Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Restless legs syndrome

Abstract

Restless legs syndrome (RLS) is a common sensorimotor disorder characterized by an urge to move that appears during rest or is exacerbated by rest, that occurs in the evening or night and that disappears during movement or is improved by movement. Symptoms vary considerably in age at onset, frequency and severity, with severe forms affecting sleep, quality of life and mood. Patients with RLS often display periodic leg movements during sleep or resting wakefulness. RLS is considered to be a complex condition in which predisposing genetic factors, environmental factors and comorbidities contribute to the expression of the disorder. RLS occurs alone or with comorbidities, for example, iron deficiency and kidney disease, but also with cardiovascular diseases, diabetes mellitus and neurological, rheumatological and respiratory disorders. The pathophysiology is still unclear, with the involvement of brain iron deficiency, dysfunction in the dopaminergic and nociceptive systems and altered adenosine and glutamatergic pathways as hypotheses being investigated. RLS is poorly recognized by physicians and it is accordingly often incorrectly diagnosed and managed. Treatment guidelines recommend initiation of therapy with low doses of dopamine agonists or α2δ ligands in severe forms. Although dopaminergic treatment is initially highly effective, its long-term use can result in a serious worsening of symptoms known as augmentation. Other treatments include opioids and iron preparations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed pathogenetic model of RLS.
Fig. 2: Algorithm for management of RLS.
Fig. 3: Periodic leg movements during sleep.
Fig. 4: Quality-of-life effects of RLS.

Similar content being viewed by others

References

  1. Willis, T. The London Practice of Physick (Bassett & Cooke, 1685).

  2. Ekbom, K. A. Restless legs: A clinical study. Acta Med. Scand. Suppl. 158, 1–124 (1945).

    Google Scholar 

  3. Para, K. S. et al. Suicidal thought and behavior in individuals with restless legs syndrome. Sleep. Med. 54, 1–7 (2019).

    Article  PubMed  Google Scholar 

  4. Whittom, S. et al. Age-at-onset in restless legs syndrome: a clinical and polysomnographic study. Sleep. Med. 9, 54–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Rinaldi, F. et al. Defining the phenotype of restless legs syndrome/Willis–Ekbom disease (RLS/WED): a clinical and polysomnographic study. J. Neurol. 263, 396–402 (2016).

    Article  PubMed  Google Scholar 

  6. Allen, R. P. & Earley, C. J. Defining the phenotype of the restless legs syndrome (RLS) using age-of-symptom-onset. Sleep. Med. 1, 11–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Allen, R. P. et al. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria — history, rationale, description, and significance. Sleep. Med. 15, 860–873 (2014). This consensus paper contains the most updated essential and supportive diagnostic criteria for RLS.

    Article  PubMed  Google Scholar 

  8. Ondo, W. Restless Legs Syndrome ‘Patient Odyssey’ survey of disease burden on patient and spouses/partners. Sleep. Med. 47, 51–53 (2018).

    Article  PubMed  Google Scholar 

  9. Trenkwalder, C. et al. Socioeconomic impact of restless legs syndrome and inadequate restless legs syndrome management across European settings. Eur. J. Neurol. 28, 691–706 (2020).

    Article  PubMed  Google Scholar 

  10. Walters, A. S. Toward a better definition of the restless legs syndrome. The International Restless Legs Syndrome Study Group. Mov. Disord. 10, 634–642 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Fulda, S. et al. We need to do better: a systematic review and meta-analysis of diagnostic test accuracy of restless legs syndrome screening instruments. Sleep. Med. Rev. 58, 101461 (2021).

    Article  PubMed  Google Scholar 

  12. Picchietti, D. L., Van Den Eeden, S. K., Inoue, Y. & Berger, K. Achievements, challenges, and future perspectives of epidemiologic research in restless legs syndrome (RLS). Sleep. Med. 31, 3–9 (2017).

    Article  PubMed  Google Scholar 

  13. Kim, T.-J. et al. Prevalence and characteristics of restless legs syndrome in Korean adults: a study in two independent samples of the general population. Neuroepidemiology 52, 193–204 (2019).

    Article  PubMed  Google Scholar 

  14. Ma, J.-F. et al. Restless legs syndrome in Chinese elderly people of an urban suburb in Shanghai: a community-based survey. Parkinsonism Relat. Disord. 18, 294–298 (2012).

    Article  PubMed  Google Scholar 

  15. Li, L.-H., Chen, H.-B., Zhang, L.-P., Wang, Z.-W. & Wang, C.-P. A community-based investigation on restless legs syndrome in a town in China. Sleep. Med. 13, 342–345 (2012).

    Article  PubMed  Google Scholar 

  16. Berger, K. & Kurth, T. RLS epidemiology — frequencies, risk factors and methods in population studies. Mov. Disord. 22 (Suppl. 18), S420–S423 (2007).

    Article  PubMed  Google Scholar 

  17. Lee, H. B. et al. Race and restless legs syndrome symptoms in an adult community sample in east Baltimore. Sleep. Med. 7, 642–645 (2006).

    Article  PubMed  Google Scholar 

  18. Szentkirályi, A. et al. Restless legs syndrome and all-cause mortality in four prospective cohort studies. BMJ Open 2, e001652 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kagimura, T., Nomura, T., Kusumi, M., Nakashima, K. & Inoue, Y. Prospective survey on the natural course of restless legs syndrome over two years in a closed cohort. Sleep. Med. 12, 821–826 (2011).

    Article  PubMed  Google Scholar 

  20. Manconi, M. et al. When gender matters: restless legs syndrome. Report of the ‘RLS and woman’ workshop endorsed by the European RLS Study Group. Sleep. Med. Rev. 16, 297–307 (2012).

    Article  PubMed  Google Scholar 

  21. Prosperetti, C. & Manconi, M. Restless legs syndrome/Willis–Ekbom disease and pregnancy. Sleep. Med. Clin. 10, 323–329 (2015).

    Article  PubMed  Google Scholar 

  22. Manconi, M. et al. Restless legs syndrome and pregnancy. Neurology 63, 1065–1069 (2004). This study showed that pregnancy is a significant risk factor for RLS, finding a peak of incidence in the third trimester of pregnancy and a drop in frequency around delivery.

    Article  CAS  PubMed  Google Scholar 

  23. Cesnik, E. et al. Transient RLS during pregnancy is a risk factor for the chronic idiopathic form. Neurology 75, 2117–2120 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, J. et al. Restless legs symptoms in adolescents: epidemiology, heritability, and pubertal effects. J. Psychosom. Res. 76, 158–164 (2014).

    Article  PubMed  Google Scholar 

  25. Szentkirályi, A., Völzke, H., Hoffmann, W., Trenkwalder, C. & Berger, K. Multimorbidity and the risk of restless legs syndrome in two prospective cohort studies. Neurology 82, 2026–2033 (2014).

    Article  PubMed  CAS  Google Scholar 

  26. Trenkwalder, C., Allen, R., Högl, B., Paulus, W. & Winkelmann, J. Restless legs syndrome associated with major diseases: a systematic review and new concept. Neurology 86, 1336–1343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Batool-Anwar, S. et al. Lifestyle factors and risk of restless legs syndrome: prospective cohort study. J. Clin. Sleep. Med. 12, 187–194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ondo, W. G., Vuong, K. D. & Wang, Q. Restless legs syndrome in monozygotic twins: clinical correlates. Neurology 55, 1404–1406 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Allen, R. P., La Buda, M. C., Becker, P. & Earley, C. J. Family history study of the restless legs syndrome. Sleep. Med. 3 (Suppl.), S3–S7 (2002).

    Article  PubMed  Google Scholar 

  30. Ohayon, M. M., O’Hara, R. & Vitiello, M. V. Epidemiology of restless legs syndrome: a synthesis of the literature. Sleep. Med. Rev. 16, 283–295 (2012).

    Article  PubMed  Google Scholar 

  31. Winkelmann, J. et al. Complex segregation analysis of restless legs syndrome provides evidence for an autosomal dominant mode of inheritance in early age at onset families. Ann. Neurol. 52, 297–302 (2002).

    Article  PubMed  Google Scholar 

  32. Ondo, W. & Jankovic, J. Restless legs syndrome: clinicoetiologic correlates. Neurology 47, 1435–1441 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Stefansson, H. et al. A genetic risk factor for periodic limb movements in sleep. N. Engl. J. Med. 357, 639–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Winkelmann, J. et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat. Genet. 39, 1000–1006 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E. & Agúndez, J. A. G. Genetics of restless legs syndrome: an update. Sleep. Med. Rev. 39, 108–121 (2018).

    Article  PubMed  Google Scholar 

  36. Akçimen, F. et al. Screening of novel restless legs syndrome-associated genes in French-Canadian families. Neurol. Genet. 4, e296 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Aridon, P. et al. A TRAPPC6B splicing variant associates to restless legs syndrome. Parkinsonism Relat. Disord. 31, 135–138 (2016).

    Article  PubMed  Google Scholar 

  38. Gan-Or, Z. et al. Analysis of functional GLO1 variants in the BTBD9 locus and restless legs syndrome. Sleep. Med. 16, 1151–1155 (2015).

    Article  PubMed  Google Scholar 

  39. Weissbach, A. et al. Exome sequencing in a family with restless legs syndrome. Mov. Disord. 27, 1686–1689 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Schormair, B. et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol. 16, 898–907 (2017). First large-scale (>15,000 cases in discovery stage) GWAS meta-analysis for RLS, which increased the number of risk loci from 6 to 19 and used pathway analyses for functional interpretation.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Winkelmann, J. et al. Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet. 7, e1002171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Didriksen, M. et al. Large genome-wide association study identifies three novel risk variants for restless legs syndrome. Commun. Biol. 3, 703 (2020). Second large-scale (>10,000 cases in discovery stage) GWAS meta-analysis for RLS, which increased the number of identified risk loci and used Mendelian randomization analyses for functional interpretation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akçimen, F. et al. Transcriptome-wide association study for restless legs syndrome identifies new susceptibility genes. Commun. Biol. 3, 373 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tilch, E. et al. Identification of restless legs syndrome genes by mutational load analysis. Ann. Neurol. 87, 184–193 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Li, G. et al. Association of BTBD9 and MAP2K5/SKOR1 with restless legs syndrome in Chinese population. Sleep https://doi.org/10.1093/sleep/zsx028 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sarayloo, F., Dion, P. A. & Rouleau, G. A. MEIS1 and restless legs syndrome: a comprehensive review. Front. Neurol. 10, 935 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. El Gewely, M. et al. Reassessing GWAS findings for the shared genetic basis of insomnia and restless legs syndrome. Sleep https://doi.org/10.1093/sleep/zsy164 (2018). This is the only study dissecting the association of MEIS1 with insomnia symptoms and RLS using a sample of patients with chronic insomnia disorder, which had been phenotyped for both diseases by clinicians.

    Article  PubMed  Google Scholar 

  48. Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019). This is the largest GWAS meta-analysis on insomnia symptoms to date, which includes further attempts at dissecting the overlap between insomnia symptoms and RLS by means of GWAS.

    Article  CAS  PubMed  Google Scholar 

  49. Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017). This meta-analysis was among the first studies to address the genetic overlap between RLS and insomnia symptoms based on GWAS results.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lane, J. M. et al. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 51, 387–393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Allen, R. P. & Earley, C. J. The role of iron in restless legs syndrome. Mov. Disord. 22 (Suppl. 18), S440–S448 (2007).

    Article  PubMed  Google Scholar 

  52. Allen, R. P., Auerbach, S., Bahrain, H., Auerbach, M. & Earley, C. J. The prevalence and impact of restless legs syndrome on patients with iron deficiency anemia. Am. J. Hematol. 88, 261–264 (2013).

    Article  PubMed  Google Scholar 

  53. Schmidauer, C. et al. Transcranial ultrasound shows nigral hypoechogenicity in restless legs syndrome. Ann. Neurol. 58, 630–634 (2005).

    Article  PubMed  Google Scholar 

  54. Godau, J., Schweitzer, K. J., Liepelt, I., Gerloff, C. & Berg, D. Substantia nigra hypoechogenicity: definition and findings in restless legs syndrome. Mov. Disord. 22, 187–192 (2007).

    Article  PubMed  Google Scholar 

  55. Earley, C. J. et al. Altered brain iron homeostasis and dopaminergic function in restless legs syndrome (Willis–Ekbom disease). Sleep. Med. 15, 1288–1301 (2014).

    Article  PubMed  Google Scholar 

  56. Earley, C. J. et al. Abnormalities in CSF concentrations of ferritin and transferrin in restless legs syndrome. Neurology 54, 1698–1700 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Connor, J. R. et al. Profile of altered brain iron acquisition in restless legs syndrome. Brain J. Neurol. 134, 959–968 (2011).

    Article  Google Scholar 

  58. Dauvilliers, Y. et al. Association between serum hepcidin level and restless legs syndrome. Mov. Disord. 33, 618–627 (2018). This is the first association between high hepcidin levels and RLS that emphasizes the complex peripheral iron metabolism deregulation in RLS.

    Article  CAS  PubMed  Google Scholar 

  59. Chenini, S. et al. Hepcidin and ferritin levels in restless legs syndrome: a case-control study. Sci. Rep. 10, 11914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Earley, C. J., Uhl, G. R., Clemens, S. & Ferré, S. Connectome and molecular pharmacological differences in the dopaminergic system in restless legs syndrome (RLS): plastic changes and neuroadaptations that may contribute to augmentation. Sleep. Med. 31, 71–77 (2017).

    Article  PubMed  Google Scholar 

  61. Dooley, D. J., Taylor, C. P., Donevan, S. & Feltner, D. Ca2+ channel α2δ ligands: novel modulators of neurotransmission. Trends Pharmacol. Sci. 28, 75–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Connor, J. R. et al. Altered dopaminergic profile in the putamen and substantia nigra in restless leg syndrome. Brain J. Neurol. 132, 2403–2412 (2009).

    Article  Google Scholar 

  63. Allen, R. P. Restless leg syndrome/Willis–Ekbom disease pathophysiology. Sleep. Med. Clin. 10, 207–214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yepes, G. et al. Targeting hypersensitive corticostriatal terminals in restless legs syndrome. Ann. Neurol. 82, 951–960 (2017). This is the first article showing compelling evidence for an adenosinergic dysfunction in RLS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clemens, S., Rye, D. & Hochman, S. Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology 67, 125–130 (2006). This seminal theoretical paper suggested the involvement of the dopaminergic inhibitory hypthalamo-spinal pathway in the pathogenesis of RLS.

    Article  PubMed  Google Scholar 

  66. Qu, S. et al. Locomotion is increased in A11-lesioned mice with iron deprivation: a possible animal model for restless legs syndrome. J. Neuropathol. Exp. Neurol. 66, 383–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Earley, C. J., Allen, R. P., Connor, J. R., Ferrucci, L. & Troncoso, J. The dopaminergic neurons of the A11 system in RLS autopsy brains appear normal. Sleep. Med. 10, 1155–1157 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Unger, E. L., Bianco, L. E., Jones, B. C., Allen, R. P. & Earley, C. J. Low brain iron effects and reversibility on striatal dopamine dynamics. Exp. Neurol. 261, 462–468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oertel, W. H. et al. Rotigotine transdermal patch in moderate to severe idiopathic restless legs syndrome: a randomized, placebo-controlled polysomnographic study. Sleep. Med. 11, 848–856 (2010).

    Article  PubMed  Google Scholar 

  70. Altarifi, A. A. et al. Effects of acute and repeated treatment with the biased μ-opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J. Psychopharmacol. Oxf. Engl. 31, 730–739 (2017).

    Article  CAS  Google Scholar 

  71. Allen, R. P., Barker, P. B., Horská, A. & Earley, C. J. Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep. Neurology 80, 2028–2034 (2013). This was the first study suggesting a disturbance of glutamatergic transmission in RLS, and suggesting the mechanisms of action of glutamatergic drugs (that is, α2δ ligands) and other arousal-reducing agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia-Borreguero, D. et al. Pregabalin versus pramipexole: effects on sleep disturbance in restless legs syndrome. Sleep 37, 635–643 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kapur, N. & Friedman, R. Oral ketamine: a promising treatment for restless legs syndrome. Anesth. Analg. 94, 1558–1559 (2002).

    Article  PubMed  Google Scholar 

  74. Inturrisi, C. E. Pharmacology of methadone and its isomers. Minerva Anestesiol. 71, 435–437 (2005).

    CAS  PubMed  Google Scholar 

  75. Silver, N., Allen, R. P., Senerth, J. & Earley, C. J. A 10-year, longitudinal assessment of dopamine agonists and methadone in the treatment of restless legs syndrome. Sleep. Med. 12, 440–444 (2011).

    Article  PubMed  Google Scholar 

  76. Garcia-Borreguero, D., Cano, I. & Granizo, J. J. Treatment of restless legs syndrome with the selective AMPA receptor antagonist perampanel. Sleep. Med. 34, 105–108 (2017).

    Article  PubMed  Google Scholar 

  77. Inoue, Y. et al. Efficacy and safety of pramipexole in Japanese patients with primary restless legs syndrome: a polysomnographic randomized, double-blind, placebo-controlled study. Sleep. Med. 11, 11–16 (2010).

    Article  PubMed  Google Scholar 

  78. Shukla, A., Agarwal, K. N. & Shukla, G. S. Latent iron deficiency alters γ-aminobutyric acid and glutamate metabolism in rat brain. Experientia 45, 343–345 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. McGahan, M. C. et al. Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am. J. Physiol. Cell Physiol. 288, C1117–C1124 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Quiroz, C. et al. Adenosine receptors as markers of brain iron deficiency: implications for restless legs syndrome. Neuropharmacology 111, 160–168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferré, S. et al. Pivotal role of adenosine neurotransmission in restless legs syndrome. Front. Neurosci. 11, 722 (2017).

    Article  PubMed  Google Scholar 

  82. Ciruela, F. et al. Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. Cell. Mol. Life Sci. 63, 2427–2431 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Ferré, S. et al. Essential control of the function of the striatopallidal neuron by pre-coupled complexes of adenosine A2A-dopamine D2 receptor heterotetramers and adenylyl cyclase. Front. Pharmacol. 9, 243 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Garcia-Borreguero, D. et al. Treatment of restless legs syndrome/Willis–Ekbom disease with the non-selective ENT1/ENT2 inhibitor dipyridamole: testing the adenosine hypothesis. Sleep. Med. 45, 94–97 (2018).

    Article  PubMed  Google Scholar 

  85. Garcia-Borreguero, D., Garcia-Malo, C., Granizo, J. J. & Ferré, S. A randomized, placebo-controlled crossover study with dipyridamole for restless legs syndrome. Mov. Disord. https://doi.org/10.1002/mds.28668 (2021). Main clinical evidence showing the involvement of adenosinergic mechanisms in the pathophysiology of RLS and the therapeutic effects of dipyridamole in RLS.

    Article  PubMed  Google Scholar 

  86. Magalhães, S. C. et al. Transcranial magnetic stimulation for evaluation of motor cortical excitability in restless legs syndrome/Willis–Ekbom disease. Sleep. Med. 16, 1265–1273 (2015).

    Article  PubMed  Google Scholar 

  87. Lanza, G. et al. Impaired short-term plasticity in restless legs syndrome: a pilot rTMS study. Sleep. Med. 46, 1–4 (2018).

    Article  PubMed  Google Scholar 

  88. Lanza, G. & Ferri, R. The neurophysiology of hyperarousal in restless legs syndrome: hints for a role of glutamate/GABA. Adv. Pharmacol. San. Diego Calif. 84, 101–119 (2019). This paper summarizes the neurophysiological and biological basis of hyperarousal in RLS.

    Article  CAS  Google Scholar 

  89. Provini, F. et al. Motor pattern of periodic limb movements during sleep. Neurology 57, 300–304 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Ferri, R. et al. Acute dopamine-agonist treatment in restless legs syndrome: effects on sleep architecture and NREM sleep instability. Sleep 33, 793–800 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lanza, G. et al. Central and peripheral nervous system excitability in restless legs syndrome. Sleep. Med. 31, 49–60 (2017).

    Article  PubMed  Google Scholar 

  92. Walters, A. S. et al. Restless legs syndrome shows increased silent postmortem cerebral microvascular disease with gliosis. J. Am. Heart Assoc. 10, e019627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Paiva, J. P. Q. et al. Sensorimotor white matter projections and disease severity in primary restless legs syndrome/Willis–Ekbom disease: a multimodal DTI analysis. Sleep. Med. 73, 106–116 (2020).

    Article  PubMed  Google Scholar 

  94. Kocar, T. D., Müller, H.-P. & Kassubek, J. Differential functional connectivity in thalamic and dopaminergic pathways in restless legs syndrome: a meta-analysis. Ther. Adv. Neurol. Disord. 13, 1756286420941670 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Stefani, A. et al. Multimodal magnetic resonance imaging reveals alterations of sensorimotor circuits in restless legs syndrome. Sleep 42, zsz171 (2019).

    Article  PubMed  Google Scholar 

  96. Tuovinen, N. et al. Functional connectivity and topology in patients with restless legs syndrome: a case-control resting-state functional magnetic resonance imaging study. Eur. J. Neurol. 28, 448–458 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Gupta, R., Ulfberg, J., Allen, R. P. & Goel, D. High prevalence of restless legs syndrome/Willis Ekbom Disease (RLS/WED) among people living at high altitude in the Indian Himalaya. Sleep. Med. 35, 7–11 (2017).

    Article  PubMed  Google Scholar 

  98. Castillo, P. R., Kaplan, J., Lin, S.-C., Fredrickson, P. A. & Mahowald, M. W. Prevalence of restless legs syndrome among native South Americans residing in coastal and mountainous areas. Mayo Clin. Proc. 81, 1345–1347 (2006).

    Article  PubMed  Google Scholar 

  99. Stefani, A., Heidbreder, A., Hackner, H., Burtscher, M. & Högl, B. Influence of high altitude on periodic leg movements during sleep in individuals with restless legs syndrome and healthy controls: a pilot study. Sleep. Med. 29, 88–89 (2017).

    Article  PubMed  Google Scholar 

  100. Sevim, S. et al. Unexpectedly low prevalence and unusual characteristics of RLS in Mersin, Turkey. Neurology 61, 1562–1569 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Sun, S. et al. Association between leg motor restlessness and depression among Chinese males living at high-altitude: the mediating role of insomnia. Sleep. Breath. Schlaf Atm. 25, 979–987 (2021).

    Article  Google Scholar 

  102. Budhiraja, R., Siddiqi, T. A. & Quan, S. F. Sleep disorders in chronic obstructive pulmonary disease: etiology, impact, and management. J. Clin. Sleep. Med. 11, 259–270 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Salminen, A. V., Rimpilä, V. & Polo, O. Peripheral hypoxia in restless legs syndrome (Willis–Ekbom disease). Neurology 82, 1856–1861 (2014). This study showed a correlation of peripheral hypoxia with the appearance and severity of RLS symptoms, which was reversed by dopamine agonist.

    Article  CAS  PubMed  Google Scholar 

  104. Okamura, T., Yamazaki, M. & Toda, N. Responses to dopamine of isolated human and monkey veins compared with those of the arteries. J. Pharmacol. Exp. Ther. 258, 275–279 (1991).

    CAS  PubMed  Google Scholar 

  105. Larsson, B. W., Kadi, F., Ulfberg, J. & Aulin, K. P. Skeletal muscle morphology in patients with restless legs syndrome. Eur. Neurol. 58, 133–137 (2007).

    Article  PubMed  Google Scholar 

  106. Wåhlin-Larsson, B., Ulfberg, J., Aulin, K. P. & Kadi, F. The expression of vascular endothelial growth factor in skeletal muscle of patients with sleep disorders. Muscle Nerve 40, 556–561 (2009).

    Article  PubMed  Google Scholar 

  107. Yeh, W.-L., Lu, D.-Y., Lin, C.-J., Liou, H.-C. & Fu, W.-M. Inhibition of hypoxia-induced increase of blood-brain barrier permeability by YC-1 through the antagonism of HIF-1α accumulation and VEGF expression. Mol. Pharmacol. 72, 440–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Michaud, M., Chabli, A., Lavigne, G. & Montplaisir, J. Arm restlessness in patients with restless legs syndrome. Mov. Disord. 15, 289–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Winkelmann, J. et al. Clinical characteristics and frequency of the hereditary restless legs syndrome in a population of 300 patients. Sleep 23, 597–602 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Bassetti, C. L., Mauerhofer, D., Gugger, M., Mathis, J. & Hess, C. W. Restless legs syndrome: a clinical study of 55 patients. Eur. Neurol. 45, 67–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Hening, W. A. et al. Circadian rhythm of motor restlessness and sensory symptoms in the idiopathic restless legs syndrome. Sleep 22, 901–912 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Michaud, M. et al. Circadian rhythm of restless legs syndrome: relationship with biological markers. Ann. Neurol. 55, 372–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Trenkwalder, C. et al. Circadian rhythm of periodic limb movements and sensory symptoms of restless legs syndrome. Mov. Disord. 14, 102–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Montplaisir, J. et al. Clinical, polysomnographic, and genetic characteristics of restless legs syndrome: a study of 133 patients diagnosed with new standard criteria. Mov. Disord. 12, 61–65 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Ulfberg, J. et al. Comorbidity in restless legs syndrome among a sample of Swedish adults. Sleep. Med. 8, 768–772 (2007).

    Article  PubMed  Google Scholar 

  116. Allen, R. P., Stillman, P. & Myers, A. J. Physician-diagnosed restless legs syndrome in a large sample of primary medical care patients in western Europe: prevalence and characteristics. Sleep. Med. 11, 31–37 (2010).

    Article  PubMed  Google Scholar 

  117. Garcia-Borreguero, D. et al. The long-term treatment of restless legs syndrome/Willis–Ekbom disease: evidence-based guidelines and clinical consensus best practice guidance: a report from the International Restless Legs Syndrome Study Group. Sleep. Med. 14, 675–684 (2013).

    Article  PubMed  Google Scholar 

  118. Gamaldo, C., Benbrook, A. R., Allen, R. P., Oguntimein, O. & Earley, C. J. Evaluating daytime alertness in individuals with restless legs syndrome (RLS) compared to sleep restricted controls. Sleep. Med. 10, 134–138 (2009).

    Article  PubMed  Google Scholar 

  119. Walters, A. S. et al. Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep. Med. 4, 121–132 (2003). This study validated the scale most often used to quantify and monitor RLS severity.

    Article  PubMed  Google Scholar 

  120. Sharon, D. et al. Validation of the self-administered version of the International Restless Legs Syndrome Study Group severity rating scale — the sIRLS. Sleep. Med. 54, 94–100 (2019).

    Article  PubMed  Google Scholar 

  121. Mizuno, S., Mihara, T., Miyaoka, T., Inagaki, T. & Horiguchi, J. CSF iron, ferritin and transferrin levels in restless legs syndrome. J. Sleep. Res. 14, 43–47 (2005).

    Article  PubMed  Google Scholar 

  122. Garcia-Malo, C. et al. Quantitative transcranial sonography of the substantia nigra as a predictor of therapeutic response to intravenous iron therapy in restless legs syndrome. Sleep. Med. 66, 123–129 (2020).

    Article  PubMed  Google Scholar 

  123. Iber, C. et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications (American Academy of Sleep Medicine, 2021).

  124. Ferri, R. et al. World Association of Sleep Medicine (WASM) 2016 standards for recording and scoring leg movements in polysomnograms developed by a joint task force from the International and the European Restless Legs Syndrome Study Groups (IRLSSG and EURLSSG). Sleep. Med. 26, 86–95 (2016). These are the most recent, updated and data-driven scoring criteria for PLMS.

    Article  CAS  PubMed  Google Scholar 

  125. Haba-Rubio, J. et al. Clinical significance of periodic limb movements during sleep: the HypnoLaus study. Sleep. Med. 41, 45–50 (2018). This is one of the largest cohort studies on PLMS in the general population.

    Article  PubMed  Google Scholar 

  126. Ferri, R. et al. Computer-assisted detection of nocturnal leg motor activity in patients with restless legs syndrome and periodic leg movements during sleep. Sleep 28, 998–1004 (2005).

    Article  PubMed  Google Scholar 

  127. Manconi, M. et al. Dissociation of periodic leg movements from arousals in restless legs syndrome. Ann. Neurol. 71, 834–844 (2012).

    Article  PubMed  Google Scholar 

  128. Hein, M., Lanquart, J.-P., Hubain, P. & Loas, G. Risk of resistant hypertension associated with restless legs syndrome and periodic limb movements during sleep: a study on 673 treated hypertensive individuals. Sleep. Med. 63, 46–56 (2019).

    Article  PubMed  Google Scholar 

  129. Chenini, S. et al. Increased blood pressure dipping in restless legs syndrome with rotigotine: a randomized trial. Mov. Disord. 35, 2164–2173 (2020). This was the first study showing that rotigotine increased the percentage of blood pressure dipper profiles in patients with RLS.

    Article  CAS  PubMed  Google Scholar 

  130. Durmer, J. S. & Quraishi, G. H. Restless legs syndrome, periodic leg movements, and periodic limb movement disorder in children. Pediatr. Clin. North Am. 58, 591–620 (2011).

    Article  PubMed  Google Scholar 

  131. Picchietti, D. L. et al. Pediatric restless legs syndrome diagnostic criteria: an update by the International Restless Legs Syndrome Study Group. Sleep. Med. 14, 1253–1259 (2013). This paper reports specific diagnostic criteria for pediatric RLS.

    Article  PubMed  Google Scholar 

  132. Bega, D. & Malkani, R. Alternative treatment of restless legs syndrome: an overview of the evidence for mind-body interventions, lifestyle interventions, and neutraceuticals. Sleep. Med. 17, 99–105 (2016).

    Article  PubMed  Google Scholar 

  133. Lettieri, C. J. & Eliasson, A. H. Pneumatic compression devices are an effective therapy for restless legs syndrome: a prospective, randomized, double-blinded, sham-controlled trial. Chest 135, 74–80 (2009).

    Article  PubMed  Google Scholar 

  134. Silber, M. H. et al. The management of restless legs syndrome: an updated algorithm. Mayo Clin. Proc. 96, 1921–1937 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Patatanian, E. & Claborn, M. K. Drug-induced restless legs syndrome. Ann. Pharmacother. 52, 662–672 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Allen, R. P. et al. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis–Ekbom disease in adults and children: an IRLSSG task force report. Sleep. Med. 41, 27–44 (2018). These consensus guidelines provided indication and instructions to supplement with oral or intravenous iron patients with RLS.

    Article  PubMed  Google Scholar 

  137. Akpinar, S. Treatment of restless legs syndrome with levodopa plus benserazide. Arch. Neurol. 39, 739 (1982).

    Article  CAS  PubMed  Google Scholar 

  138. Manconi, M. et al. Preferential D2 or preferential D3 dopamine agonists in restless legs syndrome. Neurology 77, 110–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Winkelman, J. W. et al. Practice guideline summary: treatment of restless legs syndrome in adults: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology 87, 2585–2593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bayard, S., Langenier, M. C. & Dauvilliers, Y. Decision-making, reward-seeking behaviors and dopamine agonist therapy in restless legs syndrome. Sleep 36, 1501–1507 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Möller, J. C. et al. “Sleep attacks” in Parkinson patients. A side effect of nonergoline dopamine agonists or a class effect of dopamine agonists? Nervenarzt 71, 670–676 (2000).

    PubMed  Google Scholar 

  142. Zintzaras, E. et al. Randomized trials of dopamine agonists in restless legs syndrome: a systematic review, quality assessment, and meta-analysis. Clin. Ther. 32, 221–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Oertel, W. et al. Long-term safety and efficacy of rotigotine transdermal patch for moderate-to-severe idiopathic restless legs syndrome: a 5-year open-label extension study. Lancet Neurol. 10, 710–720 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Dauvilliers, Y. et al. Rotigotine in hemodialysis-associated restless legs syndrome: a randomized controlled trial. Am. J. Kidney Dis. 68, 434–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Lipford, M. C. & Silber, M. H. Long-term use of pramipexole in the management of restless legs syndrome. Sleep. Med. 13, 1280–1285 (2012).

    Article  PubMed  Google Scholar 

  146. Mitterling, T. et al. Natural course of restless legs syndrome/Willis–Ekbom disease: long-term observation of a large clinical cohort. Sleep. Med. 16, 1252–1258 (2015). This is the main long-term therapeutic comparison between a dopamine agonist and an α2δ ligand.

    Article  PubMed  Google Scholar 

  147. Allen, R. P. et al. Restless legs syndrome (RLS) augmentation associated with dopamine agonist and levodopa usage in a community sample. Sleep. Med. 12, 431–439 (2011). This article shows the prevalence of dopaminergic augmentation in the USA, and how few of these cases are identified by their physicians.

    Article  PubMed  Google Scholar 

  148. Högl, B. et al. Efficacy and augmentation during 6 months of double-blind pramipexole for restless legs syndrome. Sleep. Med. 12, 351–360 (2011).

    Article  PubMed  Google Scholar 

  149. Garcia-Borreguero, D., Cano-Pumarega, I. & Marulanda, R. Management of treatment failure in restless legs syndrome (Willis–Ekbom disease). Sleep. Med. Rev. 41, 50–60 (2018).

    Article  PubMed  Google Scholar 

  150. Allen, R. P. & Earley, C. J. Augmentation of the restless legs syndrome with carbidopa/levodopa. Sleep 19, 205–213 (1996). This is the first study describing the phenomenon of augmentation in a sample of patients with RLS treated with carbidopa/levodopa.

    Article  CAS  PubMed  Google Scholar 

  151. Allen, R. P. et al. Comparison of pregabalin with pramipexole for restless legs syndrome. N. Engl. J. Med. 370, 621–631 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Wanner, V., Garcia Malo, C., Romero, S., Cano-Pumarega, I. & García-Borreguero, D. Non-dopaminergic vs. dopaminergic treatment options in restless legs syndrome. Adv. Pharmacol. San. Diego Calif. 84, 187–205 (2019).

    Article  CAS  Google Scholar 

  153. Garcia-Borreguero, D. et al. Guidelines for the first-line treatment of restless legs syndrome/Willis–Ekbom disease, prevention and treatment of dopaminergic augmentation: a combined task force of the IRLSSG, EURLSSG, and the RLS-foundation. Sleep. Med. 21, 1–11 (2016). This is the most recent algorithm on how to prevent and treat augmentation.

    Article  PubMed  Google Scholar 

  154. Silber, M. H. et al. The appropriate use of opioids in the treatment of refractory restless legs syndrome. Mayo Clin. Proc. 93, 59–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Trenkwalder, C. et al. Prolonged release oxycodone-naloxone for treatment of severe restless legs syndrome after failure of previous treatment: a double-blind, randomised, placebo-controlled trial with an open-label extension. Lancet Neurol. 12, 1141–1150 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Atkinson, M. J. et al. Validation of the restless legs syndrome quality of life instrument (RLS-QLI): findings of a consortium of national experts and the RLS Foundation. Qual. Life Res. 13, 679–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Giannaki, C. D. et al. Restless legs syndrome is contributing to fatigue and low quality of life levels in hemodialysis patients. World J. Nephrol. 6, 236–242 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fuhs, A. et al. Effects of short- and long-term variations in RLS severity on perceived health status — the COR-study. PLoS ONE 9, e94821 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Szentkiralyi, A., Fendrich, K., Hoffmann, W., Happe, S. & Berger, K. Incidence of restless legs syndrome in two population-based cohort studies in Germany. Sleep. Med. 12, 815–820 (2011).

    Article  PubMed  Google Scholar 

  160. Kutlu, R., Selcuk, N. Y., Sayin, S. & Kal, O. Restless legs syndrome and quality of life in chronic hemodialysis patients. Niger. J. Clin. Pract. 21, 573–577 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Ataide, M. F., da Cunha-Correia, C. & Petribú, K. C. L. The relationship between restless legs syndrome and quality of life in patients with myasthenia gravis. Eur. Neurol. 81, 205–208 (2019).

    Article  PubMed  Google Scholar 

  162. Cederberg, K. L. J. et al. Restless legs syndrome and health-related quality of life in adults with multiple sclerosis. J. Sleep. Res. 29, e12880 (2020).

    Article  PubMed  Google Scholar 

  163. Barzegar, M. et al. Comparison of sleep complaints and quality of life between patients with neuromyelitis optica spectrum disorder (NMOSD) and healthy controls. Mult. Scler. Relat. Disord. 32, 81–87 (2019).

    Article  PubMed  Google Scholar 

  164. Yatsu, S. et al. Prevalence and significance of restless legs syndrome in patients with coronary artery disease. Am. J. Cardiol. 123, 1580–1586 (2019).

    Article  PubMed  Google Scholar 

  165. Ostacoli, L. et al. Restless legs syndrome and its relationship with anxiety, depression, and quality of life in cancer patients undergoing chemotherapy. Qual. Life Res. 19, 531–537 (2010).

    Article  PubMed  Google Scholar 

  166. Fereshtehnejad, S.-M., Shafieesabet, M., Shahidi, G. A., Delbari, A. & Lökk, J. Restless legs syndrome in patients with Parkinson’s disease: a comparative study on prevalence, clinical characteristics, quality of life and nutritional status. Acta Neurol. Scand. 131, 211–218 (2015).

    Article  PubMed  Google Scholar 

  167. Akbaş, P. & Sözbir, Ş. Y. Restless legs syndrome and quality of life in pregnant women. Rev. Assoc. Med. Bras. 65, 618–624 (2019).

    Article  PubMed  Google Scholar 

  168. De Vito, K. et al. Prospective study of obesity, hypertension, high cholesterol, and risk of restless legs syndrome. Mov. Disord. 29, 1044–1052 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Gao, X., Schwarzschild, M. A., Wang, H. & Ascherio, A. Obesity and restless legs syndrome in men and women. Neurology 72, 1255–1261 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Schlesinger, I., Erikh, I., Avizohar, O., Sprecher, E. & Yarnitsky, D. Cardiovascular risk factors in restless legs syndrome. Mov. Disord. 24, 1587–1592 (2009).

    Article  PubMed  Google Scholar 

  171. Gottlieb, D. J., Somers, V. K., Punjabi, N. M. & Winkelman, J. W. Restless legs syndrome and cardiovascular disease: a research roadmap: a response. Sleep. Med. 36, 181 (2017).

    Article  PubMed  Google Scholar 

  172. Winkelman, J. W., Shahar, E., Sharief, I. & Gottlieb, D. J. Association of restless legs syndrome and cardiovascular disease in the Sleep Heart Health Study. Neurology 70, 35–42 (2008).

    Article  PubMed  Google Scholar 

  173. Batool-Anwar, S. et al. Restless legs syndrome and hypertension in middle-aged women. Hypertension 58, 791–796 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Winter, A. C. et al. Restless legs syndrome and risk of incident cardiovascular disease in women and men: prospective cohort study. BMJ Open 2, e000866 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Pepin, J.-L. et al. Hypertension and sleep: overview of a tight relationship. Sleep. Med. Rev. 18, 509–519 (2014).

    Article  PubMed  Google Scholar 

  176. Cholley-Roulleau, M. et al. Restless legs syndrome and cardiovascular diseases: a case-control study. PLoS ONE 12, e0176552 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Pennestri, M.-H. et al. Blood pressure changes associated with periodic leg movements during sleep in healthy subjects. Sleep. Med. 14, 555–561 (2013). This is the first study that demonstrated and quantified the association of RLS-related PLMS with phasic significant increases in blood pressure.

    Article  PubMed  Google Scholar 

  178. Cassel, W. et al. Significant association between systolic and diastolic blood pressure elevations and periodic limb movements in patients with idiopathic restless legs syndrome. Sleep. Med. 17, 109–120 (2016).

    Article  PubMed  Google Scholar 

  179. Winkelman, J. W. The evoked heart rate response to periodic leg movements of sleep. Sleep 22, 575–580 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Wing, Y. K., Zhang, J., Ho, C. K. W., Au, C.-T. & Li, A. M. Periodic limb movement during sleep is associated with nocturnal hypertension in children. Sleep 33, 759–765 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Blunted sleep-time relative blood pressure decline increases cardiovascular risk independent of blood pressure level — the ‘normotensive non-dipper’ paradox. Chronobiol. Int. 30, 87–98 (2013).

    Article  PubMed  Google Scholar 

  182. Chenini, S. et al. Blood pressure profile and endothelial function in restless legs syndrome. Sci. Rep. 9, 15933 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Boggia, J. et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet 370, 1219–1229 (2007).

    Article  PubMed  Google Scholar 

  184. Bauer, A. et al. Rotigotine’s effect on PLM-associated blood pressure elevations in restless legs syndrome: an RCT. Neurology 86, 1785–1793 (2016). This was the first study to provide class I evidence that for patients with RLS, rotigotine reduced PLM-associated nocturnal systolic blood pressure elevations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Rubinshtein, R. et al. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur. Heart J. 31, 1142–1148 (2010).

    Article  PubMed  Google Scholar 

  186. Koh, S. Y., Kim, M. S., Lee, S. M., Hong, J. M. & Yoon, J. H. Impaired vascular endothelial function in patients with restless legs syndrome: a new aspect of the vascular pathophysiology. J. Neurol. Sci. 359, 207–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Gao, X. et al. Treating restless legs syndrome was associated with low risk of cardiovascular disease: a cohort study with 3.4 years of follow-up. J. Am. Heart Assoc. 10, e018674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tippmann-Peikert, M., Park, J. G., Boeve, B. F., Shepard, J. W. & Silber, M. H. Pathologic gambling in patients with restless legs syndrome treated with dopaminergic agonists. Neurology 68, 301–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Cornelius, J. R., Tippmann-Peikert, M., Slocumb, N. L., Frerichs, C. F. & Silber, M. H. Impulse control disorders with the use of dopaminergic agents in restless legs syndrome: a case-control study. Sleep 33, 81–87 (2010).

    PubMed  PubMed Central  Google Scholar 

  190. Bayard, S., Yu, H., Langenier, M. C., Carlander, B. & Dauvilliers, Y. Decision making in restless legs syndrome. Mov. Disord. 25, 2634–2640 (2010).

    Article  PubMed  Google Scholar 

  191. Grall-Bronnec, M. et al. Dopamine agonists and impulse control disorders: a complex association. Drug Saf. 41, 19–75 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Heim, B. et al. Augmentation and impulsive behaviors in restless legs syndrome: coexistence or association? Neurology 87, 36–40 (2016).

    Article  PubMed  Google Scholar 

  193. Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 26, 549–557 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Kapoor, P. M. et al. Combined associations of a polygenic risk score and classical risk factors with breast cancer risk. J. Natl Cancer Inst. 113, 329–337 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  195. García-Borreguero, D. Dopaminergic augmentation in restless legs syndrome/Willis–Ekbom disease: identification and management. Sleep. Med. Clin. 10, 287–292 (2015).

    Article  PubMed  Google Scholar 

  196. Garcia-Borreguero, D. et al. Reduced response to gabapentin enacarbil in restless legs syndrome following long-term dopaminergic treatment. Sleep. Med. 55, 74–80 (2019).

    Article  PubMed  Google Scholar 

  197. Fulda, S. & Wetter, T. C. Where dopamine meets opioids: a meta-analysis of the placebo effect in restless legs syndrome treatment studies. Brain J. Neurol. 131, 902–917 (2008).

    Article  Google Scholar 

  198. Adil, S. M., Han, J. L., Parente, B. A., Hickey, P. & Lad, S. P. Spinal cord stimulation for restless legs syndrome: case series and mechanistic hypothesis. Stereotact. Funct. Neurosurg. 97, 31–36 (2019).

    Article  PubMed  Google Scholar 

  199. De Vloo, P. et al. Successful spinal cord stimulation for severe medication-refractory restless legs syndrome. Mov. Disord. 34, 585–586 (2019).

    Article  PubMed  Google Scholar 

  200. Byrne, D. A., Sobey, C. M., Trahan, J., Bagai, K. & Walters, A. Spinal cord stimulation in patients with chronic pain and restless legs syndrome: a case report. AA Pract. 13, 110–113 (2019).

    Article  Google Scholar 

  201. Heide, A. C. et al. Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients. Brain Stimul. 7, 636–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Salminen, A. V., Schandra, N., Schormair, B., Oexle, K. & Winkelmann, J. Therapeutic effectiveness of thalidomide in a patient with treatment-resistant restless legs syndrome. J. Clin. Sleep. Med. 16, 1815–1817 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kwatra, V. et al. Differential diagnosis and treatment of restless legs syndrome: a literature review. Cureus 10, e3297 (2018).

    PubMed  PubMed Central  Google Scholar 

  204. Salminen, A. V., Lam, D. D. & Winkelmann, J. Role of MEIS1 in restless legs syndrome: from GWAS to functional studies in mice. Adv. Pharmacol. San. Diego Calif. 84, 175–184 (2019).

    Article  CAS  Google Scholar 

  205. Bouilloux, F. et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. eLife 5, e11627 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Owa, T. et al. Meis1 coordinates cerebellar granule cell development by regulating Pax6 transcription, BMP signaling and ATOH1 degradation. J. Neurosci. 38, 1277–1294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rataj-Baniowska, M. et al. Retinoic acid receptor β controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J. Neurosci. 35, 14467–14475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Spieler, D. et al. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 24, 592–603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Uhl, G. R. & Martinez, M. J. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann. N. Y. Acad. Sci. 1451, 112–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Drgonova, J. et al. Mouse model for protein tyrosine phosphatase D (PTPRD) associations with restless leg syndrome or Willis–Ekbom disease and addiction: reduced expression alters locomotion, sleep behaviors and cocaine-conditioned place preference. Mol. Med. Camb. Mass. 21, 717–725 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Lyu, S. et al. The role of BTBD9 in striatum and restless legs syndrome. eNeuro https://doi.org/10.1523/ENEURO.0277-19.2019 (2019).

  212. DeAndrade, M. P. et al. Motor restlessness, sleep disturbances, thermal sensory alterations and elevated serum iron levels in Btbd9 mutant mice. Hum. Mol. Genet. 21, 3984–3992 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Freeman, A. et al. Sleep fragmentation and motor restlessness in a Drosophila model of restless legs syndrome. Curr. Biol. 22, 1142–1148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Catoire, H. et al. Restless legs syndrome-associated MEIS1 risk variant influences iron homeostasis. Ann. Neurol. 70, 170–175 (2011).

    Article  PubMed  Google Scholar 

  215. Lyu, S. et al. BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Struct. Funct. 225, 1743–1760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Mondello, S. et al. Searching for novel candidate biomarkers of RLS in blood by proteomic analysis. Nat. Sci. Sleep. 13, 873–883 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. García-Borreguero, D. et al. Systematic evaluation of augmentation during treatment with ropinirole in restless legs syndrome (Willis–Ekbom disease): results from a prospective, multicenter study over 66 weeks. Mov. Disord. 27, 277–283 (2012).

    Article  PubMed  CAS  Google Scholar 

  218. Oertel, W. H. et al. One year open-label safety and efficacy trial with rotigotine transdermal patch in moderate to severe idiopathic restless legs syndrome. Sleep. Med. 9, 865–873 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.M. and Y.D.); Epidemiology (K.B.); Mechanisms/pathophysiology (B.S., A.V., Y.D. and M.M.); Diagnosis, screening and prevention (M.M., R.F. and D.G.-B.); Management (D.G.-B., A.V. and Y.D.); Quality of Life (K.B., D.G.B. and Y.D.); Outlook (B.S., M.M. and Y.D.); Overview of Primer (M.M. and Y.D.)

Corresponding authors

Correspondence to Mauro Manconi or Yves Dauvilliers.

Ethics declarations

Competing interests

Y.D. participated on the advisory boards for UCB Pharma, Jazz, Theranexus, Avadel, Idorsia, Takeda, and Bioprojet, outside this work. K.B. has received, for a study on the ‘Course of Restless Legs Syndrome’ (2008–2014), unrestricted grants to the University of Muenster from the German Restless Legs Society and a consortium with equal shares formed by Boehringer Ingelheim Pharma, Mundipharma Research, Neurobiotec, UCB Germany and Switzerland, Vifor Pharma and Roche Pharma. M.M. participated on the advisory boards of Jazz and Avadel, and also received an unrestricted grant from Vifor Pharma and Philips Respironics for the “Life-ON Study” to explore sleep disorders during pregnancy. R.F. participated in educational activities for Jazz. B.S. has received research funding from the German Restless Legs Society and has filed a patent application. D.G.-B. has received research grants from MSDS and Roche, and has consulted for Roche, Idorsia, Luye Pharma, Takeda and American Regent. A.V. declares no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks Birgit Högl, who co-reviewed with Melanie Bergmann; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manconi, M., Garcia-Borreguero, D., Schormair, B. et al. Restless legs syndrome. Nat Rev Dis Primers 7, 80 (2021). https://doi.org/10.1038/s41572-021-00311-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00311-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing