oncoprotein drives sarcoma metastasis and tumorigenesis via distinct regulatory programs. J. Clin. Invest. 129, 3401–3406 (2019).

    PubMed  PubMed Central  Google Scholar 

  120. Okimoto, R. A. et al. Inactivation of Capicua drives cancer metastasis. Nat. Genet. 49, 87–96 (2017).

    CAS  PubMed  Google Scholar 

  121. Le Guellec, S. et al. ETV4 is a useful marker for the diagnosis of CIC-rearranged undifferentiated round-cell sarcomas: a study of 127 cases including mimicking lesions. Mod. Pathol. 29, 1523–1531 (2016).

    PubMed  Google Scholar 

  122. Nakai, S. et al. Establishment of a novel human CIC-DUX4 sarcoma cell line, Kitra-SRS, with autocrine IGF-1R activation and metastatic potential to the lungs. Sci. Rep. 9, 15812 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Carrabotta, M. et al. Integrated molecular characterization of patient-derived models reveals therapeutic strategies for treating CIC-DUX4 sarcoma. Cancer Res. 82, 708–720 (2022). This paper reveals a CICDUX4 sarcoma-specific signature that differentiates these sarcomas from other fusion-driven sarcomas, and proposes a therapeutic strategy based on AKT–mTOR inhibition.

    CAS  PubMed  Google Scholar 

  124. Gedminas, J. M. et al. Desmoplastic small round cell tumor is dependent on the EWS-WT1 transcription factor. Oncogenesis 9, 41 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Grünewald, T. G. et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol. Med. https://doi.org/10.15252/emmm.201911131 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Brady, E. J., Hameed, M., Tap, W. D. & Hwang, S. Imaging features and clinical course of undifferentiated round cell sarcomas with CIC-DUX4 and BCOR-CCNB3 translocations. Skelet. Radiol. 50, 521–529 (2021).

    Google Scholar 

  127. Kim, E. et al. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology 67, 2287–2301 (2018).

    CAS  PubMed  Google Scholar 

  128. Adsay, V., Cheng, J., Athanasian, E., Gerald, W. & Rosai, J. Primary desmoplastic small cell tumor of soft tissues and bone of the hand. Am. J. Surg. Pathol. 23, 1408–1413 (1999).

    CAS  PubMed  Google Scholar 

  129. Markides, C. S. A. et al. Desmoplastic small round cell tumor (DSRCT) xenografts and tissue culture lines: establishment and initial characterization. Oncol. Lett. 5, 1453–1456 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Grunewald, T. G. P. et al. STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors. Mol. Cancer Res. 10, 52–65 (2012).

    CAS  PubMed  Google Scholar 

  131. Miller, I. V. et al. First identification of Ewing’s sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biol. Cell 105, 289–303 (2013).

    CAS  PubMed  Google Scholar 

  132. Ventura, S. et al. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling. Oncogene 35, 3944–3954 (2016).

    CAS  PubMed  Google Scholar 

  133. Fong, E. L. S. et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc. Natl Acad. Sci. USA 110, 6500–6505 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Santoro, M., Lamhamedi-Cherradi, S.-E., Menegaz, B. A., Ludwig, J. A. & Mikos, A. G. Flow perfusion effects on three-dimensional culture and drug sensitivity of Ewing sarcoma. Proc. Natl Acad. Sci. USA 112, 10304–10309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Villasante, A. et al. Recapitulating the size and cargo of tumor exosomes in a tissue-engineered model. Theranostics 6, 1119–1130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Komatsu, A. et al. The CAM model for CIC-DUX4 sarcoma and its potential use for precision medicine. Cells 10, 2613 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, H. et al. Adenosine transporter ENT4 is a direct target of EWS/WT1 translocation product and is highly expressed in desmoplastic small round cell tumor. PLoS ONE 3, e2353 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    CAS  PubMed  Google Scholar 

  139. Orth, M. F. et al. A comparative view on the expression patterns of PD-L1 and PD-1 in soft tissue sarcomas. Cancer Immunol. Immunother. 69, 1353–1362 (2020).

    CAS  PubMed  Google Scholar 

  140. Ren, E.-H. et al. An immune-related gene signature for determining Ewing sarcoma prognosis based on machine learning. J. Cancer Res. Clin. Oncol. 147, 153–165 (2021).

    CAS  PubMed  Google Scholar 

  141. Brohl, A. S. et al. Immuno-transcriptomic profiling of extracranial pediatric solid malignancies. Cell Rep. 37, 110047 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hingorani, P. et al. Transcriptome analysis of desmoplastic small round cell tumors identifies actionable therapeutic targets: a report from the Children’s Oncology Group. Sci. Rep. 10, 12318 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Blaney, S. M., Helman, L. J. & Adamson, P. C. Pizzo & Poplack’s Pediatric Oncology (Lippincott Williams & Wilkins, 2020).

  144. Ko, J. S. et al. Superficial sarcomas with CIC rearrangement are aggressive neoplasms: a series of eight cases. J. Cutan. Pathol. 47, 509–516 (2020).

    PubMed  Google Scholar 

  145. Maloney, N. et al. Expanding the differential of superficial tumors with round-cell morphology: report of three cases of CIC-rearranged sarcoma, a potentially under-recognized entity. J. Cutan. Pathol. 47, 535–540 (2020).

    PubMed  PubMed Central  Google Scholar 

  146. Widhe, B. & Widhe, T. Initial symptoms and clinical features in osteosarcoma and Ewing sarcoma. J. Bone Jt. Surg. Am. 82, 667–674 (2000).

    CAS  Google Scholar 

  147. Alonso, L., Navarro-Perez, V., Sanchez-Muñoz, A. & Alba, E. Time to diagnosis of Ewing tumors in children and adolescents is not associated with metastasis or survival. J. Clin. Oncol. 32, 4020 (2014).

    PubMed  Google Scholar 

  148. Gerald, W. L. et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J. Clin. Oncol. 16, 3028–3036 (1998).

    CAS  PubMed  Google Scholar 

  149. Lee, Y.-S. & Hsiao, C.-H. Desmoplastic small round cell tumor: a clinicopathologic, immunohistochemical and molecular study of four patients. J. Formos. Med. Assoc. 106, 854–860 (2007).

    CAS  PubMed  Google Scholar 

  150. Campos, F. et al. Clinical characteristics, management, and outcomes of 19 nonpediatric patients with desmoplastic small round cell tumor: a cohort of Brazilian patients. Sarcoma 2020, 8713165 (2020).

    PubMed  PubMed Central  Google Scholar 

  151. Angarita, F. A. et al. Clinical features and outcomes of 20 patients with abdominopelvic desmoplastic small round cell tumor. Eur. J. Surg. Oncol. 43, 423–431 (2017).

    CAS  PubMed  Google Scholar 

  152. Wei, G. et al. Intra-abdominal desmoplastic small round cell tumor: current treatment options and perspectives. Front. Oncol. 11, 705760 (2021).

    PubMed  PubMed Central  Google Scholar 

  153. Subbiah, V. et al. Multimodality treatment of desmoplastic small round cell tumor: chemotherapy and complete cytoreductive surgery improve patient survival. Clin. Cancer Res. 24, 4865–4873 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Hayes-Jordan, A., LaQuaglia, M. P. & Modak, S. Management of desmoplastic small round cell tumor. Semin. Pediatr. Surg. 25, 299–304 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Lee, J. C. et al. Clinicopathologic and molecular features of intracranial desmoplastic small round cell tumors. Brain Pathol. 30, 213–225 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Casali, P. G. et al. Bone sarcomas: ESMO-PaedCan-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv79–iv95 (2018).

    CAS  PubMed  Google Scholar 

  157. Casali, P. G. et al. Soft tissue and visceral sarcomas: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv51–iv67 (2018).

    CAS  PubMed  Google Scholar 

  158. Backer, A. et al. Desmoplastic small round cell tumour of unknown primary origin with lymph node and lung metastases: histological, cytological, ultrastructural, cytogenetic and molecular findings. Virchows Arch. 432, 135–141 (1998).

    CAS  PubMed  Google Scholar 

  159. Ray-Coquard, I. et al. Sarcoma: concordance between initial diagnosis and centralized expert review in a population-based study within three European regions. Ann. Oncol. 23, 2442–2449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Gronchi, A. et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 32, 1348–1365 (2021).

    CAS  PubMed  Google Scholar 

  161. Sirisena, U. D. N., Rajakulasingam, R. & Saifuddin, A. Imaging of bone and soft tissue BCOR-rearranged sarcoma. Skelet. Radiol. 50, 1291–1301 (2021).

    Google Scholar 

  162. Morani, A. C. et al. Desmoplastic small round cell tumor: imaging pattern of disease at presentation. AJR Am. J. Roentgenol. 212, W45–W54 (2019).

    CAS  PubMed  Google Scholar 

  163. Harrison, D. J., Parisi, M. T. & Shulkin, B. L. The role of 18F-FDG-PET/CT in pediatric sarcoma. Semin. Nucl. Med. 47, 229–241 (2017).

    PubMed  Google Scholar 

  164. Wei, S. & Siegal, G. P. Small round cell tumors of soft tissue and bone. Arch. Pathol. Lab. Med. 146, 47–59 (2022).

    CAS  PubMed  Google Scholar 

  165. Kallen, M. E. & Hornick, J. L. From the ashes of ‘Ewing-like’ sarcoma: a contemporary update of the classification, immunohistochemistry, and molecular genetics of round cell sarcomas. Semin. Diagn. Pathol. 39, 29–37 (2022).

    PubMed  Google Scholar 

  166. Yoshida, A. et al. CIC break-apart fluorescence in-situ hybridization misses a subset of CIC-DUX4 sarcomas: a clinicopathological and molecular study. Histopathology 71, 461–469 (2017).

    PubMed  Google Scholar 

  167. Ong, S. L. M. et al. Expanding the spectrum of EWSR1-NFATC2-rearranged benign tumors: a common genomic abnormality in vascular malformation/hemangioma and simple bone cyst. Am. J. Surg. Pathol. 45, 1669–1681 (2021).

    PubMed  PubMed Central  Google Scholar 

  168. Yoshida, K.-I. et al. NKX3-1 is a useful immunohistochemical marker of EWSR1-NFATC2 sarcoma and mesenchymal chondrosarcoma. Am. J. Surg. Pathol. 44, 719–728 (2020).

    PubMed  PubMed Central  Google Scholar 

  169. Hayes-Jordan, A., Green, H., Fitzgerald, N., Xiao, L. & Anderson, P. Novel treatment for desmoplastic small round cell tumor: hyperthermic intraperitoneal perfusion. J. Pediatr. Surg. 45, 1000–1006 (2010).

    PubMed  Google Scholar 

  170. Strauss, S. J. et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 32, 1520–1536 (2021).

    CAS  PubMed  Google Scholar 

  171. Blay, J.-Y. et al. Surgery in reference centers improves survival of sarcoma patients: a nationwide study. Ann. Oncol. 30, 1143–1153 (2019).

    PubMed  PubMed Central  Google Scholar 

  172. Blay, J.-Y. et al. Improved survival using specialized multidisciplinary board in sarcoma patients. Ann. Oncol. 28, 2852–2859 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Davis, J. L. & Rudzinski, E. R. Small round blue cell sarcoma other than Ewing sarcoma: what should an oncologist know? Curr. Treat. Options Oncol. 21, 90 (2020).

    PubMed  Google Scholar 

  174. Connolly, E. A. et al. Systemic treatments and outcomes in CIC-rearranged sarcoma: a national multi-centre clinicopathological series and literature review. Cancer Med. https://doi.org/10.1002/cam4.4580 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Mehdi, B. et al. Patterns of care and outcomes of 64 CIC-rearranged sarcoma: a retrospective multicentre case-series within the French Sarcoma Group (FSG). Ann. Oncol. 32, S1111–S1128 (2021).

    Google Scholar 

  176. Bexelius, T. S., Wasti, A. & Chisholm, J. C. Mini-review on targeted treatment of desmoplastic small round cell tumor. Front. Oncol. 10, 518 (2020).

    PubMed  PubMed Central  Google Scholar 

  177. Gerrand, C. et al. Seeking international consensus on approaches to primary tumour treatment in Ewing sarcoma. Clin. Sarcoma Res. 10, 21 (2020).

    PubMed  PubMed Central  Google Scholar 

  178. Ferrari, A. et al. Soft tissue sarcomas of childhood and adolescence: the prognostic role of tumor size in relation to patient body size. J. Clin. Oncol. 27, 371–376 (2009).

    PubMed  Google Scholar 

  179. Hayes-Jordan, A. A. et al. Desmoplastic small round cell tumor treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: results of a phase 2 trial. Ann. Surg. Oncol. 25, 872–877 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Hayes-Jordan, A. et al. Complete cytoreduction and HIPEC improves survival in desmoplastic small round cell tumor. Ann. Surg. Oncol. 21, 220–224 (2014).

    PubMed  Google Scholar 

  181. Mello, C. A. et al. Desmoplastic small round cell tumor: a review of main molecular abnormalities and emerging therapy. Cancers 13, 498 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Hendricks, A., Boerner, K., Germer, C.-T. & Wiegering, A. Desmoplastic small round cell tumors: a review with focus on clinical management and therapeutic options. Cancer Treat. Rev. 93, 102140 (2021).

    CAS  PubMed  Google Scholar 

  183. Waqar, S. H. B., Ali, H., Sheikh, T. & Hamouda, D. M. Desmoplastic small round cell tumor: analysis of Surveillance, Epidemiology, and End Results (SEER) database 1975 to 2018 [abstract]. J. Clin. Oncol. 40 (Suppl. 16), e23540 (2022).

    Google Scholar 

  184. Dirksen, U. et al. Efficacy of add-on treosulfan and melphalan high-dose therapy in patients with high-risk metastatic Ewing sarcoma: report from the International Ewing 2008R3 trial [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 11501 (2020).

    Google Scholar 

  185. Whelan, J. et al. High-dose chemotherapy and blood autologous stem-cell rescue compared with standard chemotherapy in localized high-risk Ewing sarcoma: results of Euro-E.W.I.N.G.99 and Ewing-2008. J. Clin. Oncol. https://doi.org/10.1200/JCO.2018.78.2516 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Koch, R. et al. High-dose treosulfan and melphalan as consolidation therapy versus standard therapy for high-risk (metastatic) Ewing sarcoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.21.01942 (2022).

    Article  PubMed  Google Scholar 

  187. Scheer, M. et al. Desmoplastic small round cell tumors: multimodality treatment and new risk factors. Cancer Med. 8, 527–542 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Dancsok, A. R. et al. Expression of lymphocyte immunoregulatory biomarkers in bone and soft-tissue sarcomas. Mod. Pathol. 32, 1772–1785 (2019).

    CAS  PubMed  Google Scholar 

  189. Blay, J.-Y. et al. High clinical benefit rates of single agent pembrolizumab in selected rare sarcoma histotypes: first results of the AcSé pembrolizumab study [abstract 1619O]. Ann. Oncol. 31 (Suppl. 4), S972 (2020).

    Google Scholar 

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03802071 (2022).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03317457 (2021).

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03711279 (2019).

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04551430 (2022).

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03798106 (2021).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03277924 (2021).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04172805 (2021).

  197. Weiner, L. M., Murray, J. C. & Shuptrine, C. W. Antibody-based immunotherapy of cancer. Cell 148, 1081–1084 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    PubMed  PubMed Central  Google Scholar 

  199. Endo, M. et al. NY-ESO-1 (CTAG1B) expression in mesenchymal tumors. Mod. Pathol. 28, 587–595 (2015).

    CAS  PubMed  Google Scholar 

  200. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Hirabayashi, K. et al. Feasibility and immune response of WT1 peptide vaccination in combination with OK-432 for paediatric solid tumors. Anticancer. Res. 38, 2227–2234 (2018).

    CAS  PubMed  Google Scholar 

  202. Tan, L.-C. et al. BCOR-CCNB3 rearranged sarcoma arising in neck misdiagnosed as thyroid cancer: a case report. Oral. Oncol. 120, 105290 (2021).

    CAS  PubMed  Google Scholar 

  203. Donahue, J. E. et al. Primary spinal epidural CIC-DUX4 undifferentiated sarcoma in a child. Pediatr. Dev. Pathol. 21, 411–417 (2018).

    PubMed  Google Scholar 

  204. Yang, S. et al. CIC-NUTM1 sarcomas affecting the spine: a subset of CIC-rearranged sarcomas commonly present in the axial skeleton. Arch. Pathol. Lab. Med. https://doi.org/10.5858/arpa.2021-0153-OA (2021).

    Article  PubMed  Google Scholar 

  205. Kushner, B. H. et al. Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy. J. Clin. Oncol. 14, 373–381 (1996).

    CAS  PubMed  Google Scholar 

  206. Ginsberg, J. P. et al. Long-term survivors of childhood ewing sarcoma: report from the Childhood Cancer Survivor Study. J. Natl Cancer Inst. 102, 1272–1283 (2010).

    PubMed  PubMed Central  Google Scholar 

  207. Hayes-Jordan, A., Green, H., Ludwig, J. & Anderson, P. Toxicity of hyperthermic intraperitoneal chemotherapy (HIPEC) in pediatric patients with sarcomatosis/carcinomatosis: early experience and phase 1 results. Pediatr. Blood Cancer 59, 395–397 (2012).

    CAS  PubMed  Google Scholar 

  208. Paulussen, M. et al. Second malignancies after Ewing tumor treatment in 690 patients from a cooperative German/Austrian/Dutch study. Ann. Oncol. 12, 1619–1630 (2001).

    CAS  PubMed  Google Scholar 

  209. Longhi, A. et al. Late effects of chemotherapy and radiotherapy in osteosarcoma and Ewing sarcoma patients: the Italian Sarcoma Group Experience (1983–2006). Cancer 118, 5050–5059 (2012).

    PubMed  Google Scholar 

  210. Bent, M. A., Padilla, B. E., Goldsby, R. E. & DuBois, S. G. Clinical characteristics and outcomes of pediatric patients with desmoplastic small round cell tumor. Rare Tumors 8, 6145 (2016).

    PubMed  PubMed Central  Google Scholar 

  211. Marina, N. M. et al. Longitudinal follow-up of adult survivors of Ewing sarcoma: a report from the Childhood Cancer Survivor Study. Cancer 123, 2551–2560 (2017).

    PubMed  Google Scholar 

  212. Ranft, A. et al. Quality of survivorship in a rare disease: clinicofunctional outcome and physical activity in an observational cohort study of 618 long-term survivors of Ewing sarcoma. J. Clin. Oncol. 35, 1704–1712 (2017).

    PubMed  Google Scholar 

  213. Oyama, R. et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Sci. Rep. 7, 4712 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. Lin, Y. K., Wu, W., Ponce, R. K., Kim, J. W. & Okimoto, R. A. Negative MAPK-ERK regulation sustains CIC-DUX4 oncoprotein expression in undifferentiated sarcoma. Proc. Natl Acad. Sci. USA 117, 20776–20784 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Uboldi, S. et al. Mechanism of action of trabectedin in desmoplastic small round cell tumor cells. BMC Cancer 17, 107 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Tirado, O. M., Mateo-Lozano, S. & Notario, V. Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax:Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Oncogene 24, 3348–3357 (2005).

    CAS  PubMed  Google Scholar 

  217. van Erp, A. E. M. et al. Olaparib and temozolomide in desmoplastic small round cell tumors: a promising combination in vitro and in vivo. J. Cancer Res. Clin. Oncol. 146, 1659–1670 (2020).

    PubMed  PubMed Central  Google Scholar 

  218. Lowery, C. D. et al. Broad spectrum activity of the checkpoint kinase 1 inhibitor prexasertib as a single agent or chemopotentiator across a range of preclinical pediatric tumor models. Clin. Cancer Res. 25, 2278–2289 (2019).

    CAS  PubMed  Google Scholar 

  219. Hayes-Jordan, A. A. et al. Efficacy of ONC201 in desmoplastic small round cell tumor. Neoplasia 20, 524–532 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Lamhamedi-Cherradi, S.-E. et al. The androgen receptor is a therapeutic target in desmoplastic small round cell sarcoma. Nat. Commun. 13, 3057 (2022). This paper describes a novel approach of repurposing androgen receptor-targeting drugs for the treatment of DSRCT.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Lowery, C. D. et al. Anti-VEGFR2 therapy delays growth of preclinical pediatric tumor models and enhances anti-tumor activity of chemotherapy. Oncotarget 10, 5523–5533 (2019).

    PubMed  PubMed Central  Google Scholar 

  222. Ogura, K. et al. Therapeutic potential of NTRK3 inhibition in desmoplastic small round cell tumor. Clin. Cancer Res. 27, 1184–1194 (2021).

    CAS  PubMed  Google Scholar 

  223. Bleijs, M. et al. EWSR1-WT1 target genes and therapeutic options identified in a novel DSRCT in vitro model. Cancers 13, 6072 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Smith, R. S. et al. Novel patient-derived models of desmoplastic small round cell tumor confirm a targetable dependency on ERBB signaling. Dis. Model. Mech. 15, dmm047621 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Vanoli, F. et al. CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc. Natl Acad. Sci. USA 114, 3696–3701 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Spraggon, L. et al. Generation of conditional oncogenic chromosomal translocations using CRISPR-Cas9 genomic editing and homology-directed repair. J. Pathol. 242, 102–112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Tanaka, M. & Nakamura, T. Modeling fusion gene-associated sarcoma: advantages for understanding sarcoma biology and pathology. Pathol. Int. 71, 643–654 (2021).

    PubMed  Google Scholar 

  228. Watson, S. et al. CIC-DUX4 expression drives the development of small round cell sarcoma in transgenic zebrafish: a new model revealing a role for ETV4 in CIC-mediated sarcomagenesis. Preprint at bioRxiv https://doi.org/10.1101/517722 (2019).

    Article  Google Scholar 

  229. Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).

    PubMed  Google Scholar 

  230. Shukla, N. N. et al. Plasma DNA-based molecular diagnosis, prognostication, and monitoring of patients with EWSR1 fusion-positive sarcomas. JCO Precis. Oncol. 2017, PO.16.00028 (2017).

    Google Scholar 

  231. Colletti, M. et al. Expression profiles of exosomal miRNAs isolated from plasma of patients with desmoplastic small round cell tumor. Epigenomics 11, 489–500 (2019).

    CAS  PubMed  Google Scholar 

  232. Ferreira, E. N. et al. A genomic case study of desmoplastic small round cell tumor: comprehensive analysis reveals insights into potential therapeutic targets and development of a monitoring tool for a rare and aggressive disease. Hum. Genomics 10, 36 (2016).

    PubMed  PubMed Central  Google Scholar 

  233. Shulman, D. S. et al. Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group. Br. J. Cancer 119, 615–621 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Specht, K. et al. Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer 53, 622–633 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Ponce, R. K. M., Thomas, N. J., Bui, N. Q., Kondo, T. & Okimoto, R. A. WEE1 kinase is a therapeutic vulnerability in CIC-DUX4 undifferentiated sarcoma. JCI Insight 7, e152293 (2022).

    PubMed  PubMed Central  Google Scholar 

  236. Nishio, J. et al. Establishment and characterization of a novel human desmoplastic small round cell tumor cell line, JN-DSRCT-1. Lab. Invest. 82, 1175–1182 (2002).

    PubMed  Google Scholar 

  237. Emanuela P. et al. Graceful project: a global collaboration on CIC-DUX4, BCOR-CCNB3, high grade undifferentiated round cell sarcoma (URCS). in Proceedings of the CTOS Annual Meeting vol. ID 3251212 (ed. Kawai, A.) (CTOS, 2019).

  238. Graham, C., Chilton-MacNeill, S., Zielenska, M. & Somers, G. R. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum. Pathol. 43, 180–189 (2012).

    CAS  PubMed  Google Scholar 

  239. Bode-Lesniewska, B., Fritz, C., Exner, G. U., Wagner, U. & Fuchs, B. EWSR1-NFATC2 and FUS-NFATC2 gene fusion-associated mesenchymal tumors: clinicopathologic correlation and literature review. Sarcoma 2019, 9386390 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    CAS  PubMed  Google Scholar 

  241. Glendening, J. M. et al. Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res. 55, 5531–5535 (1995).

    CAS  PubMed  Google Scholar 

  242. Shang, C., Guo, Y., Hong, Y. & Xue, Y.-X. Long non-coding RNA TUSC7, a target of miR-23b, plays tumor-suppressing roles in human gliomas. Front. Cell Neurosci. 10, 235 (2016).

    PubMed  PubMed Central  Google Scholar 

  243. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    CAS  PubMed  Google Scholar 

  244. Ron, D. et al. Fibroblast growth factor receptor 4 is a high affinity receptor for both acidic and basic fibroblast growth factor but not for keratinocyte growth factor. J. Biol. Chem. 268, 5388–5394 (1993).

    CAS  PubMed  Google Scholar 

  245. Fyodorov, D. V., Zhou, B.-R., Skoultchi, A. I. & Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19, 192–206 (2018).

    CAS  PubMed  Google Scholar 

  246. Fondevila, F., Méndez-Blanco, C., Fernández-Palanca, P., González-Gallego, J. & Mauriz, J. L. Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. Exp. Mol. Med. 51, 1–15 (2019).

    CAS  PubMed  Google Scholar 

  247. Menegaz, B. A. et al. Clinical activity of pazopanib in patients with advanced desmoplastic small round cell tumor. Oncologist 23, 360–366 (2018).

    CAS  PubMed  Google Scholar 

  248. Bukowski, R. M., Yasothan, U. & Kirkpatrick, P. Pazopanib. Nat. Rev. Drug Discov. 9, 17–18 (2010).

    CAS  PubMed  Google Scholar 

  249. Miyamoto, S. et al. Drug review: pazopanib. Jpn. J. Clin. Oncol. 48, 503–513 (2018).

    PubMed  Google Scholar 

  250. Frezza, A. M. et al. Pazopanib in advanced desmoplastic small round cell tumours: a multi-institutional experience. Clin. Sarcoma Res. 4, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  251. Jayakrishnan, T. et al. Desmoplastic small round-cell tumor: retrospective review of institutional data and literature review. Anticancer. Res. 41, 3859–3866 (2021).

    CAS  PubMed  Google Scholar 

  252. Ferrari, A. et al. Trabectedin-irinotecan, a potentially promising combination in relapsed desmoplastic small round cell tumor: report of two cases. J. Chemother. https://doi.org/10.1080/1120009X.2022.2067706 (2022).

    Article  PubMed  Google Scholar 

  253. Verret, B. et al. Trabectedin in advanced desmoplastic round cell tumors: a retrospective single-center series. Anticancer. Drugs 28, 116–119 (2017).

    CAS  PubMed  Google Scholar 

  254. Frezza, A. M., Whelan, J. S. & Dileo, P. Trabectedin for desmoplastic small round cell tumours: a possible treatment option? Clin. Sarcoma Res. 4, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  255. Brunetti, A. E. et al. Third-line trabectedin for a metastatic desmoplastic small round cell tumour treated with multimodal therapy. Anticancer. Res. 34, 3683–3688 (2014).

    CAS  PubMed  Google Scholar 

  256. Chao, J. et al. Phase II clinical trial of imatinib mesylate in therapy of KIT and/or PDGFRα-expressing Ewing sarcoma family of tumors and desmoplastic small round cell tumors. Anticancer. Res. 30, 547–552 (2010).

    CAS  PubMed  Google Scholar 

  257. O’Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    PubMed  Google Scholar 

  258. Vennepureddy, A., Singh, P., Rastogi, R., Atallah, J. P. & Terjanian, T. Evolution of ramucirumab in the treatment of cancer – a review of literature. J. Oncol. Pharm. Pract. 23, 525–539 (2017).

    CAS  PubMed  Google Scholar 

  259. Bailey, K. et al. Targeted radioimmunotherapy for embryonal tumor with multilayered rosettes [abstract THER-24]. Neuro Oncol. 21, ii118–ii119 (2019).

    PubMed Central  Google Scholar 

  260. Slotkin, E. K. et al. A phase I/II study of prexasertib in combination with irinotecan in patients with relapsed/refractory desmoplastic small round cell tumor and rhabdomyosarcoma [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 11503 (2022).

    Google Scholar 

  261. Wedekind, M. F. et al. Immune profiles of desmoplastic small round cell tumor and synovial sarcoma suggest different immunotherapeutic susceptibility upfront compared to relapse specimens. Pediatr. Blood Cancer 65, e27313 (2018).

    PubMed  Google Scholar 

  262. Chew, G.-L. et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev. Cell 50, 658–671.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. McCaffrey, P. G. et al. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 262, 750–754 (1993).

    CAS  PubMed  Google Scholar 

  264. Tan, Q. et al. Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc. Natl Acad. Sci. USA 115, E1511–E1519 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Davis, K. L. et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol. 21, 541–550 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.G.P.G. was supported by the Matthias-Lackas Foundation, the Dr. Leopold and Carmen Ellinger Foundation, the German Cancer Aid (DKH-70114278 and DKH-70114111), the Gert und Susanna Mayer Foundation, the Boehringer-Ingelheim Foundation, the Federal Ministry of Education and Research (BMBF: SMART-CARE; HEROES-AYA), the Deutsche Forschungsgemeinschaft (DFG-458891500), the SMARCB1 association, and the Barbara und Wilfried Mohr Foundation. F.C.-A. was supported by grants from the Barbara & Hubertus Trettner Foundation, and the Dr. Rolf M. Schwiete Foundation, and the German Cancer Aid. The authors express their apologies to all authors whose valuable work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (F.C.-A., T.G.P.G); Epidemiology (F.C.-A. and T.G.P.G); Mechanisms/pathophysiology (E.deA., O.D., T.N., J.F.A., F.C.-A. and T.G.P.G); Diagnosis, screening and prevention (E.deA., U.D., S.W., F.C.-A. and T.G.P.G); Management (U.D., J.F.A., S.W., F.C.-A. and T.G.P.G); Quality of life (U.D., J.F.A., S.W., F.C.-A. and T.G.P.G); Outlook (U.D., J.F.A., F.C.-A. and T.G.P.G).

Corresponding authors

Correspondence to Florencia Cidre-Aranaz or Thomas G. P. Grünewald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks K. Thway, P. Rutkowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cidre-Aranaz, F., Watson, S., Amatruda, J.F. et al. Small round cell sarcomas. Nat Rev Dis Primers 8, 66 (2022). https://doi.org/10.1038/s41572-022-00393-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00393-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer