Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Marfan syndrome

A Publisher Correction to this article was published on 17 January 2022

This article has been updated

Abstract

Marfan syndrome (MFS) is an autosomal dominant, age-related but highly penetrant condition with substantial intrafamilial and interfamilial variability. MFS is caused by pathogenetic variants in FBN1, which encodes fibrillin-1, a major structural component of the extracellular matrix that provides support to connective tissues, particularly in arteries, the pericondrium and structures in the eye. Up to 25% of individuals with MFS have de novo variants. The most prominent manifestations of MFS are asymptomatic aortic root aneurysms, aortic dissections, dislocation of the ocular lens (ectopia lentis) and skeletal abnormalities that are characterized by overgrowth of the long bones. MFS is diagnosed based on the Ghent II nosology; genetic testing confirming the presence of a FBN1 pathogenetic variant is not always required for diagnosis but can help distinguish MFS from other heritable thoracic aortic disease syndromes that can present with skeletal features similar to those in MFS. Untreated aortic root aneurysms can progress to life-threatening acute aortic dissections. Management of MFS requires medical therapy to slow the rate of growth of aneurysms and decrease the risk of dissection. Routine surveillance with imaging techniques such as transthoracic echocardiography, CT or MRI is necessary to monitor aneurysm growth and determine when to perform prophylactic repair surgery to prevent an acute aortic dissection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aortic root aneurysm and acute aortic dissections in patients with MFS.
Fig. 2: Pathogenetic variants in FBN1.
Fig. 3: Role of fibrillin-1 in the aorta.
Fig. 4: Clinical manifestations of Marfan syndrome.
Fig. 5: Imaging for thoracic aortic disease in individuals with MFS.

Similar content being viewed by others

Change history

References

  1. Hollister, D. W., Godfrey, M., Sakai, L. Y. & Pyeritz, R. E. Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. N. Engl. J. Med. 323, 152–159 (1990). This article describes decreases in an extracellular matrix protein, fibrillin-1, in skin samples and in the matrix of explanted dermal fibroblasts from patients with MFS.

    CAS  PubMed  Google Scholar 

  2. Sakai, L. Y., Keene, D. R. & Engvall, E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 103, 2499–2509 (1986).

    CAS  PubMed  Google Scholar 

  3. Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991). The first study identifying the mutations in the gene for fibrillin-1, FBN1, in patients with MFS, thus determining that FBN1 mutations are the cause of MFS.

    CAS  PubMed  Google Scholar 

  4. Milewicz, D. M., Pyeritz, R. E., Crawford, E. S. & Byers, P. H. Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts. J. Clin. Invest. 89, 79–86 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiu, H. H., Wu, M. H., Chen, H. C., Kao, F. Y. & Huang, S. K. Epidemiological profile of Marfan syndrome in a general population: a national database study. Mayo Clin. Proc. 89, 34–42 (2014).

    PubMed  Google Scholar 

  6. Arnaud, P. et al. Unsuspected somatic mosaicism for FBN1 gene contributes to Marfan syndrome. Genet. Med. 23, 865–871 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Arnaud, P. et al. Clinical relevance of genotype-phenotype correlations beyond vascular events in a cohort study of 1500 Marfan syndrome patients with FBN1 pathogenic variants. Genet. Med. 23, 1296–1304 (2021). This study, with the largest cohort of patients with MFS published to date, shows FBN1 genotype–phenotype correlations for both aortic and extra-aortic features, which can be used for optimal risk stratification and personalized medicine for patients with MFS.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. McKusick, V. A. Heritable Disorders of Connective Tissue 4th edn (Mosby, 1972).

  9. McKusick, V. A. The cardiovascular aspects of Marfan’s syndrome: a heritable disorder of connective tissue. Circulation 11, 321–342 (1955). The first study to describe the thoracic aortic aneurysms and dissections and mitral valve abnormalitites in patients with MFS.

    CAS  PubMed  Google Scholar 

  10. Murdoch, J. L., Walker, B. A., Halpern, B. L., Kuzma, J. W. & McKusick, V. A. Life expectancy and causes of death in the Marfan syndrome. N. Engl. J. Med. 286, 804–808 (1972).

    CAS  PubMed  Google Scholar 

  11. Pyeritz, R. E. & McKusick, V. A. The Marfan syndrome: diagnosis and management. N. Engl. J. Med. 300, 772–777 (1979).

    CAS  PubMed  Google Scholar 

  12. Silverman, D. I. et al. Life expectancy in the Marfan syndrome. Am. J. Cardiol. 75, 157–160 (1995).

    CAS  PubMed  Google Scholar 

  13. Finkbohner, R., Johnston, D., Crawford, E. S., Coselli, J. & Milewicz, D. M. Marfan syndrome. Long-term survival and complications after aortic aneurysm repair. Circulation 91, 728–733 (1995).

    CAS  PubMed  Google Scholar 

  14. Pyeritz, R. E. Marfan syndrome: improved clinical history results in expanded natural history. Genet. Med. 21, 1683–1690 (2019).

    PubMed  Google Scholar 

  15. den Hartog, A. W. et al. The risk for type B aortic dissection in Marfan syndrome. J. Am. Coll. Cardiol. 65, 246–254 (2015).

    Google Scholar 

  16. de Beaufort, H. W. L. et al. Aortic dissection in patients with Marfan syndrome based on the IRAD data. Ann. Cardiothorac. Surg. 6, 633–641 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Loeys, B. L. et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 47, 476–485 (2010).

    CAS  PubMed  Google Scholar 

  18. Pyeritz, R. E. The Marfan syndrome. Annu. Rev. Med. 51, 481–510 (2000).

    CAS  PubMed  Google Scholar 

  19. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lacro, R. V. et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N. Engl. J. Med. 371, 2061–2071 (2014). Following studies in mice in which losartan blocked thoracic aortic aneurysm formation better than the standard of care, β-adrenergic receptor blockade, in this clinical trial both losartan and β-adrenergic receptor blockers had similar effects on aortic root growth in children and young adults with MFS.

    PubMed  PubMed Central  Google Scholar 

  21. Groth, K. A. et al. Prevalence, incidence, and age at diagnosis in Marfan syndrome. Orphanet. J. Rare. Dis. 10, 153 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Beighton, P. et al. International nosology of heritable disorders of connective tissue, Berlin, 1986. Am. J. Med. Genet. 29, 581–594 (1988).

    CAS  PubMed  Google Scholar 

  23. Fuchs, J. Marfan syndrome and other systemic disorders with congenital ectopia lentis. A Danish national survey. Acta Paediatr. 86, 947–952 (1997).

    CAS  PubMed  Google Scholar 

  24. De Paepe, A., Devereux, R. B., Dietz, H. C., Hennekam, R. C. & Pyeritz, R. E. Revised diagnostic criteria for the Marfan syndrome. Am. J. Med. Genet. 62, 417–426 (1996).

    PubMed  Google Scholar 

  25. Faivre, L. et al. Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome. Am. J. Med. Genet. A 123A, 204–207 (2003).

    PubMed  Google Scholar 

  26. Le, G. C. et al. Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am. J. Hum. Genet. 89, 7–14 (2011).

    Google Scholar 

  27. Ades, L. C., Holman, K. J., Brett, M. S., Edwards, M. J. & Bennetts, B. Ectopia lentis phenotypes and the FBN1 gene. Am. J. Med. Genet. A 126, 284–289 (2004).

    Google Scholar 

  28. Milewicz, D. M. et al. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J. Clin. Invest. 95, 2373–2378 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Milewicz, D. M. et al. Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms. Circulation 94, 2708–2711 (1996).

    CAS  PubMed  Google Scholar 

  30. Faivre, L. et al. Pathogenic FBN1 mutations in 146 adults not meeting clinical diagnostic criteria for Marfan syndrome: further delineation of type 1 fibrillinopathies and focus on patients with an isolated major criterion. Am. J. Med. Genet. A 149A, 854–860 (2009).

    CAS  PubMed  Google Scholar 

  31. Guo, D. C. et al. Heritable thoracic aortic disease genes in sporadic aortic dissection. J. Am. Coll. Cardiol. 70, 2728–2730 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Mizuguchi, T. et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat. Genet. 36, 855–860 (2004). A genetic study that determined that individuals with thoracic aortic disease and systemic manifestations of MFS can have mutations in genes other than FBN1; TGFBR2 mutations were identified in such individuals in this study.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. LeMaire, S. A. et al. Severe aortic and arterial aneurysms associated with a TGFBR2 mutation. Nat. Clin. Pract. Cardiovasc. Med. 4, 167–171 (2007).

    PubMed  PubMed Central  Google Scholar 

  34. Peng, Q., Deng, Y., Yang, Y. & Liu, H. A novel fibrillin-1 gene missense mutation associated with neonatal Marfan syndrome: a case report and review of the mutation spectrum. BMC Pediatr. 16, 60 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Boileau, C. et al. Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomalies not linked to the fibrillin genes [see comments]. Am. J. Hum. Genet. 53, 46–54 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet 37, 275–281 (2005).

    CAS  PubMed  Google Scholar 

  37. Furlong, J., Kurczynski, T. W. & Hennessy, J. R. New Marfanoid syndrome with craniosynostosis. Am. J. Med. Genet. 26, 599–604 (1987).

    CAS  PubMed  Google Scholar 

  38. MacFarlane, E. G. et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J. Clin. Invest. 129, 659–675 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. van de Laar, I. M. et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 43, 121–126 (2011).

    PubMed  Google Scholar 

  40. Rienhoff, H. Y. Jr et al. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am. J. Med. Genet. A 161A, 2040–2046 (2013).

    PubMed  Google Scholar 

  41. Bertoli-Avella, A. M. et al. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J. Am. Coll. Cardiol. 65, 1324–1336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sakai, L. Y., Keene, D. R., Glanville, R. W. & Bachinger, H. P. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J. Biol. Chem. 266, 14763–14770 (1991).

    CAS  PubMed  Google Scholar 

  43. Corson, G. M., Chalberg, S. C., Dietz, H. C., Charbonneau, N. L. & Sakai, L. Y. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics 17, 476–484 (1993).

    CAS  PubMed  Google Scholar 

  44. Lerner-Ellis, J. P. et al. The spectrum of FBN1, TGFβR1, TGFβR2 and ACTA2 variants in 594 individuals with suspected Marfan Syndrome, Loeys-Dietz Syndrome or Thoracic Aortic Aneurysms and Dissections (TAAD). Mol. Genet. Metab. 112, 171–176 (2014).

    CAS  PubMed  Google Scholar 

  45. Milewicz, D. M. & Duvic, M. Severe neonatal Marfan syndrome resulting from a de novo 3-bp insertion into the fibrillin gene on chromosome 15. Am. J. Hum. Genet. 54, 447–453 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Putnam, E. A. et al. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene. Am. J. Med. Genet. 62, 233–242 (1996).

    CAS  PubMed  Google Scholar 

  47. Faivre, L. et al. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation. Eur. J. Hum. Genet. 17, 491–501 (2009).

    CAS  PubMed  Google Scholar 

  48. Faivre, L. et al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am. J. Hum. Genet. 81, 454–466 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schrijver, I., Liu, W., Brenn, T., Furthmayr, H. & Francke, U. Cysteine substitutions in epidermal growth factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Am. J. Hum. Genet. 65, 1007–1020 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schrijver, I. et al. Premature termination mutations in FBN1: distinct effects on differential allelic expression and on protein and clinical phenotypes. Am. J. Hum. Genet. 71, 223–237 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sengle, G. & Sakai, L. Y. The fibrillin microfibril scaffold: a niche for growth factors and mechanosensation? Matrix Biol. 47, 3–12 (2015).

    CAS  PubMed  Google Scholar 

  52. Sengle, G. et al. Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J. Biol. Chem. 283, 13874–13888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramirez, F. & Dietz, H. C. Fibrillin-rich microfibrils: structural determinants of morphogenetic and homeostatic events. J. Cell Physiol. 213, 326–330 (2007).

    CAS  PubMed  Google Scholar 

  54. Chen, Y., Dabovic, B., Annes, J. P. & Rifkin, D. B. Latent TGF-β binding protein-3 (LTBP-3) requires binding to TGF-β for secretion. FEBS Lett. 517, 277–280 (2002).

    CAS  PubMed  Google Scholar 

  55. Robertson, I. B. et al. Latent TGF-β-binding proteins. Matrix Biol. 47, 44–53 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zilberberg, L. et al. Specificity of latent TGF-β binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J. Cell Physiol. 227, 3828–3836 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Isogai, Z. et al. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J. Biol. Chem. 278, 2750–2757 (2003).

    CAS  PubMed  Google Scholar 

  58. Ono, R. N. et al. Latent transforming growth factor β-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J. Biol. Chem. 284, 16872–16881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Humphrey, J. D., Milewicz, D. M., Tellides, G. & Schwartz, M. A. Cell biology. Dysfunctional mechanosensing aneurysms. Science 344, 477–479 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Waters, K. M., Rooper, L. M., Guajardo, A. & Halushka, M. K. Histopathologic differences partially distinguish syndromic aortic diseases. Cardiovasc. Pathol. 30, 6–11 (2017).

    PubMed  Google Scholar 

  62. Davis, E. C. Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization. Lab. Invest. 68, 89–99 (1993).

    CAS  PubMed  Google Scholar 

  63. Milewicz, D. M. et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu. Rev. Genomics Hum. Genet. 9, 283–302 (2008).

    CAS  PubMed  Google Scholar 

  64. Humphrey, J. D., Schwartz, M. A., Tellides, G. & Milewicz, D. M. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ. Res. 116, 1448–1461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Milewicz, D. M. et al. Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler. Thromb. Vasc. Biol. 37, 26–34 (2017).

    CAS  PubMed  Google Scholar 

  66. Pereira, L. et al. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat. Genet. 17, 218–222 (1997).

    CAS  PubMed  Google Scholar 

  67. Pereira, L. et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc. Natl Acad. Sci. USA 96, 3819–3823 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Judge, D. P. et al. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J. Clin. Invest. 114, 172–181 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Carta, L. et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J. Biol. Chem. 281, 8016–8023 (2006).

    CAS  PubMed  Google Scholar 

  70. Bunton, T. E. et al. Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ. Res. 88, 37–43 (2001).

    CAS  PubMed  Google Scholar 

  71. Neptune, E. R. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    CAS  PubMed  Google Scholar 

  72. Lavoie, P. et al. Neutralization of transforming growth factor-β attenuates hypertension and prevents renal injury in uremic rats. J. Hypertens. 23, 1895–1903 (2005).

    CAS  PubMed  Google Scholar 

  73. Lim, D. S. et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 103, 789–791 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gibbons, G. H., Pratt, R. E. & Dzau, V. J. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J. Clin. Invest. 90, 456–461 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Galatioto, J. et al. Cell type-specific contributions of the angiotensin II type 1a receptor to aorta homeostasis and aneurysmal disease-brief report. Arterioscler. Thromb. Vasc. Biol. 38, 588–591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cook, J. R. et al. Dimorphic effects of transforming growth factor-β signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 35, 911–917 (2015). Since losartan treatment was used to block TGFβ signalling and prevent aortic root growth, this study further explored the role of TGFβ signalling in a mouse model of MFS and showed that blocking this signalling pathway early was detrimental and led to earlier deaths due to dissection.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lindsay, M. E. et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 44, 922–927 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, W. et al. Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J. Clin. Invest. 124, 755–767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei, H. et al. Aortopathy in a mouse model of Marfan syndrome is not mediated by altered transforming growth factor β signaling. J. Am. Heart Assoc. 6, e004968 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Boileau, C. et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat. Genet. 44, 916–921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Inamoto, S. et al. TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc. Res. 88, 520–529 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Laar, I. M. B. H.van de et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J. Med. Genet. 49, 47–57 (2012).

    PubMed  Google Scholar 

  83. Regalado, E. S. et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ. Res. 109, 680–686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sellers, S. L. et al. Inhibition of Marfan syndrome aortic root dilation by losartan: role of angiotensin II receptor type 1-independent activation of endothelial function. Am. J. Pathol. 188, 574–585 (2018).

    CAS  PubMed  Google Scholar 

  85. Milewicz, D. M., Prakash, S. K. & Ramirez, F. Therapeutics targeting drivers of thoracic aortic aneurysms and acute aortic dissections: insights from predisposing genes and mouse models. Annu. Rev. Med. 68, 51–67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Pinard, A., Jones, G. T. & Milewicz, D. M. Genetics of thoracic and abdominal aortic diseases. Circ. Res. 124, 588–606 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pedroza, A. J. et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 40, 2195–2211 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cook, J. R. et al. Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome. J. Clin. Invest. 124, 1329–1339 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rouf, R. et al. Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice. JCI Insight 2, e91588 (2017).

    PubMed Central  Google Scholar 

  90. Wisler, J. W. et al. The role of β-arrestin2-dependent signaling in thoracic aortic aneurysm formation in a murine model of Marfan syndrome. Am. J. Physiol. Heart Circ. Physiol. 309, H1516–H1527 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Crosas-Molist, E. et al. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 35, 960–972 (2015).

    CAS  PubMed  Google Scholar 

  92. Jimenez-Altayo, F. et al. Redox stress in Marfan syndrome: dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radic. Biol. Med. 118, 44–58 (2018).

    CAS  PubMed  Google Scholar 

  93. Yang, H. H., Breemen, C.van & Chung, A. W. Vasomotor dysfunction in the thoracic aorta of Marfan syndrome is associated with accumulation of oxidative stress. Vasc. Pharmacol. 52, 37–45 (2010).

    CAS  Google Scholar 

  94. Chen, J. et al. Loss of smooth muscle α-actin leads to NF-κB-dependent increased sensitivity to angiotensin II in smooth muscle cells and aortic enlargement. Circ. Res. 120, 1903–1915 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Carta, L. et al. MAPKp38 is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1) null mice. J. Biol. Chem. 284, 5630–5636 (2008).

    PubMed  Google Scholar 

  96. Granata, A. et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat. Genet. 49, 97–109 (2017).

    CAS  PubMed  Google Scholar 

  97. Chung, A. W., Yang, H. H., Radomski, M. W. & van Breemen, C. Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ. Res. 102, e73–e85 (2008).

    CAS  PubMed  Google Scholar 

  98. Emrich, F. C. et al. Enhanced caspase activity contributes to aortic wall remodeling and early aneurysm development in a murine model of Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 35, 146–154 (2015).

    CAS  PubMed  Google Scholar 

  99. Merk, D. R. et al. miR-29b Participates in early aneurysm development in Marfan syndrome. Circ. Res. 110, 312–324 (2012).

    CAS  PubMed  Google Scholar 

  100. Mas-Stachurska, A. et al. Cardiovascular benefits of moderate exercise training in Marfan syndrome: insights from an animal model. J. Am. Heart Assoc. 6, e006438 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Milewicz, D. M. & Ramirez, F. Therapies for thoracic aortic aneurysms and acute aortic dissections. Arterioscler. Thromb. Vasc. Biol. 39, 126–136 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. LeMaire, S. A. et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat. Genet. 43, 996–1000 (2011). This study shows that common genetic variants at 15q21.1 that most likely act via FBN1 are associated with thoracic aortic disease in the general population, suggesting a common pathogenesis of aortic disease in MFS and thoracic aortic disease in the population.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Smaldone, S. et al. Fibrillin-1 regulates skeletal stem cell differentiation by modulating TGFβ activity within the marrow niche. J. Bone Min. Res. 31, 86–97 (2016).

    CAS  Google Scholar 

  104. Smaldone, S. & Ramirez, F. Fibrillin microfibrils in bone physiology. Matrix Biol. 52-54, 191–197 (2016).

    CAS  PubMed  Google Scholar 

  105. Lima, B. L. et al. A new mouse model for Marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of Fbn1 expression. PLoS ONE 5, e14136 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Beene, L. C. et al. Nonselective assembly of fibrillin 1 and fibrillin 2 in the rodent ocular zonule and in cultured cells: implications for Marfan syndrome. Invest. Ophthalmol. Vis. Sci. 54, 8337–8344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mir, S., Wheatley, H. M., Hussels, I. E., Whittum-Hudson, J. A. & Traboulsi, E. I. A comparative histologic study of the fibrillin microfibrillar system in the lens capsule of normal subjects and subjects with Marfan syndrome. Invest. Ophthalmol. Vis. Sci. 39, 84–93 (1998).

    CAS  PubMed  Google Scholar 

  108. Wheatley, H. M. et al. Immunohistochemical localization of fibrillin in human ocular tissues. Relevance to the Marfan syndrome. Arch. Ophthalmol. 113, 103–109 (1995).

    CAS  PubMed  Google Scholar 

  109. Hanlon, S. D., Behzad, A. R., Sakai, L. Y. & Burns, A. R. Corneal stroma microfibrils. Exp. Eye Res. 132, 198–207 (2015).

    CAS  PubMed  Google Scholar 

  110. Jones, W., Rodriguez, J. & Bassnett, S. Targeted deletion of fibrillin-1 in the mouse eye results in ectopia lentis and other ocular phenotypes associated with Marfan syndrome. Dis. Model Mech. 12, dmm037283 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tan, L. et al. FBN1 mutations largely contribute to sporadic non-syndromic aortic dissection. Hum. Mol. Genet. 26, 4814–4822 (2017).

    CAS  PubMed  Google Scholar 

  112. Akutsu, K. et al. Characteristics in phenotypic manifestations of genetically proved Marfan syndrome in a Japanese population. Am. J. Cardiol. 103, 1146–1148 (2009).

    PubMed  Google Scholar 

  113. Villamizar, C. et al. Paucity of skeletal manifestations in Hispanic families with FBN1 mutations. Eur. J. Med. Genet. 53, 80–84 (2010).

    PubMed  Google Scholar 

  114. Faivre, L. et al. The new Ghent criteria for Marfan syndrome: what do they change? Clin. Genet. 81, 433–442 (2012).

    CAS  PubMed  Google Scholar 

  115. Bombardieri, E. et al. Marfan syndrome and related connective tissue disorders in the current era in Switzerland in 103 patients: medical and surgical management and impact of genetic testing. Swiss Med. Wkly 150, w20189 (2020).

    PubMed  Google Scholar 

  116. Roman, M. J. et al. Associations of age and sex with marfan phenotype: The National Heart, Lung, and Blood Institute GenTAC (Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions) Registry. Circ. Cardiovasc. Genet. 10, e001647 (2017).

    PubMed  Google Scholar 

  117. Ladouceur, M. et al. Effect of beta-blockade on ascending aortic dilatation in children with the Marfan syndrome. Am. J. Cardiol. 99, 406–409 (2007).

    CAS  PubMed  Google Scholar 

  118. Hascoet, S. et al. Incidence of cardiovascular events and risk markers in a prospective study of children diagnosed with Marfan syndrome. Arch. Cardiovasc. Dis. 113, 40–49 (2020).

    PubMed  Google Scholar 

  119. Wozniak-Mielczarek, L. et al. Differences in cardiovascular manifestation of Marfan syndrome between children and adults. Pediatr. Cardiol. 40, 393–403 (2019).

    CAS  PubMed  Google Scholar 

  120. Detaint, D. et al. Aortic dilatation patterns and rates in adults with bicuspid aortic valves: a comparative study with Marfan syndrome and degenerative aortopathy. Heart 100, 126–134 (2014).

    PubMed  Google Scholar 

  121. Guala, A. et al. Proximal aorta longitudinal strain predicts aortic root dilation rate and aortic events in Marfan syndrome. Eur. Heart J. 40, 2047–2055 (2019).

    PubMed  Google Scholar 

  122. Groenink, M. et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur. Heart J. 34, 3491–3500 (2013).

    CAS  PubMed  Google Scholar 

  123. Mullen, M. et al. Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial. Lancet 394, 2263–2270 (2020).

    Google Scholar 

  124. Teixido-Tura, G. et al. Losartan versus atenolol for prevention of aortic dilation in patients with Marfan syndrome. J. Am. Coll. Cardiol. 72, 1613–1618 (2018).

    CAS  PubMed  Google Scholar 

  125. Turkbey, E. B. et al. Determinants and normal values of ascending aortic diameter by age, gender, and race/ethnicity in the Multi-Ethnic Study of Atherosclerosis (MESA). J. Magn. Reson. Imaging 39, 360–368 (2014).

    PubMed  Google Scholar 

  126. Jondeau, G. et al. Aortic event rate in the Marfan population: a cohort study. Circulation 125, 226–232 (2012).

    PubMed  Google Scholar 

  127. Erbel, R. et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 35, 2873–2926 (2014).

    PubMed  Google Scholar 

  128. Hiratzka, L. F. et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation 121, e266–e369 (2010). The first treatment guidelines for thoracic aortic disease, which set the standards for thoracic aortic disease clinical and surgical management in patients with thoracic aortic disease, including patients with MFS.

    PubMed  Google Scholar 

  129. Morris, S. A. et al. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation 124, 388–396 (2011).

    PubMed  Google Scholar 

  130. Franken, R. et al. Increased aortic tortuosity indicates a more severe aortic phenotype in adults with Marfan syndrome. Int. J. Cardiol. 194, 7–12 (2015).

    PubMed  Google Scholar 

  131. Mortensen, K. et al. Augmentation index relates to progression of aortic disease in adults with Marfan syndrome. Am. J. Hypertens. 22, 971–979 (2009).

    PubMed  Google Scholar 

  132. Selamet Tierney, E. S. et al. Influence of aortic stiffness on aortic-root growth rate and outcome in patients with the Marfan syndrome. Am. J. Cardiol. 121, 1094–1101 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Jondeau, G. et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino Aortic Consortium). Circ. Cardiovasc. Genet. 9, 548–558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Teixido-Tura, G. et al. Aortic biomechanics by magnetic resonance: early markers of aortic disease in Marfan syndrome regardless of aortic dilatation? Int. J. Cardiol. 171, 56–61 (2014).

    PubMed  Google Scholar 

  135. Franken, R. et al. Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome. Heart 103, 1795–1799 (2017).

    CAS  PubMed  Google Scholar 

  136. Takeda, N. et al. Impact of pathogenic FBN1 variant types on the progression of aortic disease in patients with Marfan syndrome. Circ. Genom. Precis. Med. 11, e002058 (2018).

    CAS  PubMed  Google Scholar 

  137. Roman, M. J., Rosen, S. E., Kramer-Fox, R. & Devereux, R. B. Prognostic significance of the pattern of aortic root dilation in the Marfan syndrome. J. Am. Coll. Cardiol. 22, 1470–1476 (1993).

    CAS  PubMed  Google Scholar 

  138. Attias, D. et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation 120, 2541–2549 (2009).

    CAS  PubMed  Google Scholar 

  139. LeMaire, S. et al. Spectrum of aortic operations in 300 patients with confirmed or suspected Marfan syndrome. Ann. Thorac. Surg. 81, 2063–2078 (2006).

    PubMed  Google Scholar 

  140. Hagerty, T., Geraghty, P. & Braverman, A. C. Abdominal aortic aneurysm in Marfan syndrome. Ann. Vasc. Surg. 40, 294.e1–294.e6 (2017).

    Google Scholar 

  141. Prakash, S. K., Haden-Pinneri, K. & Milewicz, D. M. Susceptibility to acute thoracic aortic dissections in patients dying outside the hospital: an autopsy study. Am. Heart J. 162, 474–479 (2011).

    PubMed  Google Scholar 

  142. Reutersberg, B. et al. Hospital incidence and in-hospital mortality of surgically and interventionally treated aortic dissections: secondary data analysis of the nationwide German diagnosis-related group statistics from 2006 to 2014. J. Am. Heart Assoc. 8, e011402 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Brouwer, C. et al. Progressive pulmonary artery dilatation is associated with type B aortic dissection in patients with Marfan syndrome. J. Clin. Med. 8, 1848 (2019).

    PubMed Central  Google Scholar 

  144. Mimoun, L. et al. Dissection in Marfan syndrome: the importance of the descending aorta. Eur. Heart J. 32, 443–449 (2011).

    PubMed  Google Scholar 

  145. Baumgartner, H. et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 38, 2739–2791 (2017).

    PubMed  Google Scholar 

  146. Pyeritz, R. E. Marfan syndrome: current and future clinical and genetic management of cardiovascular manifestations. Semin. Thorac. Cardiovasc. Surg. 5, 11–16 (1993).

    CAS  PubMed  Google Scholar 

  147. Muhlstadt, K. et al. Case-matched comparison of cardiovascular outcome in Loeys-Dietz syndrome versus Marfan syndrome. J. Clin. Med. 8, 2079 (2019).

    PubMed Central  Google Scholar 

  148. Mueller, G. C. et al. Impact of age and gender on cardiac pathology in children and adolescents with Marfan syndrome. Pediatr. Cardiol. 34, 991–998 (2013).

    PubMed  Google Scholar 

  149. Selamet Tierney, E. S. et al. Echocardiographic methods, quality review, and measurement accuracy in a randomized multicenter clinical trial of Marfan syndrome. J. Am. Soc. Echocardiogr. 26, 657–666 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. Lacro, R. V. et al. Characteristics of children and young adults with Marfan syndrome and aortic root dilation in a randomized trial comparing atenolol and losartan therapy. Am. Heart J. 165, 828–835 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Seo, Y. J. et al. Infantile Marfan syndrome in a Korean tertiary referral center. Korean J. Pediatr. 59, 59–64 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Rybczynski, M. et al. Frequency of sleep apnea in adults with the Marfan syndrome. Am. J. Cardiol. 105, 1836–1841 (2010).

    PubMed  Google Scholar 

  153. Helder, M. R. et al. Management of mitral regurgitation in Marfan syndrome: outcomes of valve repair versus replacement and comparison with myxomatous mitral valve disease. J. Thorac. Cardiovasc. Surg. 148, 1020–1024 (2014).

    PubMed  Google Scholar 

  154. Chivulescu, M. et al. Mitral annulus disjunction is associated with adverse outcome in Marfan and Loeys-Dietz syndromes. Eur. Heart J. Cardiovasc. Imaging https://doi.org/10.1093/ehjci/jeaa324 (2020).

    Article  PubMed Central  Google Scholar 

  155. Stark, V. C. et al. The pulmonary artery in pediatric patients with Marfan syndrome: an underestimated aspect of the disease. Pediatr. Cardiol. 39, 1194–1199 (2018).

    PubMed  Google Scholar 

  156. Nollen, G. J. et al. Pulmonary artery root dilatation in Marfan syndrome: quantitative assessment of an unknown criterion. Heart 87, 470–471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lundby, R., Rand-Hendriksen, S., Hald, J. K., Pripp, A. H. & Smith, H. J. The pulmonary artery in patients with Marfan syndrome: a cross-sectional study. Genet. Med. 14, 922–927 (2012).

    PubMed  Google Scholar 

  158. Kinori, M. et al. Biometry characteristics in adults and children with Marfan syndrome: from the Marfan Eye Consortium of Chicago. Am. J. Ophthalmol. 177, 144–149 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Gott, V. L. et al. Replacement of the aortic root in patients with Marfan’s syndrome. N. Engl. J. Med. 340, 1307–1313 (1999). Clinical study demonstrating that prophylactic surgical repair of aortic root aneurysms to prevent type A aortic dissections can be done with low mortality in patients with MFS.

    CAS  PubMed  Google Scholar 

  160. Diller, G. P. et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation 132, 2118–2125 (2015).

    PubMed  Google Scholar 

  161. Alpendurada, F. et al. Evidence for Marfan cardiomyopathy. Eur. J. Heart Fail. 12, 1085–1091 (2010).

    PubMed  Google Scholar 

  162. Knosalla, C. et al. Orthotopic heart transplantation in patients with Marfan syndrome. Ann. Thorac. Surg. 83, 1691–1695 (2007).

    PubMed  Google Scholar 

  163. Audenaert, T., Pauw, M.De, Francois, K. & Backer, J.De Type B aortic dissection triggered by heart transplantation in a patient with Marfan syndrome. BMJ Case Rep. 2015, bcr2015211138 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Chen, S., Fagan, L. F., Nouri, S. & Donahoe, J. L. Ventricular dysrhythmias in children with Marfan’s syndrome. Am. J. Dis. Child. 139, 273–276 (1985).

    CAS  PubMed  Google Scholar 

  165. Aydin, A. et al. Observational cohort study of ventricular arrhythmia in adults with Marfan syndrome caused by FBN1 mutations. PLoS ONE 8, e81281 (2013).

    PubMed  PubMed Central  Google Scholar 

  166. Hoffmann, B. A. et al. Prospective risk stratification of sudden cardiac death in Marfan’s syndrome. Int. J. Cardiol. 167, 2539–2545 (2013).

    PubMed  Google Scholar 

  167. Yetman, A. T., Bornemeier, R. A. & McCrindle, B. W. Long-term outcome in patients with Marfan syndrome: is aortic dissection the only cause of sudden death? J. Am. Coll. Cardiol. 41, 329–332 (2003).

    PubMed  Google Scholar 

  168. Thompson, M. E. et al. Differential regulation of chromogranin B/secretogranin I and secretogranin II by forskolin in PC12 cells. Brain Res. Mol. Brain Res. 12, 195–202 (1992).

    CAS  PubMed  Google Scholar 

  169. Sharma, T. et al. Retinal detachment in Marfan syndrome: clinical characteristics and surgical outcome. Retina 22, 423–428 (2002).

    PubMed  Google Scholar 

  170. Maumenee, I. H. The eye in the Marfan syndrome. Trans. Am. Ophthalmol. Soc. 79, 684–733 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Chow, K., Pyeritz, R. E. & Litt, H. I. Abdominal visceral findings in patients with Marfan syndrome. Genet. Med. 9, 208–212 (2007).

    PubMed  Google Scholar 

  172. Muino-Mosquera, L. et al. Sleep apnea and the impact on cardiovascular risk in patients with Marfan syndrome. Mol. Genet. Genom. Med. 7, e805 (2019).

    Google Scholar 

  173. von, K. Y. et al. Features of Marfan syndrome not listed in the Ghent nosology–the dark side of the disease. Expert Rev. Cardiovasc. Ther. 17, 883–915 (2019).

    Google Scholar 

  174. Speed, T. J. et al. Characterization of pain, disability, and psychological burden in Marfan syndrome. Am. J. Med. Genet. A 173, 315–323 (2017).

    PubMed  Google Scholar 

  175. Handisides, J. C. et al. Health-related quality of life in children and young adults with Marfan syndrome. J. Pediatr. 204, 250–255.e1 (2019).

    PubMed  Google Scholar 

  176. Warnink-Kavelaars, J. et al. Marfan syndrome in adolescence: adolescents’ perspectives on (physical) functioning, disability, contextual factors and support needs. Eur. J. Pediatr. 178, 1883–1892 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Velvin, G., Bathen, T., Rand-Hendriksen, S. & Geirdal, A. O. Systematic review of the psychosocial aspects of living with Marfan syndrome. Clin. Genet. 87, 109–116 (2015).

    CAS  PubMed  Google Scholar 

  178. Guo, D. C. et al. An FBN1 pseudoexon mutation in a patient with Marfan syndrome: confirmation of cryptic mutations leading to disease. J. Hum. Genet. 53, 1007–1011 (2008).

    PubMed  Google Scholar 

  179. Hilhorst-Hofstee, Y. et al. The clinical spectrum of missense mutations of the first aspartic acid of cbEGF-like domains in fibrillin-1 including a recessive family. Hum. Mutat. 31, E1915–E1927 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Arnaud, P. et al. Homozygous and compound heterozygous mutations in the FBN1 gene: unexpected findings in molecular diagnosis of Marfan syndrome. J. Med. Genet. 54, 100–103 (2017).

    PubMed  Google Scholar 

  181. Goldstein, S. A. et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging: endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 28, 119–182 (2015).

    PubMed  Google Scholar 

  182. Brown, O. R. et al. Aortic root dilatation and mitral valve prolapse in Marfan’s syndrome: an ECHOCARDIOgraphic study. Circulation 52, 651–657 (1975).

    CAS  PubMed  Google Scholar 

  183. Campens, L. et al. Reference values for echocardiographic assessment of the diameter of the aortic root and ascending aorta spanning all age categories. Am. J. Cardiol. 114, 914–920 (2014).

    PubMed  Google Scholar 

  184. Devereux, R. B. et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age. Am. J. Cardiol. 110, 1189–1194 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. Saura, D. et al. Two-dimensional transthoracic echocardiographic normal reference ranges for proximal aorta dimensions: results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 18, 167–179 (2017).

    PubMed  Google Scholar 

  186. Muraru, D. et al. Ascending aorta diameters measured by echocardiography using both leading edge-to-leading edge and inner edge-to-inner edge conventions in healthy volunteers. Eur. Heart J. Cardiovasc. Imaging 15, 415–422 (2014).

    PubMed  Google Scholar 

  187. Bossone, E. et al. Normal values and differences in ascending aortic diameter in a healthy population of adults as measured by the pediatric versus adult American Society of Echocardiography guidelines. J. Am. Soc. Echocardiogr. 29, 166–172 (2016).

    PubMed  Google Scholar 

  188. Lopez, L. et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 23, 465–495 (2010).

    PubMed  Google Scholar 

  189. Lopez, L. et al. Pediatric Heart Network echocardiographic Z scores: comparison with other published models. J. Am. Soc. Echocardiogr. 34, 185–192 (2021).

    PubMed  Google Scholar 

  190. Rutten, D. W. E. et al. Comparability of different Z-score equations for aortic root dimensions in children with Marfan syndrome. Cardiol. Young https://doi.org/10.1017/S1047951121001311 (2021).

    Article  PubMed  Google Scholar 

  191. Veldhoen, S. et al. Exact monitoring of aortic diameters in Marfan patients without gadolinium contrast: intraindividual comparison of 2D SSFP imaging with 3D CE-MRA and echocardiography. Eur. Radiol. 25, 872–882 (2015).

    PubMed  Google Scholar 

  192. Hagan, P. G. et al. The international registry of acute aortic dissection (IRAD): new insights into an old disease. JAMA 283, 897–903 (2000).

    CAS  PubMed  Google Scholar 

  193. Evangelista, A. et al. Imaging modalities for the early diagnosis of acute aortic syndrome. Nat. Rev. Cardiol. 10, 477–486 (2013).

    PubMed  Google Scholar 

  194. Freeman, L. A. et al. CT and MRI assessment of the aortic root and ascending aorta. AJR Am. J. Roentgenol. 200, W581–W592 (2013).

    PubMed  Google Scholar 

  195. Rodriguez-Palomares, J. F. et al. Multimodality assessment of ascending aortic diameters: comparison of different measurement methods. J. Am. Soc. Echocardiogr. 29, 819–826 (2016).

    PubMed  Google Scholar 

  196. Burman, E. D., Keegan, J. & Kilner, P. J. Aortic root measurement by cardiovascular magnetic resonance: specification of planes and lines of measurement and corresponding normal values. Circ. Cardiovasc. Imaging 1, 104–113 (2008).

    PubMed  Google Scholar 

  197. Amsallem, M. et al. Comparative assessment of ascending aortic aneurysms in Marfan patients using ECG-gated computerized tomographic angiography versus trans-thoracic echocardiography. Int. J. Cardiol. 184, 22–27 (2015).

    PubMed  Google Scholar 

  198. Mendoza, D. D. et al. Impact of image analysis methodology on diagnostic and surgical classification of patients with thoracic aortic aneurysms. Ann. Thorac. Surg. 92, 904–912 (2011).

    PubMed  Google Scholar 

  199. Maron, B. J. et al. Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation 115, 1643–1655 (2007).

    PubMed  Google Scholar 

  200. Harris, K. M., Sponsel, A., Hutter, A. M. Jr & Maron, B. J. Brief communication: cardiovascular screening practices of major North American professional sports teams. Ann. Intern. Med. 145, 507–511 (2006).

    PubMed  Google Scholar 

  201. Scherer, L. R., Arn, P. H., Dressel, D. A., Pyeritz, R. M. & Haller, J. A. Jr. Surgical management of children and young adults with Marfan syndrome and pectus excavatum. J. Pediatr. Surg. 23, 1169–1172 (1988).

    CAS  PubMed  Google Scholar 

  202. Redlinger, R. E. Jr et al. Minimally invasive repair of pectus excavatum in patients with Marfan syndrome and marfanoid features. J. Pediatr. Surg. 45, 193–199 (2010).

    PubMed  Google Scholar 

  203. Erkula, G., Jones, K. B., Sponseller, P. D., Dietz, H. C. & Pyeritz, R. E. Growth and maturation in Marfan syndrome. Am. J. Med. Genet. 109, 100–115 (2002).

    PubMed  Google Scholar 

  204. Sponseller, P. D., Hobbs, W., Riley, L. H. 3rd & Pyeritz, R. E. The thoracolumbar spine in Marfan syndrome. J. Bone Joint Surg. Am. 77, 867–876 (1995).

    CAS  PubMed  Google Scholar 

  205. Loewenstein, A., Barequet, I. S., De Juan, E. Jr & Maumenee, I. H. Retinal detachment Marfan syndrome. Retina 20, 358–363 (2000).

    CAS  PubMed  Google Scholar 

  206. Xu, W. et al. Comparative data on SD-OCT for the retinal nerve fiber layer and retinal macular thickness in a large cohort with Marfan syndrome. Ophthalmic Genet. 38, 34–38 (2017).

    PubMed  Google Scholar 

  207. Rahmani, S., Lyon, A. T., Fawzi, A. A., Maumenee, I. H. & Mets, M. B. Retinal disease in Marfan syndrome: from the Marfan Eye Consortium of Chicago. Ophthalmic Surg. Lasers Imaging Retin. 46, 936–941 (2015).

    Google Scholar 

  208. Schou, S., Holmstrup, P., Hjorting-Hansen, E. & Lang, N. P. Plaque-induced marginal tissue reactions of osseointegrated oral implants: a review of the literature. Clin. Oral. Implant. Res. 3, 149–161 (1992).

    CAS  Google Scholar 

  209. Bard, L. A. Genetic counseling of families with Marfan syndrome and other disorders showing a Marfanoid body habitus. Ophthalmology 86, 1764–1793 (1979).

    CAS  PubMed  Google Scholar 

  210. Braverman, A. C., Harris, K. M., Kovacs, R. J. & Maron, B. J. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 7: Aortic Diseases, Including Marfan syndrome: a scientific statement from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 66, 2398–2405 (2015).

    PubMed  Google Scholar 

  211. Vanem, T. T. et al. Survival, causes of death, and cardiovascular events in patients with Marfan syndrome. Mol. Genet. Genom. Med. 6, 1114–1123 (2018).

    CAS  Google Scholar 

  212. Shores, J., Berger, K. R., Murphy, E. A. & Pyeritz, R. E. Progression of aortic dilatation and the benefit of long-term β-adrenergic blockade in Marfan’s syndrome. N. Engl. J. Med. 330, 1335–1341 (1994).

    CAS  PubMed  Google Scholar 

  213. Elefteriades, J. A. & Farkas, E. A. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55, 841–857 (2010).

    CAS  PubMed  Google Scholar 

  214. Beaven, D. W. & Murphy, E. A. Dissecting aneurysm during methonium therapy; a report on nine cases treated for hypertension. Br. Med. J. 1, 77–80 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Amende, I., Simon, R., Hood, W. P. Jr. & Lightlen, P. R. The effects of the beta-blocker atenolol and nitroglycerin on left ventricular function and geometry in man. Circulation 60, 836–849 (1979).

    CAS  PubMed  Google Scholar 

  216. Simpson, C. F., Kling, J. M. & Palmer, R. F. The use of propranolol for the protection of turkeys from the development of β-aminopropionitrile-induced aortic ruptures. Angiology 19, 414–418 (1968).

    CAS  PubMed  Google Scholar 

  217. Groenink, M., de, R. A., Mulder, B. J., Spaan, J. A. & van der Wall, E. E. Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am. J. Cardiol. 82, 203–208 (1998).

    CAS  PubMed  Google Scholar 

  218. Chiu, H. H. et al. Losartan added to beta-blockade therapy for aortic root dilation in Marfan syndrome: a randomized, open-label pilot study. Mayo Clin. Proc. 88, 271–276 (2013).

    CAS  PubMed  Google Scholar 

  219. Milleron, O. et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur. Heart J. 36, 2160–2166 (2015).

    PubMed  Google Scholar 

  220. Forteza, A. et al. Efficacy of losartan vs. atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur. Heart J. 37, 978–985 (2016).

    CAS  PubMed  Google Scholar 

  221. Muino-Mosquera, L. et al. Efficacy of losartan as add-on therapy to prevent aortic growth and ventricular dysfunction in patients with Marfan syndrome: a randomized, double-blind clinical trial. Acta Cardiol. 72, 616–624 (2017).

    PubMed  Google Scholar 

  222. Silverman, D. I. et al. Family history of severe cardiovascular disease in Marfan syndrome is associated with increased aortic diameter and decreased survival. J. Am. Coll. Cardiol. 26, 1062–1067 (1995).

    CAS  PubMed  Google Scholar 

  223. Brooke, B. S. et al. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N. Engl. J. Med. 358, 2787–2795 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Al-Abcha, A. et al. Meta-analysis examining the usefulness of angiotensin receptor blockers for the prevention of aortic root dilation in patients with the Marfan syndrome. Am. J. Cardiol. 128, 101–106 (2020).

    CAS  PubMed  Google Scholar 

  225. Elbadawi, A. et al. Losartan for preventing aortic root dilatation in patients with Marfan syndrome: a meta-analysis of randomized trials. Cardiol. Ther. 8, 365–372 (2019).

    PubMed  PubMed Central  Google Scholar 

  226. Quint, L. E., Liu, P. S., Booher, A. M., Watcharotone, K. & Myles, J. D. Proximal thoracic aortic diameter measurements at CT: repeatability and reproducibility according to measurement method. Int. J. Cardiovasc. Imaging 29, 479–488 (2013).

    PubMed  Google Scholar 

  227. Dormand, H. & Mohiaddin, R. H. Cardiovascular magnetic resonance in Marfan syndrome. J. Cardiovasc. Magn. Reson. 15, 33 (2013).

    PubMed  PubMed Central  Google Scholar 

  228. Weinrich, J. M. et al. Reliability of non-contrast magnetic resonance angiography-derived aortic diameters in Marfan patients: comparison of inner vs. outer vessel wall measurements. Int. J. Cardiovasc. Imaging 36, 1533–1542 (2020).

    PubMed  PubMed Central  Google Scholar 

  229. Mariucci, E. M. et al. Dilation of peripheral vessels in Marfan syndrome: importance of thoracoabdominal MR angiography. Int. J. Cardiol. 167, 2928–2931 (2013).

    PubMed  Google Scholar 

  230. Lopez-Sainz, A. et al. Aortic branch aneurysms and vascular risk in patients with marfan syndrome. J. Am. Coll. Cardiol. 77, 3005–3012 (2021).

    PubMed  Google Scholar 

  231. Nollen, G. J., Groenink, M., Tijssen, J. G., van der Wall, E. E. & Mulder, B. J. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur. Heart J. 25, 1146–1152 (2004).

    PubMed  Google Scholar 

  232. Guala, A. et al. Decreased rotational flow and circumferential wall shear stress as early markers of descending aorta dilation in Marfan syndrome: a 4D flow CMR study. J. Cardiovasc. Magn. Reson. 21, 63 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Cavalcante, J. L., Lima, J. A., Redheuil, A. & Al-Mallah, M. H. Aortic stiffness: current understanding and future directions. J. Am. Coll. Cardiol. 57, 1511–1522 (2011).

    PubMed  Google Scholar 

  234. Laurent, S. et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27, 2588–2605 (2006).

    PubMed  Google Scholar 

  235. Kunkala, M. R. et al. Mitral valve disease in patients with Marfan syndrome undergoing aortic root replacement. Circulation 128, S243–S247 (2013).

    PubMed  Google Scholar 

  236. JB, lP. D. W. et al. Mechanisms of recurrent aortic regurgitation after aortic valve repair: predictive value of intraoperative transesophageal echocardiography. JACC Cardiovasc. Imaging 2, 931–939 (2009).

    Google Scholar 

  237. Groner, L. K., Lau, C., Devereux, R. B. & Green, D. B. Imaging of the postsurgical aorta in Marfan syndrome. Curr. Treat. Options Cardiovasc. Med. 20, 80 (2018).

    PubMed  Google Scholar 

  238. Evangelista, A. et al. Long-term outcome of aortic dissection with patent false lumen: predictive role of entry tear size and location. Circulation 125, 3133–3141 (2012).

    PubMed  Google Scholar 

  239. Rylski, B. et al. Type A aortic dissection in Marfan syndrome: extent of initial surgery determines long-term outcome. Circulation 129, 1381–1386 (2014).

    PubMed  Google Scholar 

  240. Martin, C. et al. Aortic complications in Marfan syndrome: should we anticipate preventive aortic root surgery? Ann. Thorac. Surg. 109, 1850–1857 (2020).

    PubMed  Google Scholar 

  241. Fraser, C. D. III et al. Valve-sparing aortic root replacement in children: outcomes from 100 consecutive cases. J. Thorac. Cardiovasc. Surg. 157, 1100–1109 (2019).

    PubMed  Google Scholar 

  242. David, T. E. et al. Outcomes of aortic valve-sparing operations in Marfan syndrome. J. Am. Coll. Cardiol. 66, 1445–1453 (2015).

    PubMed  Google Scholar 

  243. Coselli, J. S. et al. Early and 1-year outcomes of aortic root surgery in patients with Marfan syndrome: a prospective, multicenter, comparative study. J. Thorac. Cardiovasc. Surg. 147, 1758–1767.e4 (2014).

    PubMed  Google Scholar 

  244. Izgi, C. et al. External aortic root support to prevent aortic dilatation in patients with Marfan syndrome. J. Am. Coll. Cardiol. 72, 1095–1105 (2018).

    PubMed  Google Scholar 

  245. Treasure, T. et al. Personalised external aortic root support (PEARS) in Marfan syndrome: analysis of 1–9 year outcomes by intention-to-treat in a cohort of the first 30 consecutive patients to receive a novel tissue and valve-conserving procedure, compared with the published results of aortic root replacement. Heart 100, 969–975 (2014).

    PubMed  Google Scholar 

  246. Song, H. K. et al. Long-term implications of emergency versus elective proximal aortic surgery in patients with Marfan syndrome in the Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions Consortium Registry. J. Thorac. Cardiovasc. Surg. 143, 282–286 (2012).

    PubMed  Google Scholar 

  247. Shalhub, S. et al. Type B aortic dissection in young individuals with confirmed and presumed heritable thoracic aortic disease. Ann. Thorac. Surg. 109, 534–540 (2020).

    PubMed  Google Scholar 

  248. Pellenc, Q. et al. Optimising aortic endovascular repair in patients with Marfan syndrome. Eur. J. Vasc. Endovasc. Surg. 59, 577–585 (2020).

    PubMed  Google Scholar 

  249. Peters, K. F., Kong, F., Hanslo, M. & Biesecker, B. B. Living with Marfan syndrome III. Quality of life and reproductive planning. Clin. Genet. 62, 110–120 (2002).

    CAS  PubMed  Google Scholar 

  250. Goldfinger, J. Z. et al. Marfan syndrome and quality of life in the GenTAC registry. J. Am. Coll. Cardiol. 69, 2821–2830 (2017).

    PubMed  PubMed Central  Google Scholar 

  251. Nielsen, C., Ratiu, I., Esfandiarei, M., Chen, A. & Selamet Tierney, E. S. A review of psychosocial factors of Marfan syndrome: adolescents, adults, families, and providers. J. Pediatr. Genet. 8, 109–122 (2019).

    PubMed  PubMed Central  Google Scholar 

  252. The Marfan Foundation. Survey results reveal greatest obstacles to quality of life. Marfan Foundation https://www.marfan.org/about-us/news/2017/11/01/survey-results-reveal-greatest-obstacles-quality-life (2017).

  253. Vanem, T. T., Rand-Hendriksen, S., Brunborg, C., Geiran, O. R. & Roe, C. Health-related quality of life in Marfan syndrome: a 10-year follow-up. Health Qual. Life Outcomes 18, 376 (2020).

    PubMed  PubMed Central  Google Scholar 

  254. Oller, J. et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat. Med. 23, 200–212 (2017).

    CAS  PubMed  Google Scholar 

  255. de la Fuente-Alonso, A. et al. Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat. Commun. 12, 2628 (2021).

    PubMed  PubMed Central  Google Scholar 

  256. Hansen, J. et al. Systems pharmacology-based integration of human and mouse data for drug repurposing to treat thoracic aneurysms. JCI Insight 4, e127652 (2019).

    PubMed Central  Google Scholar 

  257. Nistala, H., Lee-Arteaga, S., Siciliano, G., Smaldone, S. & Ramirez, F. Extracellular regulation of transforming growth factor β and bone morphogenetic protein signaling in bone. Ann. N. Y. Acad. Sci. 1192, 253–256 (2010).

    CAS  PubMed  Google Scholar 

  258. Putnam, E. A., Zhang, H., Ramirez, F. & Milewicz, D. M. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat. Genet. 11, 456–458 (1995).

    CAS  PubMed  Google Scholar 

  259. Maccarrick, G. et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet. Med. 16, 576–587 (2014).

    PubMed  PubMed Central  Google Scholar 

  260. Pepin, M., Schwarze, U., Superti-Furga, A. & Byers, P. H. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N. Engl. J. Med. 342, 673–680 (2000).

    CAS  PubMed  Google Scholar 

  261. Pepin, M. G. et al. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet. Med. 16, 881–888 (2014).

    CAS  PubMed  Google Scholar 

  262. Renard, M. et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J. Am. Coll. Cardiol. 72, 605–615 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Van Driest, S. L. et al. Variants in ADRB1 and CYP2C9: association with response to atenolol and losartan in Marfan syndrome. J. Pediatr. 222, 213–220 e215 (2020).

    PubMed  PubMed Central  Google Scholar 

  264. Franken, R. et al. Beneficial outcome of losartan therapy depends on type of FBN1 mutation in Marfan syndrome. Circ. Cardiovasc. Genet. 8, 383–388 (2015).

    CAS  PubMed  Google Scholar 

  265. Nienaber, C. A. et al. Aortic dissection. Nat. Rev. Dis. Primers 2, 16053 (2016).

    PubMed  Google Scholar 

  266. Collod-Beroud, G. et al. Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum. Mutat. 22, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  267. Pyeritz, R. E. in Principles and Practice of Medical Genetics 6th Ed. Ch. 153 (eds Rimoin, D. L., Pyeritz, R. E. & Korf, B. R.) (Elsevier, 2013).

  268. Dean, J. C. S. Marfan syndrome: clinical diagnosis and management. Eur. J. Hum. Genet. 15, 724–733 (2007).

    CAS  PubMed  Google Scholar 

  269. Stheneur, C. et al. Prognosis factors in probands with an FBN1 mutation diagnosed before the age of 1 year. Pediatr. Res. 69, 265–270 (2011).

    PubMed  Google Scholar 

  270. Geva, T., Hegesh, J. & Frand, M. The clinical course and echocardiographic features of Marfan’s syndrome in childhood. Am. J. Dis. Child. 141, 1179–1182 (1987).

    CAS  PubMed  Google Scholar 

  271. Hennekam, R. C. Severe infantile Marfan syndrome versus neonatal Marfan syndrome. Am. J. Med. Genet. A 139, 1 (2005).

    PubMed  Google Scholar 

  272. Booms, P. et al. Novel exon skipping mutation in the fibrillin-1 gene: two ‘hot spots’ for the neonatal Marfan syndrome 1. Clin. Genet. 55, 110–117 (1999).

    CAS  PubMed  Google Scholar 

  273. Morse, R. P. et al. Diagnosis and management of infantile Marfan syndrome. Pediatrics 86, 888–895 (1990).

    CAS  PubMed  Google Scholar 

  274. Tognato, E. et al. Neonatal Marfan syndrome. Am. J. Perinatol. 36, S74–S76 (2019).

    PubMed  Google Scholar 

  275. Liu, L. H., Lin, S. M., Lin, D. S. & Chen, M. R. Losartan in combination with propranolol slows the aortic root dilatation in neonatal Marfan syndrome. Pediatr. Neonatol. 59, 211–213 (2018).

    PubMed  Google Scholar 

  276. Carande, E. J., Bilton, S. J. & Adwani, S. A case of neonatal Marfan syndrome: a management conundrum and the role of a multidisciplinary team. Case Rep. Pediatr. 2017, 8952428 (2017).

    PubMed  PubMed Central  Google Scholar 

  277. Krasemann, T. et al. Cardiac transplantation in neonatal Marfan syndrome–a life-saving approach. Thorac. Cardiovasc. Surg. 53 (Suppl. 2), S146–S148 (2005).

    PubMed  Google Scholar 

  278. Braverman, A. C. et al. Clinical features and outcomes of pregnancy-related acute aortic dissection. JAMA Cardiol. 6, 58–66 (2021).

    PubMed  Google Scholar 

  279. Roman, M. J. et al. Aortic complications associated with pregnancy in Marfan syndrome: the NHLBI National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). J. Am. Heart Assoc. 5, e004052 (2016).

    PubMed  PubMed Central  Google Scholar 

  280. Cauldwell, M. et al. Maternal and fetal outcomes in pregnancies complicated by Marfan syndrome. Heart 105, 1725–1731 (2019).

    PubMed  Google Scholar 

  281. Rossiter, J. P., Repke, J. T., Morales, A. J., Murphy, E. A. & Pyeritz, R. E. A prospective longitudinal evaluation of pregnancy in the Marfan syndrome. Am. J. Obstet. Gynecol. 173, 1599–1606 (1995).

    CAS  PubMed  Google Scholar 

  282. Banerjee, A., Begaj, I. & Thorne, S. Aortic dissection in pregnancy in England: an incidence study using linked national databases. BMJ Open 5, e008318 (2015).

    PubMed  PubMed Central  Google Scholar 

  283. Meijboom, L. J. et al. Pregnancy and aortic root growth in the Marfan syndrome: a prospective study. Eur. Heart J. 26, 914–920 (2005).

    PubMed  Google Scholar 

  284. Pacini, L. et al. Maternal complication of pregnancy in Marfan syndrome. Int. J. Cardiol. 136, 156–161 (2009).

    PubMed  Google Scholar 

  285. Regitz-Zagrosek, V. et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur. Heart J. 39, 3165–3241 (2018).

    PubMed  Google Scholar 

  286. Williams, D. et al. Pregnancy after aortic root replacement in Marfan’s syndrome: a case series and review of the literature. AJP Rep. 8, e234–e240 (2018).

    PubMed  PubMed Central  Google Scholar 

  287. Bullo, M., Tschumi, S., Bucher, B. S., Bianchetti, M. G. & Simonetti, G. D. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a systematic review. Hypertension 60, 444–450 (2012).

    CAS  PubMed  Google Scholar 

  288. Giarelli, E., Bernhardt, B. A., Mack, R. & Pyeritz, R. E. Adolescents’ transition to self-management of a chronic genetic disorder. Qual. Health Res. 18, 441–457 (2008).

    PubMed  Google Scholar 

  289. Modi, A. C. et al. Pediatric self-management: a framework for research, practice, and policy. Pediatrics 129, e473–e485 (2012).

    PubMed  Google Scholar 

  290. Gauci, J., Bloomfield, J., Lawn, S., Towns, S. & Steinbeck, K. Effectiveness of self-management programmes for adolescents with a chronic illness: a systematic review. J. Adv. Nurs. https://doi.org/10.1111/jan.14801 (2021).

    Article  PubMed  Google Scholar 

  291. Sattoe, J. N. T. et al. Value of an outpatient transition clinic for young people with inflammatory bowel disease: a mixed-methods evaluation. BMJ Open 10, e033535 (2020).

    PubMed  PubMed Central  Google Scholar 

  292. Giarelli, E., Bernhardt, B. A. & Pyeritz, R. E. Self-surveillance by adolescents and young adults transitioning to self-management of a chronic genetic disorder. Health Educ. Behav. 37, 133–150 (2010).

    PubMed  Google Scholar 

  293. Stark, V. C. et al. The transition of pediatric Marfan patients to adult care: a challenge and its risks. Cardiovasc. Diagn. Ther. 8, 698–704 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are all members of the Montalcino Aortic Consortium. Drs. DeBacker, Boileau, Jondeau and Evangelista are members of the European Reference Network for Rare Multisystemic Vascular Diseases (VASCERN), Heritable Thoracic Aortic Disease Working Group. NIH R01HL109942 and R01HL146583, American Heart Association Merit Award, Genetic Aortic Disorders Association Canada, John Ritter Foundation, Marfan Foundation to D.M.M. The authors thank the patients with Marfan syndrome who shared their story.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.M.M. and R.E.P.); Epidemiology (D.M.M. and R.E.P.); Mechanisms/pathophysiology (D.M.M., C.B. and R.E.P.); Diagnosis, screening and prevention (D.M.M., A.C.B., J.De B., S.A.M., G.J., A.E. and R.E.P.); Management (D.M.M., A.C.B., S.A.M., I.H.M., G.J., A.E. and R.E.P.); Quality of life (D.M.M. and R.E.P.); Outlook (D.M.M.); Overview of Primer (D.M.M.).

Corresponding author

Correspondence to Dianna M. Milewicz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks M. Groenink; D. Reinhardt, who co-reviewed with R. Zhang; P. Robinson; L. Sakai; and Y. Von Kodolitsch for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milewicz, D.M., Braverman, A.C., De Backer, J. et al. Marfan syndrome. Nat Rev Dis Primers 7, 64 (2021). https://doi.org/10.1038/s41572-021-00298-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00298-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing