Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hypertensive eye disease

Abstract

Hypertensive eye disease includes a spectrum of pathological changes, the most well known being hypertensive retinopathy. Other commonly involved parts of the eye in hypertension include the choroid and optic nerve, sometimes referred to as hypertensive choroidopathy and hypertensive optic neuropathy. Together, hypertensive eye disease develops in response to acute and/or chronic elevation of blood pressure. Major advances in research over the past three decades have greatly enhanced our understanding of the epidemiology, systemic associations and clinical implications of hypertensive eye disease, particularly hypertensive retinopathy. Traditionally diagnosed via a clinical funduscopic examination, but increasingly documented on digital retinal fundus photographs, hypertensive retinopathy has long been considered a marker of systemic target organ damage (for example, kidney disease) elsewhere in the body. Epidemiological studies indicate that hypertensive retinopathy signs are commonly seen in the general adult population, are associated with subclinical measures of vascular disease and predict risk of incident clinical cardiovascular events. New technologies, including development of non-invasive optical coherence tomography angiography, artificial intelligence and mobile ocular imaging instruments, have allowed further assessment and understanding of the ocular manifestations of hypertension and increase the potential that ocular imaging could be used for hypertension management and cardiovascular risk stratification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manifestations of hypertensive eye disease.
Fig. 2: The effect of elevated BP on the eye.
Fig. 3: Examples of hypertensive retinopathy.
Fig. 4: An example of hypertensive choroidopathy.
Fig. 5: Retinal and choroidal capillary networks in patients with hypertension.
Fig. 6: Measurement of choriocapillaris flow deficits from optical coherence tomography angiography images.
Fig. 7: Management flow chart.

Similar content being viewed by others

References

  1. Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317, 165–182 (2017).

    Article  PubMed  Google Scholar 

  2. Oparil, S. et al. Hypertension. Nat. Rev. Dis. Prim. 4, 18014 (2018).

    Article  PubMed  Google Scholar 

  3. Wong, T. Y. & Mitchell, P. The eye in hypertension. Lancet 369, 425–435 (2007).

    Article  PubMed  Google Scholar 

  4. Hayreh, S. S. Duke-Elder Lecture. Systemic arterial blood pressure and the eye. Eye 10, 5–28 (1996).

    Article  PubMed  Google Scholar 

  5. Wong, T. Y., Cheung, C. M., Larsen, M., Sharma, S. & Simo, R. Diabetic retinopathy. Nat. Rev. Dis. Prim. 2, 16012 (2016).

    Article  PubMed  Google Scholar 

  6. Wong, T. Y. & Scott, I. U. Clinical practice. Retinal-vein occlusion. N. Engl. J. Med. 363, 2135–2144 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Mac Grory, B. et al. Management of central retinal artery occlusion: a scientific statement from the American Heart Association. Stroke 52, e282–e294 (2021).

    CAS  Google Scholar 

  8. Cheung, N. et al. Prevalence and associations of retinal emboli with ethnicity, stroke, and renal disease in a multiethnic Asian population: the Singapore Epidemiology of Eye Disease Study. JAMA Ophthalmol. 135, 1023–1028 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Panton, R. W., Goldberg, M. F. & Farber, M. D. Retinal arterial macroaneurysms: risk factors and natural history. Br. J. Ophthalmol. 74, 595–600 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhargava, M., Ikram, M. K. & Wong, T. Y. How does hypertension affect your eyes? J. Hum. Hypertens. 26, 71–83 (2011).

    Article  PubMed  Google Scholar 

  11. Weinreb, R. N. et al. Primary open-angle glaucoma. Nat. Rev. Dis. Prim. 2, 16067 (2016).

    Article  PubMed  Google Scholar 

  12. Fleckenstein, M. et al. Age-related macular degeneration. Nat. Rev. Dis. Prim. 7, 31 (2021).

    Article  PubMed  Google Scholar 

  13. Ramirez-Montero, C., Lima-Gomez, V., Anguiano-Robledo, L., Hernandez-Campos, M. E. & Lopez-Sanchez, P. Preeclampsia as predisposing factor for hypertensive retinopathy: participation by the RAAS and angiogenic factors. Exp. Eye Res. 193, 107981 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Cuspidi, C., Sala, C. & Grassi, G. Updated classification of hypertensive retinopathy: which role for cardiovascular risk stratification? J. Hypertens. 33, 2204–2206 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Aissopou, E. K. et al. The Keith-Wagener-Barker and Mitchell-Wong grading systems for hypertensive retinopathy: association with target organ damage in individuals below 55 years. J. Hypertens. 33, 2303–2309 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Domek, M., Gumprecht, J., Lip, G. Y. H. & Shantsila, A. Malignant hypertension: does this still exist? J. Hum. Hypertens. 34, 1–4 (2020).

    Article  PubMed  Google Scholar 

  17. Dodson, P. M., Lip, G. Y., Eames, S. M., Gibson, J. M. & Beevers, D. G. Hypertensive retinopathy: a review of existing classification systems and a suggestion for a simplified grading system. J. Hum. Hypertens. 10, 93–98 (1996).

    CAS  PubMed  Google Scholar 

  18. Fraser-Bell, S., Symes, R. & Vaze, A. Hypertensive eye disease: a review. Clin. Exp. Ophthalmol. 45, 45–53 (2017).

    Article  PubMed  Google Scholar 

  19. Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    Article  PubMed  Google Scholar 

  20. Klein, R., Klein, B. E., Moss, S. E. & Wang, Q. Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population. Arch. Ophthalmol. 112, 92–98 (1994). One of the first large population-based studies to report the prevalence of hypertensive retinopathy and how it relates to blood pressure control.

    Article  CAS  PubMed  Google Scholar 

  21. Wong, T. Y. et al. Racial differences in the prevalence of hypertensive retinopathy. Hypertension 41, 1086–1091 (2003). One of the first large population-based studies to report that the prevalence of hypertensive retinopathy may vary by ethnicity.

    Article  CAS  PubMed  Google Scholar 

  22. Kawasaki, R. et al. Cardiovascular risk factors and retinal microvascular signs in an adult Japanese population: the Funagata Study. Ophthalmology 113, 1378–1384 (2006).

    Article  PubMed  Google Scholar 

  23. Ojaimi, E. et al. Retinopathy signs in people without diabetes: the Multi-Ethnic Study of Atherosclerosis. Ophthalmology 118, 656–662 (2011).

    Article  PubMed  Google Scholar 

  24. Sharp, P. S. et al. Hypertensive retinopathy in Afro-Caribbeans and Europeans. Prevalence and risk factor relationships. Hypertension 25, 1322–1325 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Chao, J. R., Lai, M. Y., Azen, S. P., Klein, R. & Varma, R. Retinopathy in persons without diabetes: the Los Angeles Latino Eye Study. Invest. Ophthalmol. Vis. Sci. 48, 4019–4025 (2007).

    Article  PubMed  Google Scholar 

  26. Peng, X. Y. et al. Retinopathy in persons without diabetes: the Handan Eye Study. Ophthalmology 117, 531–537 (2010).

    Article  PubMed  Google Scholar 

  27. Zhu, Z., Wang, W., Scheetz, J., Zhang, J. & He, M. Prevalence and risk profile of retinopathy in non-diabetic subjects: National Health and Nutrition Examination Survey 2005 to 2008. Clin. Exp. Ophthalmol. 47, 1173–1181 (2019).

    Article  PubMed  Google Scholar 

  28. Wong, T. Y. et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet 371, 736–743 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheung, C. Y. et al. Quantitative and qualitative retinal microvascular characteristics and blood pressure. J. Hypertens. 29, 1380–1391 (2011). This study examined the effects of blood pressure on a spectrum of quantitative and qualitative retinal microvascular signs in a population-based non-diabetic cohort. Persons with higher blood pressure levels had more hypertensive retinal vascular signs.

    Article  CAS  PubMed  Google Scholar 

  30. Kaushik, S., Tan, A. G., Mitchell, P. & Wang, J. J. Prevalence and associations of enhanced retinal arteriolar light reflex: a new look at an old sign. Ophthalmology 114, 113–120 (2007).

    Article  PubMed  Google Scholar 

  31. Klein, R., Klein, B. E. & Moss, S. E. The relation of systemic hypertension to changes in the retinal vasculature: the Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 95, 329–348; discussion 348–350 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van Leiden, H. A. et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch. Ophthalmol. 121, 245–251 (2003).

    Article  PubMed  Google Scholar 

  33. Cugati, S. et al. Five-year incidence and progression of vascular retinopathy in persons without diabetes: the Blue Mountains Eye Study. Eye 20, 1239–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, S. et al. Five-year incidence of retinal microvascular abnormalities and associations with arterial hypertension: the Beijing Eye Study 2001/2006. Ophthalmology 119, 2592–2599 (2012).

    Article  PubMed  Google Scholar 

  35. Klein, R., Myers, C. E., Lee, K. E. & Klein, B. E. 15-year cumulative incidence and associated risk factors for retinopathy in nondiabetic persons. Arch. Ophthalmol. 128, 1568–1575 (2010). One of the first large population-based studies to report the incidence of hypertensive retinopathy.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liew, G. et al. Ten-year longitudinal changes in retinal microvascular lesions: the Atherosclerosis Risk in Communities study. Ophthalmology 118, 1612–1618 (2011). One of the first large population-based studies to report the incidence of hypertensive retinopathy.

    Article  PubMed  Google Scholar 

  37. Wong, T. Y. et al. The prevalence and risk factors of retinal microvascular abnormalities in older persons: the Cardiovascular Health Study. Ophthalmology 110, 658–666 (2003).

    Article  PubMed  Google Scholar 

  38. Wong, T. Y. et al. Retinopathy in persons with impaired glucose metabolism: the Australian Diabetes Obesity and Lifestyle (AusDiab) study. Am. J. Ophthalmol. 140, 1157–1159 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. van Leiden, H. A. et al. Blood pressure, lipids, and obesity are associated with retinopathy: the Hoorn study. Diabetes Care 25, 1320–1325 (2002).

    Article  PubMed  Google Scholar 

  40. Jeganathan, V. S. et al. Prevalence and risk factors of retinopathy in an Asian population without diabetes: the Singapore Malay Eye Study. Arch. Ophthalmol. 128, 40–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Gunnlaugsdottir, E. et al. Retinopathy in old persons with and without diabetes mellitus: the Age, Gene/Environment Susceptibility — Reykjavik Study (AGES-R). Diabetologia 55, 671–680 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Munch, I. C. et al. Microvascular retinopathy in subjects without diabetes: the Inter99 Eye Study. Acta Ophthalmol. 90, 613–619 (2012).

    Article  PubMed  Google Scholar 

  43. Wong, T. Y. et al. Retinal arteriolar diameter and risk for hypertension. Ann. Intern. Med. 140, 248–255 (2004). This study showed earlier evidence that smaller retinal arteriolar diameters are independently associated with incident hypertension, suggesting that arteriolar narrowing may be linked to the occurrence and development of hypertension.

    Article  PubMed  Google Scholar 

  44. Ikram, M. K. et al. Retinal vessel diameters and risk of hypertension: the Rotterdam Study. Hypertension 47, 189–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Klein, R., Klein, B. E., Moss, S. E. & Wong, T. Y. The relationship of retinopathy in persons without diabetes to the 15-year incidence of diabetes and hypertension: Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 104, 98–107 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Wong, T. Y., Shankar, A., Klein, R., Klein, B. E. & Hubbard, L. D. Prospective cohort study of retinal vessel diameters and risk of hypertension. BMJ 329, 79 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang, J. J. et al. The long-term relation among retinal arteriolar narrowing, blood pressure, and incident severe hypertension. Am. J. Epidemiol. 168, 80–88 (2008).

    Article  PubMed  Google Scholar 

  48. Kawasaki, R. et al. Retinal vessel diameters and risk of hypertension: the Multiethnic Study of Atherosclerosis. J. Hypertens. 27, 2386–2393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanabe, Y. et al. Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: the Funagata study. Microcirculation 17, 94–102 (2010).

    Article  PubMed  Google Scholar 

  50. Ding, J. et al. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J. Hypertens. 32, 207–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheung, C. Y., Ikram, M. K., Sabanayagam, C. & Wong, T. Y. Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 60, 1094–1103 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Mulvany, M. J., Aalkjaer, C. & Christensen, J. Changes in noradrenaline sensitivity and morphology of arterial resistance vessels during development of high blood pressure in spontaneously hypertensive rats. Hypertension 2, 664–671 (1980).

    Article  CAS  PubMed  Google Scholar 

  53. Aalkjaer, C., Heagerty, A. M., Bailey, I., Mulvany, M. J. & Swales, J. D. Studies of isolated resistance vessels from offspring of essential hypertensive patients. Hypertension 9 (Suppl. III), 155–158 (1987).

    Google Scholar 

  54. Izzard, A. S. & Heagerty, A. M. Hypertension and the vasculature: arterioles and the myogenic response. J. Hypertens. 13, 1–4 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Schiffrin, E. L. How structure, mechanics, and function of the vasculature contribute to blood pressure elevation in hypertension. Can. J. Cardiol. 36, 648–658 (2020).

    Article  PubMed  Google Scholar 

  56. Julius, S. et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl. J. Med. 354, 1685–1697 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell, P. et al. Blood pressure and retinal arteriolar narrowing in children. Hypertension 49, 1156–1162 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Li, L. J. et al. Influence of blood pressure on retinal vascular caliber in young children. Ophthalmology 118, 1459–1465 (2011).

    Article  PubMed  Google Scholar 

  59. Gishti, O. et al. Retinal microvasculature and cardiovascular health in childhood. Pediatrics 135, 678–685 (2015).

    Article  PubMed  Google Scholar 

  60. Ho, A. et al. Independent and synergistic effects of high blood pressure and obesity on retinal vasculature in young children: the Hong Kong Children Eye Study. J. Am. Heart Assoc. 10, e018485 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wong, T. Y. et al. Retinal microvascular abnormalities and blood pressure in older people: the Cardiovascular Health Study. Br. J. Ophthalmol. 86, 1007–1013 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leung, H. et al. Impact of current and past blood pressure on retinal arteriolar diameter in an older population. J. Hypertens. 22, 1543–1549 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Sharrett, A. R. et al. Retinal arteriolar diameters and elevated blood pressure: the Atherosclerosis Risk in Communities study. Am. J. Epidemiol. 150, 263–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Kumagai, K. et al. Central blood pressure relates more strongly to retinal arteriolar narrowing than brachial blood pressure: the Nagahama Study. J. Hypertens. 33, 323–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Triantafyllou, A. et al. Association between retinal vessel caliber and arterial stiffness in a population comprised of normotensive to early-stage hypertensive individuals. Am. J. Hypertens. 27, 1472–1478 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Wei, F. F. et al. Conventional and ambulatory blood pressure as predictors of retinal arteriolar narrowing. Hypertension 68, 511–520 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Wong, T. Y. et al. Cerebral white matter lesions, retinopathy, and incident clinical stroke. JAMA 288, 67–74 (2002).

    Article  PubMed  Google Scholar 

  68. Cooper, L. S. et al. Retinal microvascular abnormalities and MRI-defined subclinical cerebral infarction: the Atherosclerosis Risk in Communities study. Stroke 37, 82–86 (2006).

    Article  PubMed  Google Scholar 

  69. Kawasaki, R. et al. Retinal microvascular signs and 10-year risk of cerebral atrophy: the Atherosclerosis Risk in Communities (ARIC) study. Stroke 41, 1826–1828 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cheung, N. et al. Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study. Brain 133, 1987–1993 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wong, T. Y. et al. Relation of retinopathy to coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 167, 51–58 (2008).

    Article  PubMed  Google Scholar 

  72. Tapp, R. J. et al. Associations of retinal microvascular diameters and tortuosity with blood pressure and arterial stiffness: United Kingdom Biobank. Hypertension 74, 1383–1390 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Cheung, N. et al. Retinal arteriolar narrowing and left ventricular remodeling: the Multi-Ethnic Study of Atherosclerosis. J. Am. Coll. Cardiol. 50, 48–55 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kim, G. H., Youn, H. J., Kang, S., Choi, Y. S. & Moon, J. I. Relation between grade II hypertensive retinopathy and coronary artery disease in treated essential hypertensives. Clin. Exp. Hypertens. 32, 469–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Cuspidi, C. et al. Prevalence and correlates of advanced retinopathy in a large selected hypertensive population. The Evaluation of Target Organ Damage in Hypertension (ETODH) study. Blood Press. 14, 25–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Tikellis, G. et al. Retinal arteriolar narrowing and left ventricular hypertrophy in African Americans. the Atherosclerosis Risk in Communities (ARIC) study. Am. J. Hypertens. 21, 352–359 (2008).

    Article  PubMed  Google Scholar 

  77. Zhang, W. et al. Positive relationship of hypertensive retinopathy with carotid intima–media thickness in hypertensive patients. J. Hypertens. 38, 2028–2035 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Gunn, R. M. Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal diseases and (2) of increased arterial tension. Trans. Am. Ophthalmol. Soc. 12, 124–125 (1892).

    Google Scholar 

  79. Sabanayagam, C. et al. Retinal microvascular caliber and chronic kidney disease in an Asian population. Am. J. Epidemiol. 169, 625–632 (2009).

    Article  PubMed  Google Scholar 

  80. Wong, T. Y. et al. Retinal microvascular abnormalities and renal dysfunction: the Atherosclerosis Risk in Communities study. J. Am. Soc. Nephrol. 15, 2469–2476 (2004).

    Article  PubMed  Google Scholar 

  81. Sabanayagam, C. et al. Retinal arteriolar narrowing increases the likelihood of chronic kidney disease in hypertension. J. Hypertens. 27, 2209–2217 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Awua-Larbi, S. et al. Retinal arteriolar caliber and urine albumin excretion: the Multi-Ethnic Study of Atherosclerosis. Nephrol. Dial. Transpl. 26, 3523–3528 (2011).

    Article  CAS  Google Scholar 

  83. Yip, W. et al. Retinal vascular imaging markers and incident chronic kidney disease: a prospective cohort study. Sci. Rep. 7, 9374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Grunwald, J. E. et al. Retinopathy and progression of CKD: the CRIC study. Clin. J. Am. Soc. Nephrol. 9, 1217–1224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grunwald, J. E. et al. Association between progression of retinopathy and concurrent progression of kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. JAMA Ophthalmol. 137, 767–774 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yip, W. et al. Joint effect of early microvascular damage in the eye & kidney on risk of cardiovascular events. Sci. Rep. 6, 27442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, Y. et al. Retinopathy and left ventricular hypertrophy in patients with chronic kidney disease: interrelationship and impact on clinical outcomes. Int. J. Cardiol. 249, 372–376 (2017).

    Article  PubMed  Google Scholar 

  88. Cheung, C. Y., Ikram, M. K., Chen, C. & Wong, T. Y. Imaging retina to study dementia and stroke. Prog. Retin. Eye Res. 57, 89–107 (2017).

    Article  PubMed  Google Scholar 

  89. Wong, T. Y. et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities study. Lancet 358, 1134–1140 (2001). One of the first large population-based studies to report the aasoication between hypertensive retinopathy and incident stroke.

    Article  CAS  PubMed  Google Scholar 

  90. Kawasaki, R. et al. Retinal microvascular signs and risk of stroke: the Multi-Ethnic Study of Atherosclerosis (MESA). Stroke 43, 3245–3251 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ong, Y. T. et al. Hypertensive retinopathy and risk of stroke. Hypertension 62, 706–711 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Cheung, C. Y. et al. Retinal microvascular changes and risk of stroke: the Singapore Malay Eye Study. Stroke 44, 2402–2408 (2013).

    Article  PubMed  Google Scholar 

  93. Yatsuya, H. et al. Retinal microvascular abnormalities and risk of lacunar stroke: Atherosclerosis Risk in Communities study. Stroke 41, 1349–1355 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Seidelmann, S. B. et al. Retinal vessel calibers in predicting long-term cardiovascular outcomes: the Atherosclerosis Risk in Communities study. Circulation 134, 1328–1338 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang, J. et al. Retinal vascular abnormalities and their associations with cardiovascular and cerebrovascular diseases: a study in rural southwestern Harbin, China. BMC Ophthalmol. 20, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wieberdink, R. G. et al. Retinal vascular calibers and the risk of intracerebral hemorrhage and cerebral infarction: the Rotterdam Study. Stroke 41, 2757–2761 (2010).

    Article  PubMed  Google Scholar 

  97. Ikram, M. K. et al. Retinal vessel diameters and risk of stroke: the Rotterdam Study. Neurology 66, 1339–1343 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Lindley, R. I. et al. Retinal microvasculature in acute lacunar stroke: a cross-sectional study. Lancet Neurol. 8, 628–634 (2009).

    Article  PubMed  Google Scholar 

  99. Baker, M. L. et al. Retinopathy and lobar intracerebral hemorrhage: insights into pathogenesis. Arch. Neurol. 67, 1224–1230 (2010).

    Article  PubMed  Google Scholar 

  100. Baker, M. L. et al. Retinal microvascular signs may provide clues to the underlying vasculopathy in patients with deep intracerebral hemorrhage. Stroke 41, 618–623 (2010).

    Article  PubMed  Google Scholar 

  101. Cheung, C. Y., Ong, Y. T., Ikram, M. K., Chen, C. & Wong, T. Y. Retinal microvasculature in Alzheimer’s disease. J. Alzheimers Dis. 42, S339–S352 (2014).

    Article  PubMed  Google Scholar 

  102. Heringa, S. M. et al. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review. J. Cereb. Blood Flow. Metab. 33, 983–995 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lesage, S. R. et al. Retinal microvascular abnormalities and cognitive decline: the ARIC 14-year follow-up study. Neurology 73, 862–868 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Haan, M. et al. Cognitive function and retinal and ischemic brain changes: the Women’s Health Initiative. Neurology 78, 942–949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. de Jong, F. J. et al. Retinal vascular caliber and risk of dementia: the Rotterdam study. Neurology 76, 816–821 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schrijvers, E. M. et al. Retinopathy and risk of dementia: the Rotterdam Study. Neurology 79, 365–370 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cheung, C. Y. et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimers Dement. 10, 135–142 (2014).

    Article  PubMed  Google Scholar 

  108. Williams, M. A. et al. Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimers Dement. 1, 229–235 (2015).

    Google Scholar 

  109. Frost, S. et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl. Psychiatry 3, e233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheung, C. Y. et al. Retinal imaging in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 92, 983–994 (2021).

    Article  PubMed  Google Scholar 

  111. Michelson, E. L., Morganroth, J., Nichols, C. W. & MacVaugh, H. III Retinal arteriolar changes as an indicator of coronary artery disease. Arch. Intern. Med. 139, 1139–1141 (1979).

    Article  CAS  PubMed  Google Scholar 

  112. Wong, T. Y. et al. Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis Risk in Communities study. JAMA 287, 1153–1159 (2002).

    Article  PubMed  Google Scholar 

  113. Duncan, B. B., Wong, T. Y., Tyroler, H. A., Davis, C. E. & Fuchs, F. D. Hypertensive retinopathy and incident coronary heart disease in high risk men. Br. J. Ophthalmol. 86, 1002–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chandra, A. et al. The association of retinal vessel calibres with heart failure and long-term alterations in cardiac structure and function: the Atherosclerosis Risk in Communities (ARIC) study. Eur. J. Heart Fail. 21, 1207–1215 (2019).

    Article  PubMed  Google Scholar 

  115. Wong, T. Y. et al. Retinopathy and risk of congestive heart failure. JAMA 293, 63–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Cheng, L. et al. Microvascular retinopathy and angiographically-demonstrated coronary artery disease: a cross-sectional, observational study. PLoS ONE 13, e0192350 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gopinath, B. et al. Associations between retinal microvascular structure and the severity and extent of coronary artery disease. Atherosclerosis 236, 25–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Fantini, F., Adhyapak, S. M., Varghese, K., Varghese, M. & Thomas, T. Two heart failure phenotypes in arterial hypertension: a clinical study. J. Hum. Hypertens. 32, 460–462 (2018).

    Article  PubMed  Google Scholar 

  119. McGeechan, K. et al. Meta-analysis: retinal vessel caliber and risk for coronary heart disease. Ann. Intern. Med. 151, 404–413 (2009). This meta-analysis of 22,159 participants from six population-based studies showed that the risk of coronary artery disease associated with retinal arteriolar narrowing is higher among women.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Theuerle, J. D. et al. Impaired retinal microvascular function predicts long-term adverse events in patients with cardiovascular disease. Cardiovasc. Res. 117, 1949–1957 (2020).

    Article  Google Scholar 

  121. Keith, N. M., Wagener, H. P. & Barker, N. W. Some different types of essential hypertension: their course and prognosis. Am. J. Med. Sci. 197, 332–343 (1939). Hypertensive retinopathy is classically classified using the Keith–Wagener–Baker system as grades 1–4. In patients with untreated hypertension, the presence of optic disc oedema and retinopathy signs correlate with very poor prognosis (with 5-year survival rates of 1% and 20%, respectively).

    Article  Google Scholar 

  122. Wong, T. Y. et al. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv. Ophthalmol. 46, 59–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Liew, G., Wong, T. Y., Mitchell, P., Cheung, N. & Wang, J. J. Retinopathy predicts coronary heart disease mortality. Heart 95, 391–394 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Wong, T. Y. et al. Retinal microvascular abnormalities and 10-year cardiovascular mortality: a population-based case-control study. Ophthalmology 110, 933–940 (2003).

    Article  PubMed  Google Scholar 

  125. Harbaoui, B. et al. Cumulative effects of several target organ damages in risk assessment in hypertension. Am. J. Hypertens. 29, 234–244 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Sairenchi, T. et al. Mild retinopathy is a risk factor for cardiovascular mortality in Japanese with and without hypertension: the Ibaraki Prefectural Health Study. Circulation 124, 2502–2511 (2011). A large cohort study demonstrating that mild hypertensive retinopathy is a risk factor for cardiovascular mortality independently of cardiovascular risk factors with and without hypertension.

    Article  PubMed  Google Scholar 

  127. Mitchell, P. et al. Retinal microvascular signs and risk of stroke and stroke mortality. Neurology 65, 1005–1009 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Shantsila, A. & Lip, G. Y. H. Malignant hypertension revisited–does this still exist? Am. J. Hypertens. 30, 543–549 (2017).

    Article  PubMed  Google Scholar 

  129. Ferreira, N. S., Tostes, R. C., Paradis, P. & Schiffrin, E. L. Aldosterone, inflammation, immune system, and hypertension. Am. J. Hypertens. 34, 15–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Intengan, H. D. & Schiffrin, E. L. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38, 581–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Schiffrin, E. L. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am. J. Hypertens. 17, 1192–1200 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Savoia, C. & Schiffrin, E. L. Inflammation in hypertension. Curr. Opin. Nephrol. Hypertens. 15, 152–158 (2006).

    CAS  PubMed  Google Scholar 

  133. Tso, M. O. & Jampol, L. M. Pathophysiology of hypertensive retinopathy. Ophthalmology 89, 1132–1145 (1982). An early study showing that the pathophysiology of hypertensive retinopathy can be broadly divided into different phases: vasoconstrictive, sclerotic and exudative.

    Article  CAS  PubMed  Google Scholar 

  134. Pache, M., Kube, T., Wolf, S. & Kutschbach, P. Do angiographic data support a detailed classification of hypertensive fundus changes? J. Hum. Hypertens. 16, 405–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Klein, R. et al. Are retinal arteriolar abnormalities related to atherosclerosis? The Atherosclerosis Risk in Communities study. Arterioscler. Thromb. Vasc. Biol. 20, 1644–1650 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Delles, C. et al. Impaired endothelial function of the retinal vasculature in hypertensive patients. Stroke 35, 1289–1293 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Tsai, W. C. et al. Plasma vascular endothelial growth factor as a marker for early vascular damage in hypertension. Clin. Sci. 109, 39–43 (2005).

    Article  CAS  Google Scholar 

  138. Coban, E., Alkan, E., Altuntas, S. & Akar, Y. Serum ferritin levels correlate with hypertensive retinopathy. Med. Sci. Monit. 16, CR92–CR95 (2010).

    CAS  PubMed  Google Scholar 

  139. Saito, M. et al. Increased choroidal blood flow and choroidal thickness in patients with hypertensive chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 258, 233–240 (2020).

    Article  PubMed  Google Scholar 

  140. Mule, G. et al. Relationship of choroidal thickness with pulsatile hemodynamics in essential hypertensive patients. J. Clin. Hypertens. 23, 1030–1038 (2021).

    Article  Google Scholar 

  141. Mule, G. et al. Association between early-stage chronic kidney disease and reduced choroidal thickness in essential hypertensive patients. Hypertens. Res. 42, 990–1000 (2019).

    Article  PubMed  Google Scholar 

  142. Geraci, G. et al. Choroidal thickness is associated with renal hemodynamics in essential hypertension. J. Clin. Hypertens. 22, 245–253 (2020).

    Article  CAS  Google Scholar 

  143. Schiffrin, E. L., Deng, L. Y. & Larochelle, P. Effects of a beta-blocker or a converting enzyme inhibitor on resistance arteries in essential hypertension. Hypertension 23, 83–91 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Schiffrin, E. L. & Deng, L. Y. Comparison of effects of angiotensin I-converting enzyme inhibition and β-blockade for 2 years on function of small arteries from hypertensive patients. Hypertension 25, 699–703 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. Schiffrin, E. L., Park, J. B., Intengan, H. D. & Touyz, R. M. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 101, 1653–1659 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Icel, E., Imamoglu, H. I., Turk, A., Icel, A. & Akyol, N. A comparison of the effects of perindopril arginine and amlodipine on choroidal thickness in patients with primary hypertension. Turk. J. Med. Sci. 48, 1247–1254 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Hayreh, S. S., Servais, G. E. & Virdi, P. S. Fundus lesions in malignant hypertension. V. Hypertensive optic neuropathy. Ophthalmology 93, 74–87 (1986).

    Article  CAS  PubMed  Google Scholar 

  148. Mishima, E. et al. Concurrent analogous organ damage in the brain, eyes, and kidneys in malignant hypertension: reversible encephalopathy, serous retinal detachment, and proteinuria. Hypertens. Res. 44, 88–97 (2021).

    Article  PubMed  Google Scholar 

  149. Ikram, M. K. et al. Four novel loci (19q13, 6q24, 12q24, and 5q14) influence the microcirculation in vivo. PloS Genet. 6, e1001184 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cheng, C. Y. et al. Admixture mapping scans identify a locus affecting retinal vascular caliber in hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) study. PloS Genet. 6, e1000908 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tanabe, Y. et al. Angiotensin-converting enzyme gene and retinal arteriolar narrowing: the Funagata Study. J. Hum. Hypertens. 23, 788–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sim, X. et al. Genetic loci for retinal arteriolar microcirculation. PLoS ONE 8, e65804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jensen, R. A. et al. Genome-wide association study of retinopathy in individuals without diabetes. PLoS ONE 8, e54232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Scheie, H. G. Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. AMA Arch. Ophthalmol. 49, 117–138 (1953).

    Article  CAS  PubMed  Google Scholar 

  155. Wong, T. Y. & Mitchell, P. Hypertensive retinopathy. N. Engl. J. Med. 351, 2310–2317 (2004). The Wong–Mitchell classification of hypertensive retinopathy is proposed based on data from population-based epidemiological studies.

    Article  CAS  PubMed  Google Scholar 

  156. Downie, L. E. et al. Hypertensive retinopathy: comparing the Keith-Wagener-Barker to a simplified classification. J. Hypertens. 31, 960–965 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Luo, B. P. & Brown, G. C. Update on the ocular manifestations of systemic arterial hypertension. Curr. Opin. Ophthalmol. 15, 203–210 (2004).

    Article  PubMed  Google Scholar 

  158. Bourke, K., Patel, M. R., Prisant, L. M. & Marcus, D. M. Hypertensive choroidopathy. J. Clin. Hypertens. 6, 471–472 (2004).

    Article  Google Scholar 

  159. Chatterjee, S., Chattopadhyay, S., Hope-Ross, M. & Lip, P. L. Hypertension and the eye: changing perspectives. J. Hum. Hypertens. 16, 667–675 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Cheung, C. Y. et al. A new method to measure peripheral retinal vascular caliber over an extended area. Microcirculation 17, 495–503 (2010).

    PubMed  Google Scholar 

  161. Wong, T. Y. et al. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors. Ophthalmology 111, 1183–1190 (2004).

    Article  PubMed  Google Scholar 

  162. Hubbard, L. D. et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities study. Ophthalmology 106, 2269–2280 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Witt, N. et al. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47, 975–981 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Cheung, C. Y. et al. Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors. Ophthalmology 118, 812–818 (2011).

    Article  PubMed  Google Scholar 

  165. Liew, G. et al. The retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology 115, 1951–1956 (2008).

    Article  PubMed  Google Scholar 

  166. McGrory, S. et al. Towards standardization of quantitative retinal vascular parameters: comparison of SIVA and VAMPIRE measurements in the Lothian Birth Cohort 1936. Transl. Vis. Sci. Technol. 7, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12, 207–214 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ahn, S. J., Woo, S. J. & Park, K. H. Retinal and choroidal changes with severe hypertension and their association with visual outcome. Invest. Ophthalmol. Vis. Sci. 55, 7775–7785 (2014).

    Article  PubMed  Google Scholar 

  169. Simsek, E. E. et al. Can ocular OCT findings be as a predictor for end-organ damage in systemic hypertension? Clin. Exp. Hypertens. 42, 733–737 (2020).

    Article  PubMed  Google Scholar 

  170. Farouk, A. A., ElHadidy, R., Attia Abd ElSalam, E., Zedan, R. & Azmy, R. Role of multifocal electroretinogram in assessment of early retinal dysfunction in hypertensive patients. Eur. J. Ophthalmol. 31, 1128–1134 (2020).

    Article  PubMed  Google Scholar 

  171. Balmforth, C. et al. Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction. JCI Insight 1, e89173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Rotsos, T. et al. Multimodal imaging of hypertensive chorioretinopathy by swept-source optical coherence tomography and optical coherence tomography angiography: case report. Medicine 96, e8110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hirano, Y., Yasukawa, T. & Ogura, Y. Bilateral serous retinal detachments associated with accelerated hypertensive choroidopathy. Int. J. Hypertens. 2010, 964513 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jia, Y. et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc. Natl Acad. Sci. USA 112, E2395–E2402 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Spaide, R. F., Fujimoto, J. G., Waheed, N. K., Sadda, S. R. & Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 64, 1–55 (2018).

    Article  PubMed  Google Scholar 

  176. Hua, D. et al. Use of optical coherence tomography angiography for assessment of microvascular changes in the macula and optic nerve head in hypertensive patients without hypertensive retinopathy. Microvasc. Res. 129, 103969 (2020).

    Article  PubMed  Google Scholar 

  177. Lee, W. H. et al. Retinal microvascular change in hypertension as measured by optical coherence tomography angiography. Sci. Rep. 9, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Takayama, K. et al. Novel classification of early-stage systemic hypertensive changes in human retina based on OCTA measurement of choriocapillaris. Sci. Rep. 8, 15163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chua, J. et al. Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension. Sci. Rep. 9, 5819 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Pascual-Prieto, J. et al. Utility of optical coherence tomography angiography in detecting vascular retinal damage caused by arterial hypertension. Eur. J. Ophthalmol. 30, 579–585 (2020).

    Article  PubMed  Google Scholar 

  181. Dereli Can, G., Korkmaz, M. F. & Can, M. E. Subclinical retinal microvascular alterations assessed by optical coherence tomography angiography in children with systemic hypertension. J. AAPOS 24, 147.e1–147.e6 (2020).

    Article  Google Scholar 

  182. Chua, J. et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J. Hypertens. 37, 572–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Chua, J. et al. Choriocapillaris microvasculature dysfunction in systemic hypertension. Sci. Rep. 11, 4603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rezkallah, A., Kodjikian, L., Abukhashabah, A., Denis, P. & Mathis, T. Hypertensive choroidopathy: multimodal imaging and the contribution of wide-field swept-source OCT-angiography. Am. J. Ophthalmol. Case Rep. 13, 131–135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Scharf, J., Freund, K. B., Sadda, S. & Sarraf, D. Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses. Prog. Retin. Eye Res. 81, 100884 (2020).

    Article  PubMed  Google Scholar 

  186. Burnasheva, M. A., Maltsev, D. S., Kulikov, A. N., Sherbakova, K. A. & Barsukov, A. V. Association of chronic paracentral acute middle maculopathy lesions with hypertension. Ophthalmol. Retin. 4, 504–509 (2020).

    Article  Google Scholar 

  187. Liu, Y. et al. Morphological changes in and quantitative analysis of macular retinal microvasculature by optical coherence tomography angiography in hypertensive retinopathy. Hypertens. Res. 44, 325–336 (2021).

    Article  PubMed  Google Scholar 

  188. Vadala, M. et al. Retinal and choroidal vasculature changes associated with chronic kidney disease. Graefes Arch. Clin. Exp. Ophthalmol. 257, 1687–1698 (2019).

    Article  PubMed  Google Scholar 

  189. Nguyen, T. T., Wang, J. J. & Wong, T. Y. Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications. Diabetes Care 30, 2708–2715 (2007).

    Article  PubMed  Google Scholar 

  190. Grosso, A., Cheung, N., Veglio, F. & Wong, T. Y. Similarities and differences in early retinal phenotypes in hypertension and diabetes. J. Hypertens. 29, 1667–1675 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Kohner, E. M., Stratton, I. M., Aldington, S. J., Turner, R. C. & Matthews, D. R. Microaneurysms in the development of diabetic retinopathy (UKPDS 42). UK Prospective Diabetes Study Group. Diabetologia 42, 1107–1112 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. van den Born, B. J., Hulsman, C. A., Hoekstra, J. B., Schlingemann, R. O. & van Montfrans, G. A. Value of routine funduscopy in patients with hypertension: systematic review. BMJ 331, 73 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, e13–e115 (2018).

    CAS  PubMed  Google Scholar 

  194. Chobanian, A. V. et al. The seventh report of the Joint National Committee on Prevention Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. National Institute for Health and Care Excellence. Hypertension in adults: diagnosis and management. NICE guideline [NG136] (NICE, 2019).

  196. Unger, T. et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 75, 1334–1357 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Kolman, S. A., van Sijl, A. M., van der Sluijs, F. A. & van de Ree, M. A. Consideration of hypertensive retinopathy as an important end-organ damage in patients with hypertension. J. Hum. Hypertens. 31, 121–125 (2017). This study suggests that routine retinal examination would help physicians consider initiating treatment in patients not yet on medication, or could warrant treatment intensification in those already receiving BP treatment.

    Article  CAS  PubMed  Google Scholar 

  198. Nijskens, C. M., Veldkamp, S. R., Van Der Werf, D. J., Boonstra, A. H. & Ten Wolde, M. Funduscopy: yes or no? Hypertensive emergencies and retinopathy in the emergency care setting; a retrospective cohort study. J. Clin. Hypertens. 23, 166–171 (2021).

    Article  CAS  Google Scholar 

  199. Ramachandran, N. et al. Evaluation of the prevalence of non-diabetic eye disease detected at first screen from a single region diabetic retinopathy screening program: a cross-sectional cohort study in Auckland, New Zealand. BMJ Open 11, e054225 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Ting, D. S. W. et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318, 2211–2223 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Hughes, A. D. et al. Effect of antihypertensive treatment on retinal microvascular changes in hypertension. J. Hypertens. 26, 1703–1707 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Dahlof, B., Stenkula, S. & Hansson, L. Hypertensive retinal vascular changes: relationship to left ventricular hypertrophy and arteriolar changes before and after treatment. Blood Press. 1, 35–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  203. Thom, S. et al. Differential effects of antihypertensive treatment on the retinal microcirculation: an Anglo-Scandinavian Cardiac Outcomes Trial substudy. Hypertension 54, 405–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. McGill, J. B. Improving microvascular outcomes in patients with diabetes through management of hypertension. Postgrad. Med. 121, 89–101 (2009).

    Article  PubMed  Google Scholar 

  205. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317, 703–713 (1998).

    Article  PubMed Central  Google Scholar 

  206. Coll-de-Tuero, G. et al. Retinal arteriole-to-venule ratio changes and target organ disease evolution in newly diagnosed hypertensive patients at 1-year follow-up. J. Am. Soc. Hypertens. 8, 83–93 (2014).

    Article  PubMed  Google Scholar 

  207. Weber, M. A. et al. Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension. J. Hypertens. 32, 3–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Poli, F. & Yusuf, I. H. Retinopathy in malignant hypertension. N. Engl. J. Med. 385, 1994 (2021).

    Article  PubMed  Google Scholar 

  209. Wong, W., Gopal, L. & Yip, C. C. Hypertensive retinopathy and choroidopathy. CMAJ 192, E371 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Cortina, G., Hofer, J., Giner, T. & Jungraithmayr, T. Severe visual loss caused by unrecognized malignant hypertension in a 15-year-old girl. Pediatr. Int. 57, e42–e44 (2015).

    Article  PubMed  Google Scholar 

  211. Ugarte, M., Horgan, S., Rassam, S., Leong, T. & Kon, C. H. Hypertensive choroidopathy: recognizing clinically significant end-organ damage. Acta Ophthalmol. 86, 227–228 (2008).

    Article  PubMed  Google Scholar 

  212. Kim, E. Y., Lew, H. M. & Song, J. H. Effect of intravitreal bevacizumab (Avastin(R)) therapy in malignant hypertensive retinopathy: a report of two cases. J. Ocul. Pharmacol. Ther. 28, 318–322 (2012).

    Article  PubMed  Google Scholar 

  213. Alrashdi, S. F., Deliyanti, D. & Wilkinson-Berka, J. L. Intravitreal administration of endothelin type A receptor or endothelin type B receptor antagonists attenuates hypertensive and diabetic retinopathy in rats. Exp. Eye Res. 176, 1–9 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Grosso, A., Veglio, F., Porta, M., Grignolo, F. M. & Wong, T. Y. Hypertensive retinopathy revisited: some answers, more questions. Br. J. Ophthalmol. 89, 1646–1654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Stacey, A. W., Sozener, C. B. & Besirli, C. G. Hypertensive emergency presenting as blurry vision in a patient with hypertensive chorioretinopathy. Int. J. Emerg. Med. 8, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Verstappen, M. et al. Hypertensive choroidopathy revealing malignant hypertension in a young patient. Retina 39, e12–e13 (2019).

    Article  PubMed  Google Scholar 

  217. Tsukikawa, M. & Stacey, A. W. A review of hypertensive retinopathy and chorioretinopathy. Clin. Optom. 12, 67–73 (2020).

    Article  Google Scholar 

  218. Trevisol, D. J., Moreira, L. B., Kerkhoff, A., Fuchs, S. C. & Fuchs, F. D. Health-related quality of life and hypertension: a systematic review and meta-analysis of observational studies. J. Hypertens. 29, 179–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Romagnani, P. et al. Chronic kidney disease. Nat. Rev. Dis. Prim. 3, 17088 (2017).

    Article  PubMed  Google Scholar 

  220. Rebollo Rubio, A., Morales Asencio, J. M. & Eugenia Pons Raventos, M. Depression, anxiety and health-related quality of life amongst patients who are starting dialysis treatment. J. Ren. Care 43, 73–82 (2017).

    Article  PubMed  Google Scholar 

  221. Scanlon, P. H. The English National Screening Programme for diabetic retinopathy 2003–2016. Acta Diabetol. 54, 515–525 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Nguyen, H. V. et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology 123, 2571–2580 (2016).

    Article  PubMed  Google Scholar 

  223. Li, J. O. et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective. Prog. Retin. Eye Res. 82, 100900 (2020).

    Article  PubMed  Google Scholar 

  224. Mastropasqua, L. et al. Why miss the chance? Incidental findings while telescreening for diabetic retinopathy. Ophthalmic Epidemiol. 27, 237–245 (2020).

    Article  PubMed  Google Scholar 

  225. Gao, X. et al. Use of telehealth screening to detect diabetic retinopathy and other ocular findings in primary care settings. Telemed. J. E Health 25, 802–807 (2019).

    Article  PubMed  Google Scholar 

  226. Ryan, M. E. et al. Comparison among methods of retinopathy assessment (CAMRA) study: smartphone, nonmydriatic, and mydriatic photography. Ophthalmology 122, 2038–2043 (2015).

    Article  PubMed  Google Scholar 

  227. Toy, B. C. et al. Smartphone-based dilated fundus photography and near visual acuity testing as inexpensive screening tools to detect referral warranted diabetic eye disease. Retina 36, 1000–1008 (2016).

    Article  PubMed  Google Scholar 

  228. Muiesan, M. L. et al. Ocular fundus photography with a smartphone device in acute hypertension. J. Hypertens. 35, 1660–1665 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Ting, D. S. W. et al. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 103, 167–175 (2019).

    Article  PubMed  Google Scholar 

  230. Ran, A. R. et al. Deep learning in glaucoma with optical coherence tomography: a review. Eye 35, 188–201 (2021).

    Article  PubMed  Google Scholar 

  231. Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).

    Article  PubMed  Google Scholar 

  232. Milea, D. et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N. Engl. J. Med. 382, 1687–1695 (2020).

    Article  PubMed  Google Scholar 

  233. Sabanayagam, C. et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Lancet Digit. Health 2, e295–e302 (2020).

    Article  PubMed  Google Scholar 

  234. Mitani, A. et al. Detection of anaemia from retinal fundus images via deep learning. Nat. Biomed. Eng. 4, 18–27 (2020).

    Article  PubMed  Google Scholar 

  235. Chang, J. et al. Association of cardiovascular mortality and deep learning-funduscopic atherosclerosis score derived from retinal fundus images. Am. J. Ophthalmol. 217, 121–130 (2020).

    Article  PubMed  Google Scholar 

  236. Son, J. et al. Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms. Transl. Vis. Sci. Technol. 9, 28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018).

    Article  PubMed  Google Scholar 

  238. Rim, T. H. et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digit. Health 2, e526–e536 (2020).

    Article  PubMed  Google Scholar 

  239. Ting, D. S. W. & Wong, T. Y. Eyeing cardiovascular risk factors. Nat. Biomed. Eng. 2, 140–141 (2018).

    Article  PubMed  Google Scholar 

  240. Mills, K. T. et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134, 441–450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. van de Vijver, S. et al. Status report on hypertension in Africa–consultative review for the 6th Session of the African Union Conference of Ministers of Health on NCD’s. Pan Afr. Med. J. 16, 38 (2013).

    PubMed  PubMed Central  Google Scholar 

  242. Ritt, M. & Schmieder, R. E. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension 54, 384–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Rizzoni, D. et al. New methods to study the microcirculation. Am. J. Hypertens. 31, 265–273 (2018).

    Article  PubMed  Google Scholar 

  244. Stefansson, E. et al. Retinal oximetry: metabolic imaging for diseases of the retina and brain. Prog. Retin. Eye Res. 70, 1–22 (2019).

    Article  PubMed  Google Scholar 

  245. Lim, M. et al. Systemic associations of dynamic retinal vessel analysis: a review of current literature. Microcirculation 20, 257–268 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the team from CUHK Ophthalmic Reading Centre, Hong Kong, the team from SNEC Ocular Reading Centre, Singapore, J. Chua from Singapore Eye Research Institute, Singapore, and H. Khalid from Moorfields Eye Hospital, UK, for their help in preparing the figures in this paper. V.B. is supported in part by a departmental grant NIH/NEI core grant P30-EY06360 (Department of Ophthalmology, Emory University School of Medicine), and by NIH/NINDS (RO1NSO89694). P.A.K. is supported by a Moorfields Eye Charity Career Development Award (R190028A) and a UK Research & Innovation Future Leaders Fellowship (MR/T019050/1). E.L.S is supported by Canadian Institutes of Health Research (CIHR) First Pilot Foundation grant 14334 and a Distinguished James McGill Professor Award from McGill University.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.Y.C., E.L.S., P.A.K. and T.Y.W.); Epidemiology (C.Y.C. and T.Y.W.); Mechanisms/pathophysiology (C.Y.C., V.B., E.L.S. and T.Y.W.); Diagnosis, screening and prevention (C.Y.C., V.B., P.A.K. and T.Y.W.); Management (C.Y.C., E.L.S. and T.Y.W.); Quality of life (C.Y.C.); Outlook (C.Y.C., V.B., P.A.K., E.L.S. and T.Y.W.); Overview of Primer (T.Y.W.).

Corresponding author

Correspondence to Tien Y. Wong.

Ethics declarations

Competing interests

P.A.K. has acted as a consultant for Apellis, Bitfount, DeepMind, Roche and Novartis and is an equity owner in Big Picture Medical. P.A.K has received speaker fees from Allergen, Bayer, Heidelberg Engineering and Topcon. T.Y.W. is a consultant for Allergan, Bayer, Boehringer-Ingelheim, Eden Ophthalmic, Genentech, Iveric Bio, Merck, Novartis, Oxurion (ThromboGenics), Roche, Samsung, Shanghai Henlius and Zhaoke Pharmaceutical. T.Y.W. is an inventor, holds patents and is a co-founder of start-up companies (plano and EyRiS), which have interests in and develop digital solutions for eye diseases. C.Y.C., V.B. and E.L.S. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks M. Larson, who co-reviewed with M. E. W. Torm; T. Peto; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, C.Y., Biousse, V., Keane, P.A. et al. Hypertensive eye disease. Nat Rev Dis Primers 8, 14 (2022). https://doi.org/10.1038/s41572-022-00342-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00342-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing