Abstract
Congenital diaphragmatic hernia (CDH) is a rare birth defect characterized by incomplete closure of the diaphragm and herniation of fetal abdominal organs into the chest that results in pulmonary hypoplasia, postnatal pulmonary hypertension owing to vascular remodelling and cardiac dysfunction. The high mortality and morbidity rates associated with CDH are directly related to the severity of cardiopulmonary pathophysiology. Although the aetiology remains unknown, CDH has a polygenic origin in approximately one-third of cases. CDH is typically diagnosed with antenatal ultrasonography, which also aids in risk stratification, alongside fetal MRI and echocardiography. At specialized centres, prenatal management includes fetal endoscopic tracheal occlusion, which is a surgical intervention aimed at promoting lung growth in utero. Postnatal management focuses on cardiopulmonary stabilization and, in severe cases, can involve extracorporeal life support. Clinical practice guidelines continue to evolve owing to the rapidly changing landscape of therapeutic options, which include pulmonary hypertension management, ventilation strategies and surgical approaches. Survivors often have long-term, multisystem morbidities, including pulmonary dysfunction, gastroesophageal reflux, musculoskeletal deformities and neurodevelopmental impairment. Emerging research focuses on small RNA species as biomarkers of severity and regenerative medicine approaches to improve fetal lung development.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Stolar, C. J. H., Dillion, P. W. in Pediatric Surgery (eds. Grosfeld, L., O’Neill J. A., Fonkalsrud E. W. & Coran, A. G.). 809–824 (Mosby, 2012).
Zani, A. & Cozzi, D. A. Giovanni Battista Morgagni and his contribution to pediatric surgery. J. Pediatr. Surg. 43, 729–733 (2008).
Montalva, L., Zani, A. in Pearls and Tricks in Pediatric Surgery (eds Lacher, M., St. Peter, S. D. & Zani, A.). 25–34 (Springer, 2021).
Donahoe, P. K., Longoni, M. & High, F. A. Polygenic causes of Congenital Diaphragmatic Hernia produce common lung pathologies. Am. J. Pathol. 186, 2532–2543 (2016). This comprehensive review paper describes the pathogenesis of CDH, specifying cellular and molecular level alterations in fetal hypoplastic lungs.
Byrne, F. A. et al. Severe left diaphragmatic hernia limits size of fetal left heart more than does right diaphragmatic hernia. Ultrasound Obstet. Gynecol. 46, 688–694 (2015).
Ferguson, D. M. et al. Early, postnatal pulmonary hypertension severity predicts inpatient outcomes in congenital diaphragmatic hernia. Neonatology 118, 147–154 (2021).
Patel, N. et al. Ventricular dysfunction is a critical determinant of mortality in congenital diaphragmatic hernia. Am. J. Respir. Crit. Care. Med. 200, 1522–1530 (2019). This multicentre prospective study showed that early postnatal ventricular dysfunction occurs frequently in infants with CDH and can be used as an independent marker of severity and clinical outcome.
Harting, M. T. & Lally, K. P. The Congenital Diaphragmatic Hernia Study Group registry update. Semin. Fetal Neonatal Med. 19, 370–375 (2014).
Wright, N. J. et al. Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study. Lancet 398, 325–339 (2021).
Spoel, M. et al. Lung function in young adults with congenital diaphragmatic hernia; a longitudinal evaluation. Pediatr. Pulmonol. 48, 130–137 (2013).
Putnam, L. R. et al. Congenital diaphragmatic hernia defect size and infant morbidity at discharge. Pediatrics 138, e20162043 (2016).
Jancelewicz, T. et al. Survival benefit associated with the use of extracorporeal life support for neonates with congenital diaphragmatic hernia. Ann. Surg. 275, e256–e263 (2022). This retrospective cohort study analysed the use of ECLS in a large number of patients with CDH and concluded that ECLS use is associated with a significant survival advantage in infants at high risk who are treated in centres with a high CDH volume and ECLS experience.
Faraoni, D., Nasr, V. G., DiNardo, J. A. & Thiagarajan, R. R. Hospital costs for neonates and children supported with extracorporeal membrane oxygenation. J. Pediatr. 169, 69–75.e1 (2016).
Raval, M. V., Wang, X., Reynolds, M. & Fischer, A. C. Costs of congenital diaphragmatic hernia repair in the United States-extracorporeal membrane oxygenation foots the bill. J. Pediatr. Surg. 46, 617–624 (2011).
Snyder, A. N., Cheng, T. & Burjonrappa, S. A nationwide database analysis of demographics and outcomes related to extracorporeal membrane oxygenation (ECMO) in congenital diaphragmatic hernia. Pediatr. Surg. Int. 37, 1505–1513 (2021).
Lewit, R. A. & Jancelewicz, T. Sources of regional and center-level variability in survival and cost of care for congenital diaphragmatic hernia (CDH). J. Pediatr. Surg. 56, 130–135 (2021).
Cameron, D. B. et al. Quantifying the burden of interhospital cost variation in pediatric surgery: Implications for the prioritization of comparative effectiveness research. JAMA Pediatr. 171, e163926 (2017).
Paoletti, M. et al. Prevalence and risk factors for congenital diaphragmatic hernia: a global view. J. Pediatr. Surg. 55, 2297–2307 (2020). This systematic review of the literature collates all population-based studies conducted on patients with CDH worldwide. This analysis reports the global prevalence of CDH and its associated risk factors and highlights the paucity of epidemiological studies for this condition.
McGivern, M. R. et al. Epidemiology of Congenital Diaphragmatic Hernia in Europe: a register-based study. Arch. Dis. Child. Fetal Neonatal Ed. 100, F137–F144 (2015).
Yang, W., Carmichael, S. L., Harris, J. A. & Shaw, G. M. Epidemiologic characteristics of congenital diaphragmatic hernia among 2.5 million California births, 1989-1997. Birth Defects Res. A. Clin. Mol. Teratol. 76, 170–174 (2006).
Dott, M. M., Wong, L. Y. & Rasmussen, S. A. Population-based study of congenital diaphragmatic hernia: risk factors and survival in Metropolitan Atlanta, 1968-1999. Birth Defects Res. A. Clin. Mol. Teratol. 67, 261–267 (2003).
Harrison, M. R., Bjordal, R. I., Langmark, F. & Knutrud, O. Congenital diaphragmatic hernia: the hidden mortality. J. Pediatr. Surg. 13, 227–230 (1978).
Burgos, C. M. & Frenckner, B. Addressing the hidden mortality in CDH: a population-based study. J. Pediatr. Surg. 52, 522–525 (2017).
Gallot, D. et al. Antenatal detection and impact on outcome of congenital diaphragmatic hernia: a 12-year experience in Auvergne, France. Eur. J. Obstet. Gynecol. Reprod. Biol. 125, 202–205 (2006).
Balayla, J. & Abenhaim, H. A. Incidence, predictors and outcomes of congenital diaphragmatic hernia: a population-based study of 32 million births in the United States. J. Matern. Fetal Neonatal Med. 27, 1438–1444 (2014).
Bétrémieux, P. et al. Congenital diaphragmatic hernia: prenatal diagnosis permits immediate intensive care with high survival rate in isolated cases. A population-based study. Prenat. Diagn. 24, 487–493 (2004).
Hautala, J. et al. Congenital diaphragmatic hernia with heart defect has a high risk for hypoplastic left heart syndrome and major extra-cardiac malformations: 10-year national cohort from Finland. Acta Obstet. Gynecol. Scand. 97, 204–211 (2018).
Lee, H. S., Dickinson, J. E., Tan, J. K., Nembhard, W. & Bower, C. Congenital diaphragmatic hernia: Impact of contemporary management strategies on perinatal outcomes. Prenat. Diagn. 38, 1004–1012 (2018).
Doné, E. et al. Prenatal diagnosis, prediction of outcome and in utero therapy of isolated congenital diaphragmatic hernia. Prenat. Diagn. 28, 581–591 (2008).
Zaiss, I. et al. Associated malformations in congenital diaphragmatic hernia. Am. J. Perinatol. 28, 211–218 (2011).
Ladd, W. E. & Gross, R. E. Congenital diaphragmatic hernia. N. Engl. J. Med. 223, 917–925 (1940).
Gross, R. E. The Surgery of Infancy and Childhood (WB Saunders Company; 1953).
Gupta, V. S. et al. Mortality in congenital diaphragmatic hernia: a multicenter registry study of over 5000 patients over 25 years. Ann. Surg. https://doi.org/10.1097/SLA.0000000000005113 (2021).
The Canadian Pediatric Surgery Network. CAPSNet 2019 Annual Report 2019 (CAPSNet, 2019).
Bhat, Y. R., Kumar, V. & Rao, A. Congenital diaphragmatic hernia in a developing country. Singap. Med. J. 49, 715–718 (2008).
Ekenze, S. O., Ajuzieogu, O. V. & Nwomeh, B. C. Challenges of management and outcome of neonatal surgery in Africa: a systematic review. Pediatr. Surg. Int. 32, 291–299 (2016).
Ammar, S. et al. Risk factors of early mortality after neonatal surgery in Tunisia. J. Pediatr. Surg. 55, 2233–2237 (2020).
Pober, B. R. Genetic aspects of human congenital diaphragmatic hernia. Clin. Genet. 74, 1–15 (2008).
Oh, T., Chan, S., Kieffer, S. & Delisle, M. F. Fetal outcomes of prenatally diagnosed congenital diaphragmatic hernia: nine years of clinical experience in a canadian tertiary hospital. J. Obstet. Gynaecol. Can. 38, 17–22 (2016).
Merrell, A. J. et al. Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias. Nat. Genet. 47, 496–504 (2015).
Sefton, E. M., Gallardo, M. & Kardon, G. Developmental origin and morphogenesis of the diaphragm, an essential mammalian muscle. Dev. Biol. 440, 64–73 (2018).
Lally, K. P. et al. Standardized reporting for congenital diaphragmatic hernia — an international consensus. J. Pediatr. Surg. 48, 2408–2415 (2013). This report from the CDHSG shows that the diaphragmatic defect assessed with the CDHSG staging system and presence of a severe cardiac anomaly are reliable predictors of outcome. This article highlights the importance of a standardized reporting system for CDH to conduct prospective trials in patients with this condition.
McAteer, J. P., Hecht, A., De Roos, A. J. & Goldin, A. B. Maternal medical and behavioral risk factors for congenital diaphragmatic hernia. J. Pediatr. Surg. 49, 34–38 (2014).
Kitagawa, M., Hislop, A., Boyden, E. A. & Reid, L. Lung hypoplasia in congenital diaphragmatic hernia. A quantitative study of airway, artery, and alveolar development. Br. J. Surg. 58, 342–346 (1971).
Nguyen, T. M. et al. The proportion of alveolar type 1 cells decreases in murine hypoplastic congenital diaphragmatic hernia lungs. PLoS ONE 14, e0214793 (2019).
Bargy, F., Beaudoin, S. & Barbet, P. Fetal lung growth in congenital diaphragmatic hernia. Fetal Diagn. Ther. 21, 39–44 (2006).
Geggel, R. L. et al. Congenital diaphragmatic hernia: arterial structural changes and persistent pulmonary hypertension after surgical repair. J. Pediatr. 107, 457–464 (1985).
Russell, M. K. et al. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes. Proc. Natl Acad. Sci. USA 109, 2978–2983 (2012).
Rottier, R. & Tibboel, D. Fetal lung and diaphragm development in congenital diaphragmatic hernia. Semin. Perinatol. 29, 86–93 (2005).
van Loenhout, R. B., Tibboel, D., Post, M. & Keijzer, R. Congenital diaphragmatic hernia: comparison of animal models and relevance to the human situation. Neonatology 96, 137–149 (2009).
Antounians, L., Figueira, R. L., Sbragia, L. & Zani, A. Congenital diaphragmatic hernia: state of the art in translating experimental research to the bedside. Eur. J. Pediatr. Surg. 29, 317–327 (2019).
Wynn, J., Yu, L. & Chung, W. K. Genetic causes of congenital diaphragmatic hernia. Semin. Fetal Neonatal Med. 19, 324–330 (2014).
Pober, B. R. et al. Infants with Bochdalek diaphragmatic hernia: sibling precurrence and monozygotic twin discordance in a hospital-based malformation surveillance program. Am. J. Med. Genet. A 138A, 81–88 (2005).
Enns, G. M. et al. Congenital diaphragmatic defects and associated syndromes, malformations, and chromosome anomalies: a retrospective study of 60 patients and literature review. Am. J. Med. Genet. 79, 215–225 (1998).
Longoni, M. et al. Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital diaphragmatic hernia. Hum. Genet. 136, 679–691 (2017).
Yu, L. et al. De novo copy number variants are associated with congenital diaphragmatic hernia. J. Med. Genet. 49, 650–659 (2012).
Qi, H. et al. De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS Genet. 14, e1007822 (2018).
Yu, L. et al. Increased burden of de novo predicted deleterious variants in complex congenital diaphragmatic hernia. Hum. Mol. Genet. 24, 4764–4773 (2015).
Yu, L. et al. Whole exome sequencing identifies de novo mutations in GATA6 associated with congenital diaphragmatic hernia. J. Med. Genet. 51, 197–202 (2014).
Yu, L. et al. Variants in GATA4 are a rare cause of familial and sporadic congenital diaphragmatic hernia. Hum. Genet. 132, 285–292 (2013).
Bielinska, M. et al. Molecular genetics of congenital diaphragmatic defects. Ann. Med. 39, 261–274 (2007).
Veenma, D. C., de Klein, A. & Tibboel, D. Developmental and genetic aspects of congenital diaphragmatic hernia. Pediatr. Pulmonol. 47, 534–545 (2012).
Qiao, L. et al. Rare and de novo variants in 827 congenital diaphragmatic hernia probands implicate LONP1 as candidate risk gene. Am. J. Hum. Genet. 108, 1964–1980 (2021). This study delineates the contribution of de novo genetic variants to the development of CDH and adds to the previous literature on genetic causes of this disease.
Qiao, L. et al. Likely damaging de novo variants in Congenital Diaphragmatic Hernia patients are associated with worse clinical outcomes. Genet. Med. 22, 2020–2028 (2020).
Khoshgoo, N. et al. Prenatal microRNA miR-200b therapy improves nitrofen-induced pulmonary hypoplasia associated with congenital diaphragmatic hernia. Ann. Surg. 269, 979–987 (2019).
Antounians, L. et al. Fetal lung underdevelopment is rescued by administration of amniotic fluid stem cell extracellular vesicles in rodents. Sci. Transl. Med. 13, eaax5941 (2021). This is the first study to show that a regenerative medicine approach using stem cell-based extracellular vesicles promotes lung development in experimental models of pulmonary hypoplasia.
Pereira-Terra, P. et al. Unique tracheal fluid microRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann. Surg. 262, 1130–1140 (2015). This study was the first to interrogate the microRNA signature in tracheal fluid of patients with severe CDH who underwent fetal intervention (FETO). The microarray analysis identified potential microRNA-based biomarkers of disease severity.
Coste, K. et al. Metabolic disturbances of the vitamin A pathway in human diaphragmatic hernia. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L147–L157 (2015).
Kool, H. M. et al. Inhibition of retinoic acid signaling induces aberrant pericyte coverage and differentiation resulting in vascular defects in congenital diaphragmatic hernia. Am. J. Physiol. Lung Cell Mol. Physiol. 317, L317–L331 (2019).
Kitterman, J. A. The effects of mechanical forces on fetal lung growth. Clin. Perinatol. 23, 727–740 (1996).
Nobuhara, K. K. & Wilson, J. M. The effect of mechanical forces on in utero lung growth in congenital diaphragmatic hernia. Clin. Perinatol. 23, 741–752 (1996).
Harrison, M. R., Bressack, M. A., Churg, A. M. & de Lorimier, A. A. Correction of congenital diaphragmatic hernia in utero. II. Simulated correction permits fetal lung growth with survival at birth. Surgery 88, 260–268 (1980).
Harrison, M. R., Jester, J. A. & Ross, N. A. Correction of congenital diaphragmatic hernia in utero. I. The model: intrathoracic balloon produces fatal pulmonary hypoplasia. Surgery 88, 174–182 (1980).
Harrison, M. R., Ross, N. A. & de Lorimier, A. A. Correction of congenital diaphragmatic hernia in utero. III. Development of a successful surgical technique using abdominoplasty to avoid compromise of umbilical blood flow. J. Pediatr. Surg. 16, 934–942 (1981).
Nelson, C. M. et al. Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development 144, 4328–4335 (2017).
Morgan, J. T., Stewart, W. G., McKee, R. A. & Gleghorn, J. P. The mechanosensitive ion channel TRPV4 is a regulator of lung development and pulmonary vasculature stabilization. Cell Mol. Bioeng. 11, 309–320 (2018).
Derderian, S. C. et al. Mass effect alone may not explain pulmonary vascular pathology in severe congenital diaphragmatic hernia. Fetal Diagn. Ther. 39, 117–124 (2016).
Guilbert, T. W., Gebb, S. A. & Shannon, J. M. Lung hypoplasia in the nitrofen model of congenital diaphragmatic hernia occurs early in development. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1159–L1171 (2000).
Massolo, A. C. et al. Fetal cardiac dimensions in congenital diaphragmatic hernia: relationship with gestational age and postnatal outcomes. J. Perinatol. 41, 1651–1659 (2021).
Vogel, M. et al. Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 35, 310–317 (2010).
Baumgart, S. et al. Cardiac malposition, redistribution of fetal cardiac output, and left heart hypoplasia reduce survival in neonates with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation. J. Pediatr. 133, 57–62 (1998).
Stressig, R., Fimmers, R., Eising, K., Gembruch, U. & Kohl, T. Preferential streaming of the ductus venosus and inferior caval vein towards the right heart is associated with left heart underdevelopment in human fetuses with left-sided diaphragmatic hernia. Heart 96, 1564–1568 (2010).
Patel, N., Massolo, A. C. & Kipfmueller, F. Congenital diaphragmatic hernia-associated cardiac dysfunction. Semin. Perinatol. 44, 151168 (2020).
Iritani, I. Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat. Embryol. 169, 133–139 (1984).
Cilley, R. E., Zgleszewski, S. E., Krummel, T. M. & Chinoy, M. R. Nitrofen dose-dependent gestational day-specific murine lung hypoplasia and left-sided diaphragmatic hernia. Am. J. Physiol. 272, L362–L371 (1997).
Keijzer, R., Liu, J., Deimling, J., Tibboel, D. & Post, M. Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. Am. J. Pathol. 156, 1299–1306 (2000). This seminal paper addresses the pathogenesis of pulmonary hypoplasia secondary to CDH by postulating the occurrence of two insults, one affecting both lungs before diaphragm development and one affecting the ipsilateral lung after defective diaphragm development.
Ackerman, K. G. et al. Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet. 1, 58–65 (2005).
Featherstone, N. C. et al. Airway smooth muscle dysfunction precedes teratogenic congenital diaphragmatic hernia and may contribute to hypoplastic lung morphogenesis. Am. J. Respir. Cell Mol. Biol. 35, 571–578 (2006).
Jesudason, E. C. Small lungs and suspect smooth muscle: congenital diaphragmatic hernia and the smooth muscle hypothesis. J. Pediatr. Surg. 41, 431–435 (2006).
van Loenhout, R. B. et al. The pulmonary mesenchymal tissue layer is defective in an in vitro recombinant model of nitrofen-induced lung hypoplasia. Am. J. Pathol. 180, 48–60 (2012).
Fox, Z. D. et al. Fetal lung transcriptome patterns in an ex vivo compression model of diaphragmatic hernia. J. Surg. Res. 231, 411–420 (2018).
Gilbert, R. M., Schappell, L. E. & Gleghorn, J. P. Defective mesothelium and limited physical space are drivers of dysregulated lung development in a genetic model of congenital diaphragmatic hernia. Development 148, dev199460 (2021).
Kunisaki, S. M. et al. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cell Transl. Med. 10, 98–114 (2021).
Jancelewicz, T. & Brindle, M. E. Prediction tools in congenital diaphragmatic hernia. Semin. Perinatol. 44, 151165 (2020).
Ba’ath, M. E., Jesudason, E. C. & Losty, P. D. How useful is the lung-to-head ratio in predicting outcome in the fetus with congenital diaphragmatic hernia? A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 30, 897–906 (2007).
Benachi, A., Cordier, A. G., Cannie, M. & Jani, J. Advances in prenatal diagnosis of congenital diaphragmatic hernia. Semin. Fetal Neonatal Med. 19, 331–337 (2014).
Longoni, M., Pober, B. R. & High, F. A. Congenital Diaphragmatic Hernia Overview. GeneReviews [online], https://www.ncbi.nlm.nih.gov/books/NBK1359/ (updated 5 Nov 2020).
Jancelewicz, T. et al. Risk-stratification enables accurate single-center outcomes assessment in congenital diaphragmatic hernia (CDH). J. Pediatr. Surg. 54, 932–936 (2019).
Hassan, M. et al. Risk stratification helps identify congenital diaphragmatic hernia (CDH) infants in need of formal neurodevelopmental assessment: observations from a structured, interdisciplinary long-term follow-up clinic. J. Pediatr. Surg. 13, 846–850 (2022).
Albanese, C. T. et al. Fetal liver position and perinatal outcome for congenital diaphragmatic hernia. Prenat. Diagn. 18, 1138–1142 (1998).
Metkus, A. P., Filly, R. A., Stringer, M. D., Harrison, M. R. & Adzick, N. S. Sonographic predictors of survival in fetal diaphragmatic hernia. J. Pediatr. Surg. 31, 148–151 (1996).
Lipshutz, G. S. et al. Prospective analysis of lung-to-head ratio predicts survival for patients with prenatally diagnosed congenital diaphragmatic hernia. J. Pediatr. Surg. 32, 1634–1636 (1997).
Russo, F. M. et al. Proposal for standardized prenatal ultrasound assessment of the fetus with congenital diaphragmatic hernia by the European reference network on rare inherited and congenital anomalies (ERNICA). Prenat. Diagn. 38, 629–637 (2008).
Jani, J. et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet. Gynecol. 30, 67–71 (2007).
Deprest, J. A., Flemmer, A. W., Gratacos, E. & Nicolaides, K. Antenatal prediction of lung volume and in-utero treatment by fetal endoscopic tracheal occlusion in severe isolated congenital diaphragmatic hernia. Semin. Fetal Neonatal Med. 14, 8–13 (2009).
Senat, M. V. et al. Prognosis of isolated congenital diaphragmatic hernia using lung-area-to-head-circumference ratio: variability across centers in a national perinatal network. Ultrasound Obstet. Gynecol. 51, 208–213 (2018).
Peralta, C. F., Cavoretto, P., Csapo, B., Vandecruys, H. & Nicolaides, K. H. Assessment of lung area in normal fetuses at 12-32 weeks. Ultrasound Obstet. Gynecol. 26, 718–724 (2005).
Britto, I. S. et al. Standardization of sonographic lung-to-head ratio measurements in isolated congenital diaphragmatic hernia: impact on the reproducibility and efficacy to predict outcomes. J. Ultrasound Med. 34, 1721–1727 (2015).
Goodfellow, T., Hyde, I., Burge, D. M. & Freeman, N. V. Congenital diaphragmatic hernia: the prognostic significance of the site of the stomach. Br. J. Radiol. 60, 993–935 (1987).
Hasegawa, T. Use of lung-thorax transverse area ratio in the antenatal evaluation of lung hypoplasia in congenital diaphragmatic hernia. J. Clin. Ultrasound 18, 705–709 (1990).
Ruano, R. et al. Fetal lung volume and quantification of liver herniation by magnetic resonance imaging in isolated congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 43, 662–669 (2014).
Gorincour, G. et al. Prenatal prognosis of congenital diaphragmatic hernia using magnetic resonance imaging measurement of fetal lung volume. Ultrasound Obstet. Gynecol. 26, 738–744 (2005).
Zamora, I. J. et al. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH). J. Pediatr. Surg. 49, 688–693 (2014).
Barnewolt, C. E. et al. Percent predicted lung volumes as measured on fetal magnetic resonance imaging: a useful biometric parameter for risk stratification in congenital diaphragmatic hernia. J. Pediatr. Surg. 42, 193–197 (2007).
Shieh, H. F. et al. Percent predicted lung volume changes on fetal magnetic resonance imaging throughout gestation in congenital diaphragmatic hernia. J. Pediatr. Surg. 52, 933–937 (2017).
Lazar, D. A. et al. Defining “liver-up”: does the volume of liver herniation predict outcome for fetuses with isolated left-sided congenital diaphragmatic hernia. J. Pediatr. Surg. 47, 1058–1062 (2012).
Kolbe, A. B. et al. Reproducibility of lung and liver volume measurements on fetal magnetic resonance imaging in left-sided congenital diaphragmatic hernia. Fetal Diagn. Ther. 48, 258–264 (2021).
Kilian, A. K., Büsing, K. A., Schuetz, E. M., Schaible, T. & Neff, K. W. Fetal MR lung volumetry in congenital diaphragmatic hernia (CDH): prediction of clinical outcome and the need for extracorporeal membrane oxygenation (ECMO). Klin. Padiatr. 221, 295–301 (2009).
Worley, K. C. et al. Fetal magnetic resonance imaging in isolated diaphragmatic hernia: volume of herniated liver and neonatal outcome. Am. J. Obstet. Gynecol. 200, 318.e1–6 (2009).
Khmour, A. Y., Konduri, G. G., Sato, T. T., Uhing, M. R. & Basir, M. A. Role of admission gas exchange measurement in predicting congenital diaphragmatic hernia survival in the era of gentle ventilation. J. Pediatr. Surg. 49, 1197–1201 (2014).
Congenital Diaphragmatic Hernia Study Group. Estimating disease severity of Congenital Diaphragmatic Hernia in the first 5 minutes of life. J. Pediatr. Surg. 36, 141–145 (2001).
Brindle, M. E., Cook, E. F., Tibboel, D., Lally, P. A. & Lally, K. P. A clinical prediction rule for the severity of congenital diaphragmatic hernias in newborns. Pediatrics 134, e413–e419 (2014). This CDHSG publication described a generalizable scoring system for CDH that can be calculated rapidly at the bedside for selection of transfer of infants with CDH to high-volume centres as well as for consideration of advanced medical therapies.
Ruttenstock, E. et al. Best oxygenation index on day 1: a reliable marker for outcome and survival in infants with congenital diaphragmatic hernia. Eur. J. Pediatr. Surg. 25, 3–8 (2015).
Coleman, A. J. et al. First 24-h SNAP-II score and highest PaCO2 predict the need for ECMO in congenital diaphragmatic hernia. J. Pediatr. Surg. 48, 2214–2218 (2013).
Grizelj, R. et al. Survival prediction of high-risk outborn neonates with congenital diaphragmatic hernia from capillary blood gases. BMC Pediatr. 16, 114 (2016).
Schultz, C. M., DiGeronimo, R. J. & Yoder, B. A. Congenital diaphragmatic hernia: a simplified postnatal predictor of outcome. J. Pediatr. Surg. 42, 510–516 (2007).
Bent, D. P., Nelson, J., Kent, D. M. & Jen, H. C. Population-based validation of a clinical prediction model for congenital diaphragmatic hernias. J. Pediatr. 201, 160–165.e1 (2018).
Clohse, K. et al. Application of a postnatal prediction model of survival in CDH in the era of fetal therapy. J. Matern. Fetal Neonatal Med. 33, 1818–1823 (2020).
Patel, M. J., Bell, C. S., Lally, K. P., Lally, P. A. & Katakam, L. I. Lowest PaCO2 on the first day of life predicts mortality and morbidity among infants with congenital diaphragmatic hernia. J. Perinatol. 39, 229–236 (2019).
Yoder, B. A., Lally, P. A. & Lally, K. P. Does a highest pre-ductal O2 saturation <85% predict non-survival for congenital diaphragmatic hernia. J. Perinatol. 32, 947–952 (2012).
Park, H. W. et al. A simplified formula using early blood gas analysis can predict survival outcomes and the requirements for extracorporeal membrane oxygenation in congenital diaphragmatic hernia. J. Korean Med. Sci. 28, 924–928 (2013).
Keller, R. L. et al. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am. J. Respir. Crit. Care Med. 182, 555–561 (2010).
Steurer, M. A. et al. B-type natriuretic peptide: prognostic marker in congenital diaphragmatic hernia. Pediatr. Res. 76, 549–554 (2014).
Casaccia, G. et al. Birth weight and McGoon Index predict mortality in newborn infants with congenital diaphragmatic hernia. J. Pediatr. Surg. 41, 25–28 (2006).
Suda, K., Bigras, J. L., Bohn, D., Hornberger, L. K. & McCrindle, B. W. Echocardiographic predictors of outcome in newborns with congenital diaphragmatic hernia. Pediatrics 105, 1106–1109 (2000).
Dao, D. T. et al. Early left ventricular dysfunction and severe pulmonary hypertension predict adverse outcomes in “low-risk” congenital diaphragmatic hernia. Pediatr. Crit. Care Med. 21, 637–646 (2020).
Hunter, C. E., Saenz, Z. M., Nunez, D., Timsina, L. & Gray, B. W. Inter- and intra-rater reliability of a grading system for congenital diaphragmatic hernia defect size. J. Surg. Res. 233, 82–87 (2019).
Werner, N. L. et al. Prenatal and postnatal markers of severity in congenital diaphragmatic hernia have similar prognostic ability. Prenat. Diagn. 36, 107–111 (2016).
Lally, K. P. et al. Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics 120, e651–e657 (2007).
Hedrick, M. H. et al. Congenital high airway obstruction syndrome (CHAOS): a potential for perinatal intervention. J. Pediatr. Surg. 29, 271–274 (1994).
Khan, P. A., Cloutier, M. & Piedboeuf, B. Tracheal occlusion: a review of obstructing fetal lungs to make them grow and mature. Am. J. Med. Genet. C Semin. Med. Genet. 145C, 125–138 (2007).
Nguyen, T. M. et al. Stretch increases alveolar type 1 cell number in fetal lungs through ROCK-Yap/Taz pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 321, L814–L826 (2021).
Carmel, J. A., Friedman, F. & Adams, F. H. Fetal tracheal ligation and lung development. Am. J. Dis. Child. 109, 452–456 (1965).
DiFiore, J. W. et al. Experimental fetal tracheal ligation reverses the structural and physiological effects of pulmonary hypoplasia in congenital diaphragmatic hernia. J. Pediatr. Surg. 29, 248–256 (1994).
Hedrick, M. H. et al. Plug the lung until it grows (PLUG): a new method to treat congenital diaphragmatic hernia in utero. J. Pediatr. Surg. 29, 612–617 (1994).
Beierle, E. A., Langham, M. R. & Cassin, S. In utero lung growth of fetal sheep with diaphragmatic hernia and tracheal stenosis. J. Pediatr. Surg. 31, 141–147 (1996).
Skarsgard, E. D. et al. Fetal endoscopic tracheal occlusion (‘Fetendo-PLUG’) for congenital diaphragmatic hernia. J. Pediatr. Surg. 31, 1335–1338 (1996).
Deprest, J. A. et al. Tracheoscopic endoluminal plugging using an inflatable device in the fetal lamb model. Eur. J. Obstet. Gynecol. Reprod. Biol. 81, 165–169 (1998).
Flageole, H. et al. The plug-unplug sequence: an important step to achieve type II pneumocyte maturation in the fetal lamb model. J. Pediatr. Surg. 33, 299–303 (1998).
Harrison, M. R. et al. Correction of congenital diaphragmatic hernia in utero VIII: response of the hypoplastic lung to tracheal occlusion. J. Pediatr. Surg. 31, 1339–1348 (1996).
Deprest, J., Gratacos, E. & Nicolaides, K. H. Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet. Gynecol. 24, 121–126 (2004).
Gregoir, C. et al. Fertility, pregnancy and gynecological outcomes after fetoscopic surgery for congenital diaphragmatic hernia. Hum. Reprod. 31, 2024–2030 (2016).
Jani, J. C. et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. Ultrasound Obstet. Gynecol. 34, 304–310 (2009).
Jani, J. C. et al. Prenatal prediction of neonatal morbidity in survivors with congenital diaphragmatic hernia: a multicenter study. Ultrasound Obstet. Gynecol. 33, 64–69 (2009).
Doné, E. et al. Predictors of neonatal morbidity in fetuses with severe isolated congenital diaphragmatic hernia undergoing fetoscopic tracheal occlusion. Ultrasound Obstet. Gynecol. 42, 77–83 (2013).
Reiss, I. et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO Consortium consensus. Neonatology 98, 354–364 (2010).
Snoek, K. G. et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO Consortium Consensus-2015 Update. Neonatology 110, 66–74 (2016). This report from the European CDH Consortium Consensus provides an updated statement on the key recommendations for the standardized postnatal management of patients with CDH.
Deprest, J. A. et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N. Engl. J. Med. 385, 107–118 (2021). This is the first report from the randomized controlled trial conducted in fetuses with severe left-sided CDH receiving FETO at 27–29 weeks of gestation. This trial showed a significant benefit of FETO over expectant care with respect to survival to discharge.
Nawapun, K. et al. In vivo evidence by magnetic resonance volumetry of a gestational age dependent response to tracheal occlusion for congenital diaphragmatic hernia. Prenat. Diagn. 35, 1048–1056 (2015).
Jani, J. C., Nicolaides, K. H., Gratacós, E., Vandecruys, H. & Deprest, J. A. Fetal lung-to-head ratio in the prediction of survival in severe left-sided diaphragmatic hernia treated by fetal endoscopic tracheal occlusion (FETO). Am. J. Obstet. Gynecol. 195, 1646–1650 (2006).
Deprest, J. A. et al. Randomized trial of fetal surgery for moderate left diaphragmatic hernia. N. Engl. J. Med. 385, 119–129 (2021).
Van Calster, B. et al. The randomized TOTAL-trials on fetal surgery for congenital diaphragmatic hernia: re-analysis using pooled data. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2021.11.1351 (2022).
Stolar, C. J. H., Flake, A. W. & Losty, P. D. Fetal surgery for severe left diaphragmatic hernia. N. Engl. J. Med. 385, 2111–2112 (2021).
Stolar, C. J. H., Flake, A. W. & Losty, P. D. Fetal surgery for severe left diaphragmatic hernia. J. Pediatr. Surg. 57, 552–553 (2022).
Deprest, J. A., Nicolaides, K. H. & Benachi, A. Fetal surgery for severe left diaphragmatic hernia. Reply. N. Engl. J. Med. 385, 2112 (2021).
Russo, F. et al. Antenatal management of CDH: what’s next? Prenat. Diagn. 42, 291–300 (2022).
Jancelewicz, T. et al. Toward standardized management of congenital diaphragmatic hernia: an analysis of practice guidelines. J. Surg. Res. 243, 229–235 (2019).
Puligandla, P. S. et al. Diagnosis and management of congenital diaphragmatic hernia: a clinical practice guideline. CMAJ 190, E103–E112 (2018). This publication is the current guidelines of CDH care from the Canadian CDH Collaborative, and provides evidence-based recommendations regarding prenatal diagnosis, perinatal management including surgery, and long-term follow-up.
Guner, Y. et al. Management of congenital diaphragmatic hernia treated with extracorporeal life support: interim guidelines consensus statement from the Extracorporeal Life Support Organization. ASAIO J. 67, 113–120 (2021).
Kinsella, J. P. et al. The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension. J. Pediatr. 197, 17–22 (2018).
Cochius-den Otter, S. C. M. et al. Routine intubation in newborns with congenital diaphragmatic hernia. Pediatrics 146, e20201258 (2020).
Foglia, E. E. et al. Initiating resuscitation before umbilical cord clamping in infants with congenital diaphragmatic hernia: a pilot feasibility trial. Arch. Dis. Child. Fetal Neonatal Ed. 105, 322–326 (2020).
Kashyap, A. J. et al. Physiologically based cord clamping improves cardiopulmonary haemodynamics in lambs with a diaphragmatic hernia. Arch. Dis. Child. Fetal Neonatal Ed. 105, 18–25 (2020).
Lefebvre, C. et al. Feasibility and safety of intact cord resuscitation in newborn infants with congenital diaphragmatic hernia (CDH). Resuscitation 120, 20–25 (2017).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04373902 (2022).
Le Duc, K. et al. Efficacy of intact cord resuscitation compared to immediate cord clamping on cardiorespiratory adaptation at birth in infants with isolated congenital diaphragmatic hernia (CHIC). Children 8, 339 (2021).
Azarow, K. et al. Congenital diaphragmatic hernia — a tale of two cities: the Toronto experience. J. Pediatr. Surg. 32, 395–400 (1997).
Wung, J. T., Sahni, R., Moffitt, S. T., Lipsitz, E. & Stolar, C. J. Congenital diaphragmatic hernia: survival treated with very delayed surgery, spontaneous respiration, and no chest tube. J. Pediatr. Surg. 30, 406–409 (1995).
Morini, F., Capolupo, I., van Weteringen, W. & Reiss, I. Ventilation modalities in infants with congenital diaphragmatic hernia. Semin. Pediatr. Surg. 26, 159–165 (2017).
Snoek, K. G. et al. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: a randomized clinical trial (The VICI-trial). Ann. Surg. 263, 867–874 (2016). This international multicentre randomized clinical trial assessing conventional versus high-frequency oscillation ventilation in infants with CDH showed no superiority of one approach over the other for survival and development of bronchopulmonary dysplasia. Secondary outcomes, such as ventilation time and need for ECLS, favoured conventional ventilation.
Fuyuki, M. et al. Prognosis of conventional vs. high-frequency ventilation for congenital diaphragmatic hernia: a retrospective cohort study. J. Perinatol. 41, 814–823 (2021).
Gupta, V. S. & Harting, M. T. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin. Perinatol. 44, 151167 (2020).
Barrington, K. J., Finer, N., Pennaforte, T. & Altit, G. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst. Rev. 1, CD000399 (2017).
Kipfmueller, F. et al. Continuous intravenous sildenafil as an early treatment in neonates with congenital diaphragmatic hernia. Pediatr. Pulmonol. 53, 452–460 (2018).
Putnam, L. R. et al. Evaluation of variability in inhaled nitric oxide use and pulmonary hypertension in patients with congenital diaphragmatic hernia. JAMA Pediatr. 170, 1188–1194 (2016).
Campbell, B. T. et al. Inhaled nitric oxide use in neonates with congenital diaphragmatic hernia. Pediatrics 134, e420–e426 (2014).
Lawrence, K. M. et al. Inhaled nitric oxide is associated with improved oxygenation in a subpopulation of infants with congenital diaphragmatic hernia and pulmonary hypertension. J. Pediatr. 219, 167–172 (2020).
Carpentier, E. et al. Safety and tolerability of subcutaneous treprostinil in newborns with congenital diaphragmatic hernia and life-threatening pulmonary hypertension. J. Pediatr. Surg. 52, 1480–1483 (2017).
Patel, N. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients. Neonatology 102, 130–136 (2012).
Lawrence, K. M. et al. Treprostinil improves persistent pulmonary hypertension associated with congenital diaphragmatic hernia. J. Pediatr. 200, 44–49 (2018).
Lakshminrusimha, S. et al. Milrinone in congenital diaphragmatic hernia — a randomized pilot trial: study protocol, review of literature and survey of current practices. Matern. Health Neonatol. Perinatol. 3, 27 (2017).
Patel, N. & Kipfmueller, F. Cardiac dysfunction in congenital diaphragmatic hernia: pathophysiology, clinical assessment, and management. Semin. Pediatr. Surg. 26, 154–158 (2017).
Moenkemeyer, F. & Patel, N. Right ventricular diastolic function measured by tissue Doppler imaging predicts early outcome in congenital diaphragmatic hernia. Pediatr. Crit. Care Med. 15, 49–55 (2014).
Le Duc, K. et al. Prostaglandin E1 in infants with congenital diaphragmatic hernia (CDH) and life-threatening pulmonary hypertension. J. Pediatr. Surg. 55, 1872–1878 (2020).
Patel, N. et al. Early postnatal ventricular dysfunction is associated with disease severity in patients with congenital diaphragmatic hernia. J. Pediatr. 203, 400–407.e1 (2018).
Zhaorigetu, S., Gupta, V. S., Jin, D. & Harting, M. T. Cardiac energy metabolism may play a fundamental role in congenital diaphragmatic hernia-associated ventricular dysfunction. J. Mol. Cell. Cardiol. 157, 14–16 (2021).
Seetharamaiah, R., Younger, J. G., Bartlett, R. H. & Hirschl, R. B. Factors associated with survival in infants with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: a report from the Congenital Diaphragmatic Hernia Study Group. J. Pediatr. Surg. 44, 1315–1321 (2009).
Guner, Y. S. et al. Outcome analysis of neonates with congenital diaphragmatic hernia treated with venovenous vs venoarterial extracorporeal membrane oxygenation. J. Pediatr. Surg. 44, 1691–1701 (2009).
Delaplain, P. T. et al. Predictors of long ECMO runs for congenital diaphragmatic hernia. J. Pediatr. Surg. 55, 993–997 (2020).
Rafat, N. & Schaible, T. Extracorporeal membrane oxygenation in congenital diaphragmatic hernia. Front. Pediatr. 7, 336 (2019).
Zani, A., Zani-Ruttenstock, E. & Pierro, A. Advances in the surgical approach to congenital diaphragmatic hernia. Semin. Fetal Neonatal Med. 19, 364–369 (2014).
Putnam, L. R. et al. Minimally invasive vs open congenital diaphragmatic hernia repair: is there a superior approach. J. Am. Coll. Surg. 224, 416–422 (2017).
Okawada, M. et al. Thoracoscopic repair of congenital diaphragmatic hernia in neonates: findings of a multicenter study in Japan. Surg. Today 51, 1694–1702 (2021).
Pierro, A. Hypercapnia and acidosis during the thoracoscopic repair of oesophageal atresia and congenital diaphragmatic hernia. J. Pediatr. Surg. 50, 247–249 (2015).
Zani, A. et al. Intraoperative acidosis and hypercapnia during thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia/tracheoesophageal fistula. Paediatr. Anaesth. 27, 841–848 (2017).
Gross, E., Stolar C. J. H. in Operative Pediatric Surgery (eds Coran, A., Spitz, L. W.) 186-194 (Taylor & Francis Group, Boca Raton, 2013).
Zani, A. et al. International survey on the management of congenital diaphragmatic hernia. Eur. J. Pediatr. Surg. 26, 38–46 (2016).
Verla, M. A. et al. Does creating a dome reduce recurrence in congenital diaphragmatic hernia following patch repair? J. Pediatr. Surg. 57, 637–642 (2022).
Bax, N. M. & Collins, D. L. The advantages of reconstruction of the dome of the diaphragm in congenital posterolateral diaphragmatic defects. J. Pediatr. Surg. 19, 484–487 (1984).
Hollinger, L. E. et al. A risk-stratified analysis of delayed congenital diaphragmatic hernia repair: does timing of operation matter? Surgery 156, 475–482 (2014).
Delaplain, P. T. et al. Potential survival benefit with repair of congenital diaphragmatic hernia (CDH) after extracorporeal membrane oxygenation (ECMO) in select patients: study by ELSO CDH Interest Group. J. Pediatr. Surg. 54, 1132–1137 (2019).
Bryner, B. S. et al. Congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: does timing of repair matter. J. Pediatr. Surg. 44, 1165–1172 (2009).
Dao, D. T. et al. Surgical repair of congenital diaphragmatic hernia after extracorporeal membrane oxygenation cannulation: early repair improves survival. Ann. Surg. 274, 186–194 (2021).
Maxwell, D., Baird, R. & Puligandla, P. Abdominal wall closure in neonates after congenital diaphragmatic hernia repair. J. Pediatr. Surg. 48, 930–934 (2013).
Wang, Q., Liu, Q., Zang, J., Wang, J. & Chen, J. Risk factors affecting postoperative pulmonary function in congenital diaphragmatic hernia. Ann. Surg. Treat. Res. 98, 206–213 (2020).
Aihole, J. S. et al. A clinical study on congenital diaphragmatic hernia in neonates: our institutional experience. J. Indian Assoc. Pediatr. Surg. 23, 131–139 (2018).
Kurland, Y. et al. Neurally adjusted ventilatory assist in neonates with congenital diaphragmatic hernia. J. Perinatol. 41, 1910–1915 (2021).
Bairdain, S. et al. Nutritional outcomes in survivors of congenital diaphragmatic hernia (CDH)-factors associated with growth at one year. J. Pediatr. Surg. 50, 74–77 (2015).
Pierog, A. et al. Predictors of low weight and tube feedings in children with congenital diaphragmatic hernia at 1 year of age. J. Pediatr. Gastroenterol. Nutr. 59, 527–530 (2014).
Terui, K. et al. Impact of nutrition in the treatment of congenital diaphragmatic hernia. Pediatr. Int. 61, 482–488 (2019).
Gien, J. et al. Short-term weight gain velocity in infants with congenital diaphragmatic hernia (CDH). Early Hum. Dev. 106-107, 7–12 (2017).
Haliburton, B. et al. Long-term nutritional morbidity for congenital diaphragmatic hernia survivors: failure to thrive extends well into childhood and adolescence. J. Pediatr. Surg. 50, 734–738 (2015).
Bathgate, J. R., Rigassio Radler, D., Zelig, R., Lagoski, M. & Murthy, K. Nutrition interventions associated with favorable growth in infants with congenital diaphragmatic hernia. Nutr. Clin. Pract. 36, 406–413 (2021).
Mehta, N. M. et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr. Crit. Care Med. 18, 675–715 (2017).
Zozaya, C. et al. Predicting full enteral feeding in the postoperative period in infants with congenital diaphragmatic hernia. Eur. J. Pediatr. Surg. 27, 431–436 (2017).
Leeuwen, L. et al. Congenital diaphragmatic hernia and growth to 12 years. Pediatrics 140, e20163659 (2017).
Marseglia, L. et al. Gastroesophageal reflux and congenital gastrointestinal malformations. World J. Gastroenterol. 21, 8508–8515 (2015).
Arcos-Machancoses, J. V., Ruiz Hernández, C., Martin de Carpi, J. & Pinillos Pisón, S. A systematic review with meta-analysis of the prevalence of gastroesophageal reflux in congenital diaphragmatic hernia pediatric survivors. Dis. Esophagus https://doi.org/10.1093/dote/dox158 (2018).
Zanini, A. et al. Follow-up of congenital diaphragmatic hernia: need for routinary assessment of acid gastroesophageal reflux with pH-metry. Eur. J. Pediatr. Surg. 28, 502–507 (2018).
Verla, M. A. et al. Prenatal imaging features and postnatal factors associated with gastrointestinal morbidity in congenital diaphragmatic hernia. Fetal Diagn. Ther. 47, 252–260 (2020).
Rosen, R. et al. Pediatric gastroesophageal reflux clinical practice guidelines: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 66, 516–554 (2018).
Diamond, I. R. et al. Predicting the need for fundoplication at the time of congenital diaphragmatic hernia repair. J. Pediatr. Surg. 42, 1066–1070 (2007).
Verbelen, T. et al. Antireflux surgery after congenital diaphragmatic hernia repair: a plea for a tailored approach. Eur. J. Cardiothorac. Surg. 44, 263–268 (2013).
Bagolan, P. & Morini, F. Long-term follow up of infants with congenital diaphragmatic hernia. Semin. Pediatr. Surg. 16, 134–144 (2007).
McHoney, M. Congenital diaphragmatic hernia. Early Hum. Dev. 90, 941–946 (2014).
Maier, S. et al. Preventive antireflux surgery in neonates with congenital diaphragmatic hernia: a single-blinded prospective study. J. Pediatr. Surg. 46, 1510–1515 (2011).
Jancelewicz, T., Chiang, M., Oliveira, C. & Chiu, P. P. Late surgical outcomes among congenital diaphragmatic hernia (CDH) patients: why long-term follow-up with surgeons is recommended. J. Pediatr. Surg. 48, 935–941 (2013).
Hollinger, L. E., Harting, M. T. & Lally, K. P. Long-term follow-up of congenital diaphragmatic hernia. Semin. Pediatr. Surg. 26, 178–184 (2017). This publication outlined the specific long-term challenges faced by patients with CDH and presented an algorithm for a multidisciplinary long-term follow-up programme.
Nagata, K. et al. Risk factors for the recurrence of the congenital diaphragmatic hernia-report from the long-term follow-up study of Japanese CDH study group. Eur. J. Pediatr. Surg. 25, 9–14 (2015).
Putnam, L. R. et al. Factors associated with early recurrence after congenital diaphragmatic hernia repair. J. Pediatr. Surg. 52, 928–932 (2017).
Moss, R. L., Chen, C. M. & Harrison, M. R. Prosthetic patch durability in congenital diaphragmatic hernia: a long-term follow-up study. J. Pediatr. Surg. 36, 152–154 (2001).
Loff, S. et al. Implantation of a cone-shaped double-fixed patch increases abdominal space and prevents recurrence of large defects in congenital diaphragmatic hernia. J. Pediatr. Surg. 40, 1701–1705 (2005).
Sydorak, R. M. et al. Reversed latissimus dorsi muscle flap for repair of recurrent congenital diaphragmatic hernia. J. Pediatr. Surg. 38, 296–300 (2003).
Mills, J., Safavi, A. & Skarsgard, E. D. Chylothorax after congenital diaphragmatic hernia repair: a population-based study. J. Pediatr. Surg. 47, 842–846 (2012).
Ivy, D. D. et al. Pediatric pulmonary hypertension. J. Am. Coll. Cardiol. 62, D117–D126 (2013).
Lusk, L. A., Wai, K. C., Moon-Grady, A. J., Steurer, M. A. & Keller, R. L. Persistence of pulmonary hypertension by echocardiography predicts short-term outcomes in congenital diaphragmatic hernia. J. Pediatr. 166, 251–6.e1 (2015).
Dillon, P. W., Cilley, R. E., Mauger, D., Zachary, C. & Meier, A. The relationship of pulmonary artery pressure and survival in congenital diaphragmatic hernia. J. Pediatr. Surg. 39, 307–312 (2004).
Abman, S. H. et al. Pediatric pulmonary hypertension: guidelines from the american heart association and american thoracic society. Circulation 132, 2037–2099 (2015).
Harting, M. T. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin. Pediatr. Surg. 26, 147–153 (2017).
Wong, M. et al. Pulmonary hypertension in congenital diaphragmatic hernia patients: prognostic markers and long-term outcomes. J. Pediatr. Surg. 53, 918–924 (2018).
Kraemer, U. S. et al. Characteristics of infants with congenital diaphragmatic hernia who need follow-up of pulmonary hypertension. Pediatr. Crit. Care Med. 19, e219–e226 (2018).
Cauley, R. P. et al. Pulmonary support on day 30 as a predictor of morbidity and mortality in congenital diaphragmatic hernia. J. Pediatr. Surg. 48, 1183–1189 (2013).
King, S. K. et al. Congenital diaphragmatic hernia: observed/expected lung-to-head ratio as a predictor of long-term morbidity. J. Pediatr. Surg. 51, 699–702 (2016).
Schaible, T. et al. Prediction of chronic lung disease, survival and need for ECMO therapy in infants with congenital diaphragmatic hernia: additional value of fetal MRI measurements? Eur. J. Radiol. 81, 1076–1082 (2012).
Cauley, R. P. et al. Pulmonary support on day of life 30 is a strong predictor of increased 1 and 5-year morbidity in survivors of congenital diaphragmatic hernia. J. Pediatr. Surg. 50, 849–855 (2015).
Hayward, M. J. et al. Predicting inadequate long-term lung development in children with congenital diaphragmatic hernia: an analysis of longitudinal changes in ventilation and perfusion. J. Pediatr. Surg. 42, 112–116 (2007).
Wigen, R. B., Duan, W., Moraes, T. J. & Chiu, P. P. L. Predictors of long-term pulmonary morbidity in children with congenital diaphragmatic hernia. Eur. J. Pediatr. Surg. 29, 120–124 (2019).
Haliburton, B. et al. Pulmonary function and nutritional morbidity in children and adolescents with congenital diaphragmatic hernia. J. Pediatr. Surg. 52, 252–256 (2017).
Lally, K. P. & Engle, W. Postdischarge follow-up of infants with congenital diaphragmatic hernia. Pediatrics 121, 627–632 (2008).
Benoist, G. et al. Risk of readmission for wheezing during infancy in children with congenital diaphragmatic hernia. PLoS ONE 11, e0155556 (2016).
Panitch, H. B. et al. Lung function over the first 3 years of life in children with congenital diaphragmatic hernia. Pediatr. Pulmonol. 50, 896–907 (2015).
Bojanić, K. et al. Cardiopulmonary exercise performance is reduced in congenital diaphragmatic hernia survivors. Pediatr. Pulmonol. 51, 1320–1329 (2016).
van der Cammen-van Zijp, M. H. et al. Deterioration of exercise capacity after neonatal extracorporeal membrane oxygenation. Eur. Respir. J. 38, 1098–1104 (2011).
Dao, D. T. et al. Longitudinal analysis of pulmonary function in survivors of congenital diaphragmatic hernia. J. Pediatr. 216, 158–164.e2 (2020).
Vu, L. T., McFarland, C., Bratton, B. & Lee, H. Closer look at the nutritional outcomes of patients after primary repair of congenital diaphragmatic hernia. J. Pediatr. Gastroenterol. Nutr. 65, 237–241 (2017).
Rudra, S. et al. Gastrostomy tube placement in infants with congenital diaphragmatic hernia: frequency, predictors, and growth outcomes. Early Hum. Dev. 103, 97–100 (2016).
Howell, H. B., Farkouh-Karoleski, C., Weindler, M. & Sahni, R. Resting energy expenditure in infants with congenital diaphragmatic hernia without respiratory support at time of neonatal hospital discharge. J. Pediatr. Surg. 53, 2100–2104 (2018).
Fitzgerald, D. A., Kench, A., Hatton, L. & Karpelowsky, J. Strategies for improving early nutritional outcomes in children with oesophageal atresia and congenital diaphragmatic hernia. Paediatr. Respir. Rev. 25, 25–29 (2018).
Morandi, A. et al. Endoscopic surveillance for congenital diaphragmatic hernia: unexpected prevalence of silent esophagitis. Eur. J. Pediatr. Surg. 26, 291–295 (2016).
Montalva, L., Raffler, G., Riccio, A., Lauriti, G. & Zani, A. Neurodevelopmental impairment in children with congenital diaphragmatic hernia: not an uncommon complication for survivors. J. Pediatr. Surg. 55, 625–634 (2020).
Van der Veeken, L. et al. Prenatal cerebellar growth is altered in congenital diaphragmatic hernia on ultrasound. Prenat. Diagn. 42, 330–337 (2022).
Amoils, M., Crisham Janik, M. & Lustig, L. R. Patterns and predictors of sensorineural hearing loss in children with congenital diaphragmatic hernia. JAMA Otolaryngol. Head Neck Surg. 141, 923–926 (2015).
Wilson, M. G., Riley, P., Hurteau, A. M., Baird, R. & Puligandla, P. S. Hearing loss in congenital diaphragmatic hernia (CDH) survivors: is it as prevalent as we think. J. Pediatr. Surg. 48, 942–945 (2013).
Alenazi, A. et al. The prevalence of hearing loss in children with congenital diaphragmatic hernia: a longitudinal population-based study. J. Pediatr. Surg. 56, 226–229 (2021).
Danzer, E. et al. Short-term neurodevelopmental outcome in congenital diaphragmatic hernia: the impact of extracorporeal membrane oxygenation and timing of repair. Pediatr. Crit. Care Med. 19, 64–74 (2018).
Boyle, K. et al. Neurologic outcomes after extracorporeal membrane oxygenation: a systematic review. Pediatr. Crit. Care Med. 19, 760–766 (2018).
Engle, W. A. et al. Adult outcomes after newborn respiratory failure treated with extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 18, 73–79 (2017).
Bevilacqua, F. et al. Does ventilatory time retain its validity in predicting neurodevelopmental outcome at two years of age in high-risk congenital diaphragmatic hernia survivors. Am. J. Perinatol. 34, 248–252 (2017).
Danzer, E. et al. Rate and risk factors associated with autism spectrum disorder in congenital diaphragmatic hernia. J. Autism Dev. Disord. 48, 2112–2121 (2018).
Leeuwen, L. et al. Risk factors of impaired neuropsychologic outcome in school-aged survivors of neonatal critical illness. Crit. Care Med. 46, 401–410 (2018).
Schiller, R. M. et al. Neurobiologic correlates of attention and memory deficits following critical illness in early life. Crit. Care Med. 45, 1742–1750 (2017).
Schiller, R. M. et al. Neuropsychological follow-up after neonatal ECMO. Pediatrics 138, e20161313 (2016).
Schiller, R. M. et al. Working memory training following neonatal critical illness: a randomized controlled trial. Crit. Care Med. 46, 1158–1166 (2018).
Morini, F., Valfrè, L. & Bagolan, P. Long-term morbidity of congenital diaphragmatic hernia: a plea for standardization. Semin. Pediatr. Surg. 26, 301–310 (2017).
Jancelewicz, T. et al. Long-term surgical outcomes in congenital diaphragmatic hernia: observations from a single institution. J. Pediatr. Surg. 45, 155–160 (2010).
Safavi, A. et al. Multi-institutional follow-up of patients with congenital diaphragmatic hernia reveals severe disability and variations in practice. J. Pediatr. Surg. 47, 836–841 (2012).
Tracy, S. & Chen, C. Multidisciplinary long-term follow-up of congenital diaphragmatic hernia: a growing trend. Semin. Fetal Neonatal Med. 19, 385–391 (2014).
Chiu, P. P. & Ijsselstijn, H. Morbidity and long-term follow-up in CDH patients. Eur. J. Pediatr. Surg. 22, 384–392 (2012).
Peetsold, M. G. et al. Psychological outcome and quality of life in children born with congenital diaphragmatic hernia. Arch. Dis. Child. 94, 834–840 (2009).
Öst, E., Nisell, M., Frenckner, B., Mesas Burgos, C. & Öjmyr-Joelsson, M. Parenting stress among parents of children with congenital diaphragmatic hernia. Pediatr. Surg. Int. 33, 761–769 (2017).
Aite, L. et al. Seeing their children in pain: symptoms of posttraumatic stress disorder in mothers of children with an anomaly requiring surgery at birth. Am. J. Perinatol. 33, 770–775 (2016).
Kubota, A. et al. Major neonatal surgery: psychosocial consequence of the patient and mothers. J. Pediatr. Surg. 51, 364–367 (2016).
Power, B., Shibuya, S., Lane, B., Eaton, S. & De Coppi, P. Long-term feeding issue and its impact on the daily life of congenital diaphragmatic hernia survivors: results of the first patient-led survey. Pediatr. Surg. Int. 36, 63–68 (2020).
Fritz, K. A., Khmour, A. Y., Kitzerow, K., Sato, T. T. & Basir, M. A. Health-related quality of life, educational and family outcomes in survivors of congenital diaphragmatic hernia. Pediatr. Surg. Int. 35, 315–320 (2019).
Amin, R. et al. Long-term quality of life in neonatal surgical disease. Ann. Surg. 268, 497–505 (2018).
Morsberger, J. L. et al. Parent reported long-term quality of life outcomes in children after congenital diaphragmatic hernia repair. J. Pediatr. Surg. 54, 645–650 (2019).
Öst, E., Frenckner, B., Nisell, M., Burgos, C. M. & Öjmyr-Joelsson, M. Health-related quality of life in children born with congenital diaphragmatic hernia. Pediatr. Surg. Int. 34, 405–414 (2018).
Sheikh, F. et al. Assessment of quality of life outcomes using the pediatric quality of life inventory survey in prenatally diagnosed congenital diaphragmatic hernia patients. J. Pediatr. Surg. 51, 545–548 (2016).
Chen, C. et al. Impact on family of survivors of congenital diaphragmatic hernia repair: a pilot study. J. Pediatr. Surg. 42, 1845–1852 (2007).
Hinton, L., Locock, L., Long, A. M. & Knight, M. What can make things better for parents when babies need abdominal surgery in their first year of life? A qualitative interview study in the UK. BMJ Open 8, e020921 (2018).
Jacobs, R., Boyd, L., Brennan, K., Sinha, C. K. & Giuliani, S. The importance of social media for patients and families affected by congenital anomalies: a Facebook cross-sectional analysis and user survey. J. Pediatr. Surg. 51, 1766–1771 (2016).
IJsselstijn, H. et al. Defining outcomes following congenital diaphragmatic hernia using standardised clinical assessment and management plan (SCAMP) methodology within the CDH EURO consortium. Pediatr. Res. 84, 181–189 (2018).
Herrera-Rivero, M. et al. Circulating microRNAs are associated with pulmonary hypertension and development of chronic lung disease in congenital diaphragmatic hernia. Sci. Rep. 8, 10735 (2018).
Fabietti, I. et al. Extracellular vesicles and their miRNA content in amniotic and tracheal fluids of fetuses with severe congenital diaphragmatic hernia undergoing fetal intervention. Cells 10, 1493 (2021).
Wagner, R. et al. Can circular RNAs be used as prenatal biomarkers for congenital diaphragmatic hernia. Eur. Respir. J. 55, 1900514 (2020).
Vergote, S. et al. The TOTAL trial dilemma: a survey among professionals on equipoise regarding fetal therapy for severe congenital diaphragmatic hernia. Prenat. Diagn. 41, 179–189 (2021).
Russo, F. M. et al. Fetal endoscopic tracheal occlusion reverses the natural history of right-sided congenital diaphragmatic hernia: European multicenter experience. Ultrasound Obstet. Gynecol. 57, 378–385 (2021).
Montalva, L., Lauriti, G. & Zani, A. Congenital heart disease associated with congenital diaphragmatic hernia: a systematic review on incidence, prenatal diagnosis, management, and outcome. J. Pediatr. Surg. 54, 909–919 (2019).
Coughlin, M. A., Gupta, V. S., Ebanks, A. H., Harting, M. T. & Lally, K. P. Incidence and outcomes of patients with congenital diaphragmatic hernia and pulmonary sequestration. J. Pediatr. Surg. 56, 1126–1129 (2021).
Mesas Burgos, C., Frenckner, B., Harting, M. T., Lally, P. A. & Lally, K. P. Congenital diaphragmatic hernia and associated omphalocele: a study from the CDHSG registry. J. Pediatr. Surg. 55, 2099–2104 (2020).
Nelson, S. M. et al. Rescue of the hypoplastic lung by prenatal cyclical strain. Am. J. Respir. Crit. Care Med. 171, 1395–1402 (2005).
Al-Maary, J., Eastwood, M. P., Russo, F. M., Deprest, J. A. & Keijzer, R. Fetal tracheal occlusion for severe pulmonary hypoplasia in isolated congenital diaphragmatic hernia: a systematic review and meta-analysis of survival. Ann. Surg. 264, 929–933 (2016).
Araujo Júnior, E., Tonni, G., Martins, W. P. & Ruano, R. Procedure-related complications and survival following fetoscopic endotracheal occlusion (FETO) for severe congenital diaphragmatic hernia: systematic review and meta-analysis in the FETO era. Eur. J. Pediatr. Surg. 27, 297–305 (2017).
Acknowledgements
A.Z. is supported by the Canadian Institutes of Health Research project grant 175300 and SickKids Foundation R00DH00000. W.K.C. is supported by grant NICHD P01 HD068250. J.D. has been supported by WT101957 from the Wellcome Trust and NS/A/000027/1 from the Engineering and Physical Sciences Research Council of the UK, and by the Great Ormond Street Hospital and University College London Hospital Charities. R.K. is supported by project grants (148797, 178347 and 178387) from the Canadian Institutes of Health Research and is the inaugural Thorlakson Chair of Surgical Research for the University of Manitoba.
Author information
Authors and Affiliations
Contributions
Introduction (A.Z., P.S.P. and R.K.); Epidemiology (A.Z. and M.T.H.); Mechanisms/pathophysiology (W.K.C., S.M.K., L.A., P.S.P. and R.K.); Diagnosis, screening and prevention (J.D., T.J., S.M.K., N.P. and L.A.); Management (J.D., M.T.H., T.J., N.P. and P.S.P.); Quality of life (L.A., P.S.P., A.Z. and M.T.H.); Outlook (A.Z., S.M.K. and R.K.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Disease Primers thanks Hiroomi Okuyama, Oluyinka Olurotimi Olutoye, Prem Puri, Thomas F. Schaible and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zani, A., Chung, W.K., Deprest, J. et al. Congenital diaphragmatic hernia. Nat Rev Dis Primers 8, 37 (2022). https://doi.org/10.1038/s41572-022-00362-w
Accepted:
Published:
DOI: https://doi.org/10.1038/s41572-022-00362-w
This article is cited by
-
Experimental congenital diaphragmatic hernia features an alteration of DNA sensing targets cGAS and STING
Pediatric Research (2024)
-
The brain of fetuses with congenital diaphragmatic hernia shows signs of hypoxic injury with loss of progenitor cells, neurons, and oligodendrocytes
Scientific Reports (2024)
-
Congenital diaphragmatic hernia: exploring the intersection of personal experience and research
Pediatric Research (2024)
-
The etiology of congenital diaphragmatic hernia: the retinoid hypothesis 20 years later
Pediatric Research (2024)
-
Epidemiology of congenital diaphragmatic hernia among 24 million Chinese births: a hospital-based surveillance study
World Journal of Pediatrics (2024)