Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cutaneous T cell lymphoma

Abstract

Primary cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis. CTCL subtypes demonstrate a variety of clinical, histological, and molecular features, and can follow an indolent or a very aggressive course. The underlying pathogenetic mechanisms are not yet entirely understood. The pathophysiology of CTCL is complex and a single initiating factor has not yet been identified. Diagnosis is based on clinicopathological correlation and requires an interdisciplinary team. Treatment decision is made based on short-term and long-term goals. Therapy options comprise skin-directed therapies, such as topical steroids or phototherapy, and systemic therapies, such as monoclonal antibodies or chemotherapy. So far, the only curative treatment approach is allogeneic haematopoietic stem cell transplantation. Novel therapies, such as chimeric antigen receptor T cells, monoclonal antibodies or small molecules, are being investigated in clinical trials. Patients with CTCL have reduced quality of life and a lack of effective treatment options. Further research is needed to better identify the underlying mechanisms of CTCL development and course as well as to better tailor treatment strategies to individual patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pathogenesis of mycosis fungoides.
Fig. 2: Signalling pathways involved in mycosis fungoides and Sézary syndrome.
Fig. 3: Clinical and pathological presentation of selected cutaneous T cell lymphoma subtypes.
Fig. 4: The re-challenge paradigm of mycosis fungoides therapy.
Fig. 5: Recommendations for MF/SS treatment, based on EORTC guidelines.
Fig. 6: Targets for future directions for CTCL therapy.

References

  1. 1.

    Willemze, R. et al. EORTC classification for primary cutaneous lymphomas: a proposal from the cutaneous lymphoma study group of the European Organization for Research and Treatment of Cancer. Blood 90, 354–371 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Willemze, R. et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 133, 1703–1714 (2019). This article describes the current EORTC classification for primary cutaneous lymphomas.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Elder D. E., Massi D., Scolyer R. A., Willemze R. (eds) WHO Classification of Skin Tumours 4th Edn (International Agency for Research on Cancer, 2018).

  4. 4.

    Kempf, W. & Mitteldorf, C. Cutaneous T-cell lymphomas — an update 2021. Hematol. Oncol. 39, 46–51 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Agar, N. S. et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J. Clin. Oncol. 28, 4730–4739 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    de Coninck, E. C., Kim, Y. H., Varghese, A. & Hoppe, R. T. Clinical characteristics and outcome of patients with extracutaneous mycosis fungoides. J. Clin. Oncol. 19, 779–784 (2001).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kim, Y. H., Liu, H. L., Mraz-Gernhard, S., Varghese, A. & Hoppe, R. T. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch. Dermatol. 139, 857–866 (2003).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    van Doorn, R. et al. Mycosis fungoides: disease evolution and prognosis of 309 Dutch patients. Arch. Dermatol. 136, 504–510 (2000).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ram-Wolff, C., Martin-Garcia, N., Bensussan, A., Bagot, M. & Ortonne, N. Histopathologic diagnosis of lymphomatous versus inflammatory erythroderma: a morphologic and phenotypic study on 47 skin biopsies. Am. J. Dermatopathol. 32, 755–763 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Axelrod, P. I., Lorber, B. & Vonderheid, E. C. Infections complicating mycosis fungoides and Sezary syndrome. JAMA 267, 1354–1358 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hodak, E. et al. Should we be imaging lymph nodes at initial diagnosis of early-stage mycosis fungoides? Results from the PROspective Cutaneous Lymphoma International Prognostic Index (PROCLIPI) international study. Br. J. Dermatol. 184, 524–531 (2020).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Molloy, K. et al. Characteristics associated with significantly worse quality of life in mycosis fungoides/sezary syndrome from the prospective cutaneous lymphoma international prognostic index (PROCLIPI) study. Br. J. Dermatol. 182, 770–779 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Quaglino, P. et al. Treatment of early-stage mycosis fungoides: results from the PROspective Cutaneous Lymphoma International Study (PROCLIPI study). Br. J. Dermatol. 184, 722–730 (2020).

    Google Scholar 

  14. 14.

    Scarisbrick, J. J. et al. Ethnicity in mycosis fungoides: white patients present at an older age and with more advanced disease. Br. J. Dermatol. 180, 1264–1265 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Scarisbrick, J. J. et al. The PROCLIPI international registry of early-stage mycosis fungoides identifies substantial diagnostic delay in most patients. Br. J. Dermatol. 181, 350–357 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Willemze, R. et al. Primary cutaneous lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv30–iv40 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Willemze, R. et al. WHO-EORTC classification for cutaneous lymphomas. Blood 105, 3768–3785 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Scarisbrick, J. J. et al. Cutaneous lymphoma international consortium study of outcome in advanced stages of mycosis fungoides and sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J. Clin. Oncol. 33, 3766–3773 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Dobos, G. et al. Epidemiology of cutaneous T-cell lymphomas: a systematic review and meta-analysis of 16,953 patients. Cancers 12, 2921 (2020).

    CAS  Google Scholar 

  20. 20.

    Geller, S. et al. Outcomes and prognostic factors in African American and black patients with mycosis fungoides/Sezary syndrome: retrospective analysis of 157 patients from a referral cancer center. J. Am. Acad. Dermatol. 83, 430–439 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Olsen, E. et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 110, 1713–1722 (2007).This article describes the current approach to staging of mycosis fungoides and Sézary syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gallardo, F. et al. Lymphomatoid papulosis associated with mycosis fungoides: clinicopathological and molecular studies of 12 cases. Acta Derm. Venereol. 84, 463–468 (2004).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wood, G. S., Crooks, C. F. & Uluer, A. Z. Lymphomatoid papulosis and associated cutaneous lymphoproliferative disorders exhibit a common clonal origin. J. Invest. Dermatol. 105, 51–55 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Goyal, A. et al. Increased risk of second primary hematologic and solid malignancies in patients with mycosis fungoides: a Surveillance, Epidemiology, and End Results analysis. J. Am. Acad. Dermatol. 83, 404–411 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Scarisbrick, J. J. et al. Prognostic factors, prognostic indices and staging in mycosis fungoides and Sezary syndrome: where are we now? Br. J. Dermatol. 170, 1226–1236 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Quaglino, P. et al. Time course, clinical pathways, and long-term hazards risk trends of disease progression in patients with classic mycosis fungoides: a multicenter, retrospective follow-up study from the Italian Group of Cutaneous Lymphomas. Cancer 118, 5830–5839 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Talpur, R. et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clin. Cancer Res. 18, 5051–5060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Quaglino, P. et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium. Ann. Oncol. 28, 2517–2525 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Benton, E. C. et al. A cutaneous lymphoma international prognostic index (CLIPi) for mycosis fungoides and Sezary syndrome. Eur. J. Cancer 49, 2859–2868 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ho, A. W. & Kupper, T. S. T cells and the skin: from protective immunity to inflammatory skin disorders. Nat. Rev. Immunol. 19, 490–502 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Campbell, J. J., Clark, R. A., Watanabe, R. & Kupper, T. S. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116, 767–771 (2010). This article describes the differences in immunophenotype of tumour cells in patients with mycosis fungoides or Sézary syndrome and correlation with clinical phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Horna, P., Moscinski, L. C., Sokol, L. & Shao, H. Naive/memory T-cell phenotypes in leukemic cutaneous T-cell lymphoma: putative cell of origin overlaps disease classification. Cytometry B Clin. Cytom. 96, 234–241 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Roelens, M. et al. Circulating and skin-derived Sezary cells: clonal but with phenotypic plasticity. Blood 130, 1468–1471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Saed, G., Fivenson, D. P., Naidu, Y. & Nickoloff, B. J. Mycosis fungoides exhibits a Th1-type cell-mediated cytokine profile whereas Sezary syndrome expresses a Th2-type profile. J. Invest. Dermatol. 103, 29–33 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Vermeer, M. H. et al. CD8+ T cells in cutaneous T-cell lymphoma: expression of cytotoxic proteins, Fas Ligand, and killing inhibitory receptors and their relationship with clinical behavior. J. Clin. Oncol. 19, 4322–4329 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lindahl, L. M. et al. Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood 134, 1072–1083 (2019). This article describes a decrease in clinical symptoms in response to aggressive, transient antibiotic treatment, further establishing a link between Staphylococcus aureus infections and tumour progression in mycosis fungoides.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Tokura, Y. et al. Cutaneous colonization with staphylococci influences the disease activity of Sezary syndrome: a potential role for bacterial superantigens. Br. J. Dermatol. 133, 6–12 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Blumel, E. et al. Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4+ T cells in cutaneous T-cell lymphoma. Oncoimmunology 8, e1641387 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Vowels, B. R., Cassin, M., Vonderheid, E. C. & Rook, A. H. Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J. Invest. Dermatol. 99, 90–94 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Vowels, B. R. et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J. Invest. Dermatol. 103, 669–673 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Assaf, C. Cancer-associated fibroblasts play an important role in early-stage mycosis fungoides. J. Invest. Dermatol. 141, 479–480 (2021). This Review provides a comprehensive discussion of the potential role of tumour stroma in cutaneous T cell lymphoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Folkes, A. S. et al. Targeting CD47 as a cancer therapeutic strategy: the cutaneous T-cell lymphoma experience. Curr. Opin. Oncol. 30, 332–337 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Johnson, L. D. S. et al. Targeting CD47 in Sezary syndrome with SIRPalphaFc. Blood Adv. 3, 1145–1153 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Aronovich, A. et al. Cancer-associated fibroblasts in mycosis fungoides promote tumor cell migration and drug resistance through CXCL12/CXCR4. J. Invest. Dermatol. 141, 619–627.e2 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Querfeld, C. et al. Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile. Cancer Immunol. Res. 6, 900–909 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Torrealba, M. P. et al. Chronic activation profile of circulating CD8+ T cells in Sezary syndrome. Oncotarget 9, 3497–3506 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yamanaka, K. et al. Decreased T-cell receptor excision circles in cutaneous T-cell lymphoma. Clin. Cancer Res. 11, 5748–5755 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Bastidas Torres, A. N. et al. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 57, 653–664 (2018). This study combined whole genome sequencing and RNA sequencing, providing a comprehensive overview of gene fusions, structural alterations and mutations in mycosis fungoides and positions inactivation of HNRNPK and SOCS1 as potential driver events in mycosis fungoides development.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    van Doorn, R. et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood 113, 127–136 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Laharanne, E. et al. CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod. Pathol. 23, 547–558 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Navas, I. C. et al. p16(INK4a) is selectively silenced in the tumoral progression of mycosis fungoides. Lab. Invest. 82, 123–132 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Nicolae-Cristea, A. R. et al. Diagnostic and prognostic significance of CDKN2A/CDKN2B deletions in patients with transformed mycosis fungoides and primary cutaneous CD30-positive lymphoproliferative disease. Br. J. Dermatol. 172, 784–788 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Laharanne, E. et al. Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes. J. Invest. Dermatol. 130, 1707–1718 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Vermeer, M. H. et al. Novel and highly recurrent chromosomal alterations in Sezary syndrome. Cancer Res. 68, 2689–2698 (2008). This paper highlights the recurrent copy number alterations in Sézary syndrome identified using array comparative genomic hybridization.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Caprini, E. et al. Identification of key regions and genes important in the pathogenesis of Sezary syndrome by combining genomic and expression microarrays. Cancer Res. 69, 8438–8446 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Weed, J. et al. FISH panel for leukemic CTCL. J. Invest. Dermatol. 137, 751–753 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Prasad, A. et al. Identification of gene mutations and fusion genes in patients with Sezary syndrome. J. Invest. Dermatol. 136, 1490–1499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wang, Y. & Bagot, M. Updates in cutaneous lymphoma: evidence-based guidelines for the management of cutaneous lymphoma 2018. Br. J. Dermatol. 180, 443–444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    da Silva Almeida, A. C. et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat. Genet. 47, 1465–1470 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Borcherding, N. et al. Single-cell profiling of cutaneous T-cell lymphoma reveals underlying heterogeneity associated with disease progression. Clin. Cancer Res. 25, 2996–3005 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Buus, T. B. et al. Single-cell heterogeneity in Sezary syndrome. Blood Adv. 2, 2115–2126 (2018). This single-cell study in Sézary syndrome describes tumour cell heterogeneity with distinct subpopulations of malignant T cells carrying HDACi resistance, suggesting that tumour cell heterogeneity may have a role in treatment resistance and disease progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gaydosik, A. M. et al. Single-cell lymphocyte heterogeneity in advanced cutaneous T-cell lymphoma skin tumors. Clin. Cancer Res. 25, 4443–4454 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Vaque, J. P. et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood 123, 2034–2043 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Choi, J. et al. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 47, 1011–1019 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Kiel, M. J. et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat. Commun. 6, 8470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    McGirt, L. Y. et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 126, 508–519 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ungewickell, A. et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat. Genet. 47, 1056–1060 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Wang, L. et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat. Genet. 47, 1426–1434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Woollard, W. J. et al. Candidate driver genes involved in genome maintenance and DNA repair in Sezary syndrome. Blood 127, 3387–3397 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Waldmann, T. A. & Chen, J. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu. Rev. Immunol. 35, 533–550 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Perez, C. et al. Advanced-stage mycosis fungoides: role of the signal transducer and activator of transcription 3, nuclear factor-kappaB and nuclear factor of activated T cells pathways. Br. J. Dermatol. 182, 147–155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Moyal, L. et al. Oncogenic role of microRNA-155 in mycosis fungoides: an in vitro and xenograft mouse model study. Br. J. Dermatol. 177, 791–800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ralfkiaer, U. et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118, 5891–5900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Sandoval, J. et al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J. Invest. Dermatol. 135, 1128–1137 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    van Kester, M. S. et al. miRNA expression profiling of mycosis fungoides. Mol. Oncol. 5, 273–280 (2011).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Caumont, C. et al. PLCG1 gene mutations are uncommon in cutaneous T-cell lymphomas. J. Invest. Dermatol. 135, 2334–2337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Kiessling, M. K. et al. High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood 117, 2433–2440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Park, J. et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood 130, 1430–1440 (2017). Largest dataset of genomic analysis in cutaneous T cell lymphoma; by combining publicly available sequencing data with their own studies, the authors identified putative driver genes that are predicted to affect activation pathways, chromatin and immune surveillance.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    van der Fits, L., Out-Luiting, J. J., Tensen, C. P., Zoutman, W. H. & Vermeer, M. H. Exploring the IL-21-STAT3 axis as therapeutic target for Sezary syndrome. J. Invest. Dermatol. 134, 2639–2647 (2014).

    Google Scholar 

  81. 81.

    van Kester, M. S. et al. Cucurbitacin I inhibits Stat3 and induces apoptosis in Sezary cells. J. Invest. Dermatol. 128, 1691–1695 (2008).

    Google Scholar 

  82. 82.

    Taniguchi, K. & Karin, M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    CAS  Google Scholar 

  83. 83.

    Chang, L. W. et al. An integrated data resource for genomic analysis of cutaneous T-cell lymphoma. J. Invest. Dermatol. 138, 2681–2683 (2018).

    CAS  Google Scholar 

  84. 84.

    Zinzani, P. L. et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 4293–4297 (2007).

    CAS  Google Scholar 

  85. 85.

    LaPak, K. M. & Burd, C. E. The molecular balancing act of p16(INK4a) in cancer and aging. Mol. Cancer Res. 12, 167–183 (2014).

    CAS  Google Scholar 

  86. 86.

    Gallardo, F. et al. Methylation status of the p15, p16 and MGMT promoter genes in primary cutaneous T-cell lymphomas. Haematologica 89, 1401–1403 (2004).

    CAS  Google Scholar 

  87. 87.

    van Doorn, R. et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J. Clin. Oncol. 23, 3886–3896 (2005).

    Google Scholar 

  88. 88.

    Lawrie, C. H. MicroRNAs and haematology: small molecules, big function. Br. J. Haematol. 137, 503–512 (2007).

    CAS  Google Scholar 

  89. 89.

    Witten, L. & Slack, F. J. miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis 41, 2–7 (2020).

    CAS  Google Scholar 

  90. 90.

    Kopp, K. L. et al. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle 12, 1939–1947 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Tensen, C. P. & Vermeer, M. H. MicroRNA-155 potentiates tumour development in mycosis fungoides. Br. J. Dermatol. 177, 618–620 (2017).

    CAS  Google Scholar 

  92. 92.

    Ballabio, E. et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood 116, 1105–1113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Narducci, M. G. et al. MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sezary syndrome. Cell Death Dis. 2, e151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Kohnken, R. et al. Preclinical targeting of microRNA-214 in cutaneous T-cell lymphoma. J. Invest. Dermatol. 139, 1966–1974.e3 (2019).

    CAS  Google Scholar 

  95. 95.

    Qin, Y. et al. Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sezary syndrome. J. Invest. Dermatol. 132, 1520–1522 (2012).

    CAS  Google Scholar 

  96. 96.

    de Silva, S. et al. Downregulation of SAMHD1 expression correlates with promoter DNA methylation in Sezary syndrome patients. J. Invest. Dermatol. 134, 562–565 (2014).

    Google Scholar 

  97. 97.

    Haider, A. et al. Inactivation of RUNX3/p46 promotes cutaneous T-cell lymphoma. J. Invest. Dermatol. 136, 2287–2296 (2016).

    CAS  Google Scholar 

  98. 98.

    Jones, C. L. et al. Regulation of T-plastin expression by promoter hypomethylation in primary cutaneous T-cell lymphoma. J. Invest. Dermatol. 132, 2042–2049 (2012).

    CAS  Google Scholar 

  99. 99.

    Wong, H. K. et al. Promoter-specific hypomethylation is associated with overexpression of PLS3, GATA6, and TWIST1 in the Sezary syndrome. J. Invest. Dermatol. 135, 2084–2092 (2015).

    CAS  Google Scholar 

  100. 100.

    Kamijo, H. et al. Aberrant CD137 ligand expression induced by GATA6 overexpression promotes tumor progression in cutaneous T-cell lymphoma. Blood 132, 1922–1935 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    van Doorn, R. et al. Epigenomic analysis of Sezary syndrome defines patterns of aberrant DNA methylation and identifies diagnostic markers. J. Invest. Dermatol. 136, 1876–1884 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Beygi, S. et al. Pembrolizumab in mycosis fungoides with PD-L1 structural variants. Blood Adv. 5, 771–774 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Lewis, D. J., Huang, S. & Duvic, M. Inflammatory cytokines and peripheral mediators in the pathophysiology of pruritus in cutaneous T-cell lymphoma. J. Eur. Acad. Dermatol. Venereol. 32, 1652–1656 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Nattkemper, L. A. et al. Cutaneous T-cell lymphoma and pruritus: the expression of IL-31 and its receptors in the skin. Acta Derm. Venereol. 96, 894–898 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ohmatsu, H. et al. Serum IL-31 levels are increased in patients with cutaneous T-cell lymphoma. Acta Derm. Venereol. 92, 282–283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Singer, E. M. et al. IL-31 is produced by the malignant T-cell population in cutaneous T-cell lymphoma and correlates with CTCL pruritus. J. Invest. Dermatol. 133, 2783–2785 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    van Santen, S. et al. Serum and cutaneous transcriptional expression levels of IL31 are minimal in cutaneous T cell lymphoma variants. Biochem. Biophys. Rep. 26, 101007 (2021).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Niebuhr, M., Mamerow, D., Heratizadeh, A., Satzger, I. & Werfel, T. Staphylococcal alpha-toxin induces a higher T cell proliferation and interleukin-31 in atopic dermatitis. Int. Arch. Allergy Immunol. 156, 412–415 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Melchers, R. C. et al. Clinical, histologic, and molecular characteristics of anaplastic lymphoma kinase-positive primary cutaneous anaplastic large cell lymphoma. Am. J. Surg. Pathol. 44, 776–781 (2020).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Prieto-Torres, L. et al. CD30-positive primary cutaneous lymphoproliferative disorders: molecular alterations and targeted therapies. Haematologica 104, 226–235 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    van Kester, M. S. et al. Cutaneous anaplastic large cell lymphoma and peripheral T-cell lymphoma NOS show distinct chromosomal alterations and differential expression of chemokine receptors and apoptosis regulators. J. Invest. Dermatol. 130, 563–575 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Luchtel, R. A. et al. Recurrent MSC (E116K) mutations in ALK-negative anaplastic large cell lymphoma. Blood 133, 2776–2789 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Crescenzo, R. et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27, 516–532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Karai, L. J. et al. Chromosomal rearrangements of 6p25.3 define a new subtype of lymphomatoid papulosis. Am. J. Surg. Pathol. 37, 1173–1181 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Mehta-Shah, N. et al. NCCN Guidelines insights: primary cutaneous lymphomas, version 2.2020: featured updates to the NCCN guidelines. J. Natl Compr. Cancer Netw. 18, 522–536 (2020).

    Google Scholar 

  116. 116.

    Olsen, E. A. et al. Clinical end points and response criteria in mycosis fungoides and Sézary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J. Clin. Oncol. 29, 2598 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Schachter, O. et al. Evaluation of the polymerase chain reaction-based T-cell receptor beta clonality test in the diagnosis of early mycosis fungoides. J. Am. Acad. Dermatol. 83, 1400–1405 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Hodges, E., Krishna, M., Pickard, C. & Smith, J. Diagnostic role of tests for T cell receptor (TCR) genes. J. Clin. Pathol. 56, 1–11 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Hsiao, P.-F. et al. Histopathologic-molecular correlation in early mycosis fungoides using T-cell receptor γ gene rearrangement by polymerase chain reaction with laser capture microdissection. J. Formos. Med. Assoc. 106, 265–272 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Kirsch, I. R. et al. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Sci. Transl. Med. 7, 308ra158 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Lukowsky, A. et al. Evaluation of T-cell clonality in archival skin biopsy samples of cutaneous T-cell lymphomas using the biomed-2 PCR protocol. Diagn. Mol. Pathol. 19, 70–77 (2010).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Ponti, R. et al. TCRγ-chain gene rearrangement by PCR-based GeneScan: diagnostic accuracy improvement and clonal heterogeneity analysis in multiple cutaneous T-cell lymphoma samples. J. Investig. Dermatol. 128, 1030–1038 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Rea, B. et al. Role of high-throughput sequencing in the diagnosis of cutaneous T-cell lymphoma. J. Clin. Pathol. 71, 814–820 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Sandberg, Y. et al. Molecular immunoglobulin/T-cell receptor clonality analysis in cutaneous lymphoproliferations. Experience with the BIOMED-2 standardized polymerase chain reaction protocol. Haematologica 88, 659–670 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Sufficool, K. E. et al. T-cell clonality assessment by next-generation sequencing improves detection sensitivity in mycosis fungoides. J. Am. Acad. Dermatol. 73, 228–36. e2 (2015). This article discusses clonality assessment using next-generation sequencing in mycosis fungoides.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Walia, R. & Yeung, C. An update on molecular biology of cutaneous T cell lymphoma. Front. Oncol. 9, 1558 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Epling-Burnette, P. et al. Prevalence and clinical association of clonal T-cell expansions in myelodysplastic syndrome. Leukemia 21, 659–667 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Guitart, J. & Magro, C. Cutaneous T-cell lymphoid dyscrasia: a unifying term for idiopathic chronic dermatoses with persistent T-cell clones. Arch. Dermatol. 143, 921–932 (2007). This article discusses T cell clonality in inflammatory skin diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Lee, S.-C., Berg, K. D., Racke, F. K., Griffin, C. A. & Eshleman, J. R. Pseudo-spikes are common in histologically benign lymphoid tissues. J. Mol. Diagn. 2, 145–152 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Pimpinelli, N. et al. Defining early mycosis fungoides. J. Am. Acad. Dermatol. 53, 1053–1063 (2005). This article describes definition and diagnosis of early mycosis fungoides.

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Posnett, D. N., Sinha, R., Kabak, S. & Russo, C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to benign monoclonal gammapathy. J. Exp. Med. 179, 609–618 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Kim, Y. H. et al. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood J. Am. Soc. Hematol. 110, 479–484 (2007). This article describes the current classification for primary cutaneous lymphomas other than mycosis fungoides and Sézary syndrome.

    CAS  Google Scholar 

  133. 133.

    Hwang, S. T., Janik, J. E., Jaffe, E. S. & Wilson, W. H. Mycosis fungoides and Sezary syndrome. Lancet 371, 945–957 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Hristov, A. C., Tejasvi, T. & Wilcox, R. A. Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 94, 1027–1041 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Peterson, E., Weed, J., Sicco, K. L., Latkowski, J.-A. & Cutaneous, T. Cell lymphoma: a difficult diagnosis demystified. Dermatol. Clin. 37, 455–469 (2019).

    CAS  Google Scholar 

  136. 136.

    Huang, K. P. et al. Second lymphomas and other malignant neoplasms in patients with mycosis fungoides and Sezary syndrome: evidence from population-based and clinical cohorts. Arch. Dermatol. 143, 45–50 (2007).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Yawalkar, N. et al. Profound loss of T-cell receptor repertoire complexity in cutaneous T-cell lymphoma. Blood 102, 4059–4066 (2003).

    CAS  Google Scholar 

  138. 138.

    Nguyen, V. et al. Cutaneous T-cell lymphoma and Staphylococcus aureus colonization. J. Am. Acad. Dermatol. 59, 949–952 (2008).

    Google Scholar 

  139. 139.

    Mirvish, J. J., Pomerantz, R. G., Falo, L. D. Jr & Geskin, L. J. Role of infectious agents in cutaneous T-cell lymphoma: facts and controversies. Clin. Dermatol. 31, 423–431 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Smoller, B. R. & Marcus, R. Risk of secondary cutaneous malignancies in patients with long-standing mycosis fungoides. J. Am. Acad. Dermatol. 30, 201–204 (1994).

    CAS  Google Scholar 

  141. 141.

    Herrmann, J. J., Kuzel, T. M., Rosen, S. T. & Roenigk, H. H. Jr. Proceedings of the second international symposium on cutaneous T-cell lymphoma. Chicago, Illinois, Oct. 13-17, 1993. J. Am. Acad. Dermatol. 31, 819–822 (1994).

    CAS  Google Scholar 

  142. 142.

    Skov, A. G. & Gniadecki, R. Delay in the histopathologic diagnosis of mycosis fungoides. Acta Derm. Venereol. 95, 472–475 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Smoller, B. R., Bishop, K., Glusac, E., Kim, Y. H. & Hendrickson, M. Reassessment of histologic parameters in the diagnosis of mycosis fungoides. Am. J. Surg. Pathol. 19, 1423–1430 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Song, S. X., Willemze, R., Swerdlow, S. H., Kinney, M. C. & Said, J. W. Mycosis fungoides: report of the 2011 Society for Hematopathology/European Association for Haematopathology workshop. Am. J. Clin. Pathol. 139, 466–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Dulmage, B., Geskin, L., Guitart, J. & Akilov, O. E. The biomarker landscape in mycosis fungoides and Sézary syndrome. Exp. Dermatol. 26, 668–676 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Zhang, Y. et al. Molecular markers of early-stage mycosis fungoides. J. Investig. Dermatol. 132, 1698–1706 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Dulmage, B., Geskin, L., Guitart, J. & Akilov, O. E. The biomarker landscape in mycosis fungoides and Sezary syndrome. Exp. Dermatol. 26, 668–676 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Michie, S., Abel, E., Hoppe, R., Warnke, R. & Wood, G. Discordant expression of antigens between intraepidermal and intradermal T cells in mycosis fungoides. Am. J. Pathol. 137, 1447 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Moll, M. et al. CD7-negative helper T cells accumulate in inflammatory skin lesions. J. Investig. Dermatol. 102, 328–332 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Abeni, D. et al. Circulating CD8+ lymphocytes, white blood cells, and survival in patients with mycosis fungoides. Br. J. Dermatol. 153, 324–330 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Vonderheid, E. C., Pena, J. & Nowell, P. Sézary cell counts in erythrodermic cutaneous T-cell lymphoma: implications for prognosis and staging. Leuk. Lymphoma 47, 1841–1856 (2006).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Gibbs, J. D. et al. Utility of flow cytometry and gene rearrangement analysis in tissue and blood of patients with suspected cutaneous T‑cell lymphoma. Oncol. Rep. 45, 349–358 (2021).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Hristov, A. C., Vonderheid, E. C. & Borowitz, M. J. Simplified flow cytometric assessment in mycosis fungoides and Sézary syndrome. Am. J. Clin. Pathol. 136, 944–953 (2011).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Scarisbrick, J. J. et al. Blood classification and blood response criteria in mycosis fungoides and Sézary syndrome using flow cytometry: recommendations from the EORTC cutaneous lymphoma task force. Eur. J. Cancer 93, 47–56 (2018). This article describes the evaluation of blood involvement in mycosis fungoides and Sézary syndrome.

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Scarisbrick, J. J. et al. Developments in the understanding of blood involvement and stage in mycosis fungoides/Sezary syndrome. Eur. J. Cancer 101, 278–280 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Boonk, S. E. et al. Evaluation of immunophenotypic and molecular biomarkers for sezary syndrome using standard operating procedures: a multicenter study of 59 patients. J. Invest. Dermatol. 136, 1364–1372 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Willemze, R., van Vloten, W. A., Hermans, J., Damsteeg, M. J. & Meijer, C. J. Diagnostic criteria in Sezary’s syndrome: a multiparameter study of peripheral blood lymphocytes in 32 patients with erythroderma. J. Invest. Dermatol. 81, 392–397 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Scarisbrick, J. J. et al. Blood classification and blood response criteria in mycosis fungoides and Sezary syndrome using flow cytometry: recommendations from the EORTC cutaneous lymphoma task force. Eur. J. Cancer 93, 47–56 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Roelens, M. et al. Revisiting the initial diagnosis and blood staging of mycosis fungoides and Sezary syndrome with the KIR3DL2 marker. Br. J. Dermatol. 182, 1415–1422 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Martinez-Cabriales, S. A., Walsh, S., Sade, S. & Shear, N. H. Lymphomatoid papulosis: an update and review. J. Eur. Acad. Dermatol. Venereol. 34, 59–73 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Liu, H. L. et al. CD30+ cutaneous lymphoproliferative disorders: the Stanford experience in lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. J. Am. Acad. Dermatol. 49, 1049–1058 (2003).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Bekkenk, M. W. et al. Primary and secondary cutaneous CD30+ lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 95, 3653–3661 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Benner, M. F. & Willemze, R. Applicability and prognostic value of the new TNM classification system in 135 patients with primary cutaneous anaplastic large cell lymphoma. Arch. Dermatol. 145, 1399–1404 (2009).

    Google Scholar 

  164. 164.

    Willemze, R. & Beljaards, R. C. Spectrum of primary cutaneous CD30 (Ki-1)-positive lymphoproliferative disorders. A proposal for classification and guidelines for management and treatment. J. Am. Acad. Dermatol. 28, 973–980 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Kummer, J. A., Vermeer, M. H., Dukers, D., Meijer, C. J. & Willemze, R. Most primary cutaneous CD30-positive lymphoproliferative disorders have a CD4-positive cytotoxic T-cell phenotype. J. Invest. Dermatol. 109, 636–640 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Massone, C. & Cerroni, L. Phenotypic variability in primary cutaneous anaplastic large T-cell lymphoma: a study on 35 patients. Am. J. Dermatopathol. 36, 153–157 (2014).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Gorczyca, W. et al. CD30-positive T-cell lymphomas co-expressing CD15: an immunohistochemical analysis. Int. J. Oncol. 22, 319–324 (2003).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    DeCoteau, J. F., Butmarc, J. R., Kinney, M. C. & Kadin, M. E. The t(2;5) chromosomal translocation is not a common feature of primary cutaneous CD30+ lymphoproliferative disorders: comparison with anaplastic large-cell lymphoma of nodal origin. Blood 87, 3437–3441 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    El Shabrawi-Caelen, L., Kerl, H. & Cerroni, L. Lymphomatoid papulosis: reappraisal of clinicopathologic presentation and classification into subtypes A, B, and C. Arch. Dermatol. 140, 441–447 (2004).

    PubMed  PubMed Central  Google Scholar 

  170. 170.

    Wang, H. H., Myers, T., Lach, L. J., Hsieh, C. C. & Kadin, M. E. Increased risk of lymphoid and nonlymphoid malignancies in patients with lymphomatoid papulosis. Cancer 86, 1240–1245 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Chott, A. et al. The dominant T cell clone is present in multiple regressing skin lesions and associated T cell lymphomas of patients with lymphomatoid papulosis. J. Invest. Dermatol. 106, 696–700 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Kadin, M. E., Levi, E. & Kempf, W. Progression of lymphomatoid papulosis to systemic lymphoma is associated with escape from growth inhibition by transforming growth factor-beta and CD30 ligand. Ann. N. Y. Acad. Sci. 941, 59–68 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Kim, Y. H. et al. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 110, 479–484 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Horwitz, S. M., Olsen, E. A., Duvic, M., Porcu, P. & Kim, Y. H. Review of the treatment of mycosis fungoides and Sezary syndrome: a stage-based approach. J. Natl Compr. Cancer Netw. 6, 436–442 (2008).

    Google Scholar 

  175. 175.

    Mehta-Shah, N. et al. NCCN guidelines insights: primary cutaneous lymphomas, version 2.2020. J. Natl Compr. Canc Netw. 18, 522–536 (2020).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Trautinger, F. et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome — update 2017. Eur. J. Cancer 77, 57–74 (2017).

    Google Scholar 

  177. 177.

    Stadler, R. & Scarisbrick, J. J. Maintenance therapy in patients with mycosis fungoides or Sezary syndrome: a neglected topic. Eur. J. Cancer 142, 38–47 (2021).

    CAS  Google Scholar 

  178. 178.

    Prince, H. M. et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet 390, 555–566 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Kim, Y. H. et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19, 1192–1204 (2018).

    CAS  Google Scholar 

  180. 180.

    Quaglino, P., Iversen, L., Dummer, R., Musiek A. & Rosen, J. P. The Correlation Between Skin Response and Blood Involvement with Mogamulizumab 12–14 (EADO Meeting, 2020).

  181. 181.

    Lessin, S. R. et al. Topical chemotherapy in cutaneous T-cell lymphoma: positive results of a randomized, controlled, multicenter trial testing the efficacy and safety of a novel mechlorethamine, 0.02%, gel in mycosis fungoides. JAMA Dermatol. 149, 25–32 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Olsen, E. A. et al. Sezary syndrome: immunopathogenesis, literature review of therapeutic options, and recommendations for therapy by the United States Cutaneous Lymphoma Consortium (USCLC). J. Am. Acad. Dermatol. 64, 352–404 (2011).

    Google Scholar 

  183. 183.

    Knobler, R. et al. Guidelines on the use of extracorporeal photopheresis. J. Eur. Acad. Dermatol. Venereol. 28, 1–37 (2014).

    CAS  Google Scholar 

  184. 184.

    Dumont, M., Peffault de Latour, R., Ram-Wolff, C., Bagot, M. & de Masson, A. Allogeneic hematopoietic stem cell transplantation in cutaneous T-cell lymphomas. Cancers 12, 2856 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Kempf, W. et al. EORTC, ISCL, and USCLC consensus recommendations for the treatment of primary cutaneous CD30-positive lymphoproliferative disorders: lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. Blood 118, 4024–4035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Beljaards, R. C. et al. Primary cutaneous CD30-positive large cell lymphoma: definition of a new type of cutaneous lymphoma with a favorable prognosis. A European Multicenter Study of 47 patients. Cancer 71, 2097–2104 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Guitart, J. et al. Primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphomas: reappraisal of a provisional entity in the 2016 WHO classification of cutaneous lymphomas. Mod. Pathol. 30, 761–772 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Kempf, W. et al. Primary cutaneous peripheral T-cell lymphoma, not otherwise specified: results of a multicentre European Organization for Research and Treatment of Cancer (EORTC) cutaneous lymphoma taskforce study on the clinico-pathological and prognostic features. J. Eur. Acad. Dermatol. Venereol. 35, 658–668 (2020).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Gilson, D. et al. British Association of Dermatologists and U.K. Cutaneous Lymphoma Group guidelines for the management of primary cutaneous lymphomas 2018. Br. J. Dermatol. 180, 496–526 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Domingo-Domenech, E. et al. Allogeneic hematopoietic stem cell transplantation for advanced mycosis fungoides and Sezary syndrome. An updated experience of the Lymphoma Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 56, 1391–1391 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Lechowicz, M. J. et al. Allogeneic hematopoietic cell transplantation for mycosis fungoides and Sezary syndrome. Bone Marrow Transplant. 49, 1360–1365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    de Masson, A. et al. Allogeneic stem cell transplantation for advanced cutaneous T-cell lymphomas: a study from the French Society of Bone Marrow Transplantation and French Study Group on Cutaneous Lymphomas. Haematologica 99, 527–534 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Cristofoletti, C., Narducci, M. G. & Russo, G. Sezary Syndrome, recent biomarkers and new drugs. Chin. Clin. Oncol. 8, 2 (2019).

    Google Scholar 

  194. 194.

    Quaglino, P. et al. Phenotypical markers, molecular mutations, and immune microenvironment as targets for new treatments in patients with mycosis fungoides and/or sezary syndrome. J. Invest. Dermatol. 141, 484–495 (2020).

    PubMed  PubMed Central  Google Scholar 

  195. 195.

    Ramelyte, E., Dummer, R. & Guenova, E. Investigative drugs for the treatment of cutaneous T-cell lymphomas (CTCL): an update. Expert Opin. Investig. Drugs 28, 799–809 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Olsen, E. A. et al. Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J. Clin. Oncol. 29, 2598–2607 (2011). Consensus recommendations for clinical trials in patients with mycosis fungoides or Sézary syndrome and for standardized assessment of skin, lymph node, blood, and visceral organ involvement, and definition of end points and response criteria.

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Campbell, B. A. et al. Time to next treatment as a meaningful endpoint for trials of primary cutaneous lymphoma. Cancers 12, 2311 (2020).

    CAS  Google Scholar 

  198. 198.

    Iyer, A. et al. Skin colonization by circulating neoplastic clones in cutaneous T-cell lymphoma. Blood 134, 1517–1527 (2019).

    PubMed  PubMed Central  Google Scholar 

  199. 199.

    Lovgren, M. L. & Scarisbrick, J. J. Update on skin directed therapies in mycosis fungoides. Chin. Clin. Oncol. 8, 7 (2019).

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Alpdogan, O., Kartan, S., Johnson, W., Sokol, K. & Porcu, P. Systemic therapy of cutaneous T-cell lymphoma (CTCL). Chin. Clin. Oncol. 8, 10 (2019).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Duvic, M. et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J. Clin. Oncol. 19, 2456–2471 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Herbosa, C. M., Semenov, Y. R., Rosenberg, A. R., Mehta-Shah, N. & Musiek, A. C. Clinical severity measures and quality-of-life burden in patients with mycosis fungoides and Sezary syndrome: comparison of generic and dermatology-specific instruments. J. Eur. Acad. Dermatol. Venereol. 34, 995–1003 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Vij, A. & Duvic, M. Prevalence and severity of pruritus in cutaneous T cell lymphoma. Int. J. Dermatol. 51, 930–934 (2012).

    PubMed  PubMed Central  Google Scholar 

  204. 204.

    Jonak, C. et al. Health-related quality of life in cutaneous lymphomas: past, present and future. Acta Derm. Venereol. 99, 640–646 (2019).

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Dummer, R. et al. Patient-reported quality of life in patients with relapsed/refractory cutaneous T-cell lymphoma: results from the randomised phase III ALCANZA study. Eur. J. Cancer 133, 120–130 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Pro, B. et al. Time to next treatment in patients with previously treated cutaneous T-cell lymphoma (CTCL) receiving mogamulizumab or vorinostat: a MAVORIC post-hoc analysis. J. Clin. Oncol. 37, 7539 (2019).

    Google Scholar 

  207. 207.

    Poligone, B., Rubio-Gonzalez, B. & Querfeld, C. Relief of intractable pruritus with romidepsin in patients with cutaneous T-cell lymphoma: a series of four cases. Dermatol. Ther. 32, e12804 (2019).

    PubMed  PubMed Central  Google Scholar 

  208. 208.

    Kim, Y. H. et al. Clinically meaningful reduction in pruritus in patients with cutaneous T-cell lymphoma treated with romidepsin. Leuk. Lymphoma 54, 284–289 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209.

    Bagot, M. et al. IPH4102, a first-in-class anti-KIR3DL2 monoclonal antibody, in patients with relapsed or refractory cutaneous T-cell lymphoma: an international, first-in-human, open-label, phase 1 trial. Lancet Oncol. 20, 1160–1170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Carlo-Stella, C. et al. A first-in-human study of tenalisib (RP6530), a dual PI3K delta/gamma inhibitor, in patients with relapsed/refractory hematologic malignancies: results from the European Study. Clin. Lymphoma Myeloma Leuk. 20, 78–86 (2020).

    PubMed  PubMed Central  Google Scholar 

  211. 211.

    Huen, A. et al. Phase I/Ib study of tenalisib (RP6530), a dual PI3K delta/gamma Inhibitor in patients with relapsed/refractory T-cell lymphoma. Cancers 12, 2293 (2020).

    CAS  Google Scholar 

  212. 212.

    Saulite, I. et al. Blockade of programmed cell death protein 1 (PD-1) in Sezary syndrome reduces Th2 phenotype of non-tumoral T lymphocytes but may enhance tumor proliferation. Oncoimmunology 9, 1738797 (2020).

    PubMed  PubMed Central  Google Scholar 

  213. 213.

    Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Khodadoust, M. S. et al. Pembrolizumab in relapsed and refractory mycosis fungoides and sezary syndrome: a multicenter phase II study. J. Clin. Oncol. 38, 20–28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Ratner, L., Waldmann, T. A., Janakiram, M. & Brammer, J. E. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N. Engl. J. Med. 378, 1947–1948 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. 216.

    Anand, K. et al. T-cell lymphoma secondary to checkpoint inhibitor therapy. J. Immunother. Cancer 8, 1 (2020).

    Google Scholar 

  217. 217.

    Zheng, Y. J. et al. Cutaneous CD56+ T-cell lymphoma developing during pembrolizumab treatment for metastatic melanoma. JAAD Case Rep. 4, 540–542 (2018).

    PubMed  PubMed Central  Google Scholar 

  218. 218.

    Dummer, R. et al. Phase II clinical trial of intratumoral application of TG1042 (adenovirus-interferon-gamma) in patients with advanced cutaneous T-cell lymphomas and multilesional cutaneous B-cell lymphomas. Mol. Ther. 18, 1244–1247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Kunzi, V., Oberholzer, P. A., Heinzerling, L., Dummer, R. & Naim, H. Y. Recombinant measles virus induces cytolysis of cutaneous T-cell lymphoma in vitro and in vivo. J. Invest. Dermatol. 126, 2525–2532 (2006).

    PubMed  PubMed Central  Google Scholar 

  220. 220.

    Ramelyte, E. et al. Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39, 394–406.e4 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221.

    Rozati, S. et al. Romidepsin and azacitidine synergize in their epigenetic modulatory effects to induce apoptosis in CTCL. Clin. Cancer Res. 22, 2020–2031 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. 222.

    Hwang, S. T., Janik, J. E., Jaffe, E. S. & Wilson, W. H. Mycosis fungoides and Sézary syndrome. Lancet 371, 945–957 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Gerami, P., Rosen, S., Kuzel, T., Boone, S. L. & Guitart, J. Folliculotropic mycosis fungoides: an aggressive variant of cutaneous T-cell lymphoma. Arch. Dermatol. 144, 738–746 (2008).

    PubMed  PubMed Central  Google Scholar 

  224. 224.

    O’Connor, O. A. et al. In Hematology (7th edn.) (eds Hoffman R. et al.) Chapter 85 1343–1380 (Elsevier, 2018).

  225. 225.

    Noto, G., Pravata, G., Miceli, S. & Arico, M. Granulomatous slack skin: report of a case associated with Hodgkin’s disease and a review of the literature. Br. J. Dermatol. 131, 275–279 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226.

    Van Haselen, C. et al. Granulomatous slack skin. Dermatology 196, 382–391 (1998).

    PubMed  PubMed Central  Google Scholar 

  227. 227.

    Musick, S. R. & Lynch, D. T. Subcutaneous Panniculitis Like T-cell Lymphoma (StatPearls, 2019).

  228. 228.

    Sugeeth, M. T., Narayanan, G., Jayasudha, A. V. & Nair, R. A. (eds) Subcutaneous Panniculitis-Like T-cell Lymphoma, Baylor University Medical Center Proceedings (Taylor & Francis, 2017).

  229. 229.

    Al-Hakeem, D. A., Fedele, S., Carlos, R. & Porter, S. Extranodal NK/T-cell lymphoma, nasal type. Oral. Oncol. 43, 4–14 (2007).

    PubMed  PubMed Central  Google Scholar 

  230. 230.

    Rice, A. S. & Bermudez, R. Hydroa vacciniforme (StatPearls, 2020).

  231. 231.

    Tokura, Y. et al. Hypersensitivity to mosquito bites as the primary clinical manifestation of a juvenile type of Epstein-Barr virus-associated natural killer cell leukemia/lymphoma. J. Am. Acad. Dermatol. 45, 569–578 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Aguilera, P. et al. Cutaneous γ/δ T-cell lymphoma: a histopathologic mimicker of lupus erythematosus profundus (lupus panniculitis). J. Am. Acad. Dermatol. 56, 643–647 (2007).

    PubMed  PubMed Central  Google Scholar 

  233. 233.

    Koch, R. et al. Cutaneous gamma/delta T-cell lymphoma. J. Dtsch. Dermatol. Ges. 7, 1065–1067 (2009).

    PubMed  PubMed Central  Google Scholar 

  234. 234.

    Valentim, F. O., Oliveira, C. C. & Miot, H. A. Case for diagnosis. Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder. Bras. Dermatol. 94, 99–101 (2019).

    Google Scholar 

  235. 235.

    Hathuc, V. M., Hristov, A. C. & Smith, L. B. Primary cutaneous acral CD8+ T-cell lymphoma. Arch. Pathol. Lab. Med. 141, 1469–1475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. 236.

    Olsen, E. A. et al. Guidelines for phototherapy of mycosis fungoides and Sezary syndrome: a consensus statement of the United States Cutaneous Lymphoma Consortium. J. Am. Acad. Dermatol. 74, 27–58 (2016).

    PubMed  PubMed Central  Google Scholar 

  237. 237.

    Phan, K., Ramachandran, V., Fassihi, H. & Sebaratnam, D. F. Comparison of narrowband UV-B WITH Psoralen-UV-A phototherapy for patients with early-stage mycosis fungoides: a systematic review and meta-analysis. JAMA Dermatol. 155, 335–341 (2019).

    PubMed  PubMed Central  Google Scholar 

  238. 238.

    Hoppe, R. T. et al. Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: results of a pooled analysis from 3 phase-II clinical trials. J. Am. Acad. Dermatol. 72, 286–292 (2015).

    PubMed  PubMed Central  Google Scholar 

  239. 239.

    Stadler, R. et al. Prospective randomized multicenter clinical trial on the use of interferon -2a plus acitretin versus interferon -2a plus PUVA in patients with cutaneous T-cell lymphoma stages I and II. Blood 92, 3578–3581 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. 240.

    Duvic, M. et al. Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma. Arch. Dermatol. 137, 581–593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. 241.

    Whittaker, S. et al. Efficacy and safety of bexarotene combined with psoralen-ultraviolet A (PUVA) compared with PUVA treatment alone in stage IB-IIA mycosis fungoides: final results from the EORTC Cutaneous Lymphoma Task Force phase III randomized clinical trial (NCT00056056). Br. J. Dermatol. 167, 678–687 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Dummer, R. et al. Prospective international multicenter phase II trial of intravenous pegylated liposomal doxorubicin monochemotherapy in patients with stage IIB, IVA, or IVB advanced mycosis fungoides: final results from EORTC 21012. J. Clin. Oncol. 30, 4091–4097 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Marchi, E. et al. Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: phase II study of 32 patients. Cancer 104, 2437–2441 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Olsen, E. A. et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. 245.

    Whittaker, S. J. et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 4485–4491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246.

    Bobrowicz, M. et al. Pathogenesis and therapy of primary cutaneous T-cell lymphoma: Collegium Internationale Allergologicum (CIA) update 2020. Int. Arch. Allergy Immunol. 181, 733–745 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. 247.

    Wang, L., Li, L. R., Zhang, L. & Wang, J. W. The landscape of new drugs in extranodal NK/T-cell lymphoma. Cancer Treat. Rev. 89, 102065 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to congratulate Prof. Dr. med. Dr. h.c. Günter Burg to his 80th birthday and devote this publication to him.

Author information

Affiliations

Authors

Contributions

Introduction (M.H.V.); Epidemiology (J.J.S.); Mechanisms/pathophysiology (M.H.V., Y.H.K., C.P.T.); Diagnosis, screening and prevention (L.J.G., C.S.); Management (P.Q., E.R.); Quality of life (R.D.); Outlook (R.D.); Overview of Primer (R.D., E.R.).

Corresponding author

Correspondence to Reinhard Dummer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 4.

Peer review information

Nature Reviews Disease Primers thanks C. Assaf, J. Guitart, T. Miyagaki, M. Sugaya, N. Ødum, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Patches

Flat, erythematous, often scaly areas of the skin.

Plaques

Raised skin lesions that vary from pink to brownish colour and may often be scaly.

Erythroderma

Widespread erythema and redness that affects >80% of the skin surface.

Lymphadenopathy

Increased size of the lymph nodes.

Follicular involvement

A hallmark of folliculotropic mycosis fungoides and defines the infiltration of hair follicles through malignant cells.

Lichenification

Secondary skin lesion, defined as a thickening of the skin with exaggerated skin lines and sometimes hyperpigmentation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dummer, R., Vermeer, M.H., Scarisbrick, J.J. et al. Cutaneous T cell lymphoma. Nat Rev Dis Primers 7, 61 (2021). https://doi.org/10.1038/s41572-021-00296-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing