Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Psoriatic arthritis

Abstract

Psoriatic arthritis (PsA) is a complex inflammatory disease with heterogeneous clinical features, which complicates psoriasis in 30% of patients. There are no diagnostic criteria or tests available. Diagnosis is most commonly made by identifying inflammatory musculoskeletal features in joints, entheses or the spine in the presence of skin and/or nail psoriasis and in the usual absence of rheumatoid factor and anti-cyclic citrullinated peptide. The evolution of psoriasis to PsA may occur in stages, although the mechanisms are unclear. In many patients, there may be little or no relationship between severity of musculoskeletal inflammation and severity of skin or nail psoriasis. The reason for this disease heterogeneity may be explained by differences in genotype, especially in the HLA region. New targeted therapies for PsA have been approved with additional therapies in development. These developments have substantially improved both short-term and long-term outcomes including a reduction in musculoskeletal and skin manifestations and in radiographic damage. With efforts underway aimed at improving our understanding of the molecular basis for the heterogeneity of PsA, a personalized approach to treating PsA may become possible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Stages in the evolution of psoriasis to psoriatic arthritis.
Fig. 2: Proposed pathogenetic pathways activated in key subtypes of psoriatic disease.
Fig. 3: The complex model of quality of life for patients with PsA.

References

  1. 1.

    Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 2095–2096 (2017). A comprehensive review of psoriatic arthritis.

    PubMed  Article  Google Scholar 

  2. 2.

    Winchester, R. & FitzGerald, O. The many faces of psoriatic arthritis: their genetic determinism. Rheumatology 59, i4–i9 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Haroon, M., Kirby, B. & FitzGerald, O. High prevalence of psoriatic arthritis in patients with severe psoriasis with suboptimal performance of screening questionnaires. Ann. Rheum. Dis. 72, 736–740 (2013). This paper demonstrates the large number of patients with psoriatic arthritis attending dermatology clinics.

    PubMed  Article  Google Scholar 

  4. 4.

    Bowes, J. et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann. Rheum. Dis. 70, 1641–1644 (2011).

    PubMed  Article  Google Scholar 

  5. 5.

    Hüffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42, 996–999 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Menon, B. et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014). This paper highlights the importance of IL-17-producing CD8+ T cells in psoriatic arthritis pathogenesis.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Alinaghi, F. et al. Prevalence of psoriatic arthritis in patients with psoriasis: a systematic review and meta-analysis of observational and clinical studies. J. Am. Acad. Dermatol. 80, 251–265 (2019).

    PubMed  Article  Google Scholar 

  8. 8.

    Scotti, L., Franchi, M., Marchesoni, A. & Corrao, G. Prevalence and incidence of psoriatic arthritis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 48, 28–34 (2018).

    PubMed  Article  Google Scholar 

  9. 9.

    Ogdie, A. et al. Prevalence and treatment patterns of psoriatic arthritis in the UK. Rheumatology 52, 568–575 (2013).

    PubMed  Article  Google Scholar 

  10. 10.

    Kaufman, B. P. & Alexis, A. F. Psoriasis in skin of color: Insights into the epidemiology, clinical presentation, genetics, quality-of-life impact, and treatment of psoriasis in non-white racial/ethnic groups. Am. J. Clin. Dermatol 19, 405–423 (2018).

    PubMed  Article  Google Scholar 

  11. 11.

    Weiss, P. F. & Roth, J. Juvenile- versus adult-onset spondyloarthritis: similar, but different. Rheum. Dis. Clin. North. Am. 46, 241–257 (2020).

    PubMed  Article  Google Scholar 

  12. 12.

    Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  13. 13.

    Stoll, M. L., Lio, P., Sundel, R. P. & Nigrovic, P. Comparison of Vancouver and International League of Associations for Rheumatology classification criteria for juvenile psoriatic arthritis. Arthritis Rheum. 59, 51–58 (2008).

    PubMed  Article  Google Scholar 

  14. 14.

    Southwood, T. R. et al. Psoriatic arthritis in children. Arthritis Rheum. 8, 1007–1013 (1989).

    Article  Google Scholar 

  15. 15.

    Brandon, T. G., Manos, C. K., Xiao, R., Ogdie, A. & Weiss, P. F. Pediatric psoriatic arthritis: a population-based cohort study of risk factors for onset and subsequent risk of inflammatory comorbidities. J. Psoriasis Psoriatic Arthritis 3, 131–136 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Ringold, S. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the treatment of juvenile idiopathic arthritis: therapeutic approaches for non-systemic polyarthritis, sacroiliitis, and enthesitis. Arthritis Rheumatol. 71, 846–863 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Karmacharya, P., Chakradhar, R. & Ogdie, A. The epidemiology of psoriatic arthritis: a literature review. Best. Pract. Res Clin. Rheumatol. 75, 101692 (2021).

    Article  Google Scholar 

  18. 18.

    O’Rielly, D. D., Jani, M., Rahman, P. & Elder, J. The genetics of psoriasis and psoriatic arthritis. J. Rheumatol. Suppl. 95, 46–50 (2019).

    PubMed  Google Scholar 

  19. 19.

    Scher, J. U., Ogdie, A., Merola, J. F. & Ritchlin, C. Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat. Rev. Rheumatol. 15, 153–166 (2019). This review is state of the art in assessing early psoriatic arthritis, risk factors and strategies for future disease prevention.

    PubMed  Article  Google Scholar 

  20. 20.

    Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006). An important description of the CASPAR classification criteria.

    PubMed  Article  Google Scholar 

  21. 21.

    Villani, A. P. et al. Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: systematic review and meta-analysis. J. Am. Acad. Dermatol. 73, 242–248 (2015).

    PubMed  Article  Google Scholar 

  22. 22.

    Ogdie, A. The preclinical phase of PsA: a challenge for the epidemiologist. Ann. Rheum. Dis. 76, 1481–1483 (2017).

    PubMed  Article  Google Scholar 

  23. 23.

    Gupta, S., Syrimi, Z., Hughes, D. M. & Zhao, S. S. Comorbidities in psoriatic arthritis: a systematic review and meta-analysis. Rheumatol. Int. 41, 275–284 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Kumthekar, A. & Ogdie, A. Obesity and psoriatic arthritis: a narrative review. Rheumatol. Ther. 7, 447–456 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Karmacharya, P., Ogdie, A. & Eder, L. Psoriatic arthritis and the association with cardiometabolic disease: a narrative review. Ther. Adv. Musculoskelet. Dis. 13, 1759720X21998279 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Ogdie, A. & Weiss, P. The epidemiology of psoriatic arthritis. Rheum. Dis. Clin. North Am. 41, 545–568 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Dubreuil, M. et al. Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: a UK population-based cohort study. Rheumatology 53, 346–352 (2014).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Ogdie, A. et al. Risk of incident liver disease in patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis: a population-based study. Physiol. Behav. 176, 139–148 (2019).

    Google Scholar 

  29. 29.

    Lukmanji, A., Basmadjian, R. B., Vallerand, I. A., Patten, S. B. & Tang, K. Risk of depression in patients with psoriatic disease: a systematic review and meta-analysis. J. Cutan. Med. Surg. 25, 257–270 (2020).

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Mease, P. J. Fibromyalgia, a missed comorbidity in spondyloarthritis: prevalence and impact on assessment and treatment. Curr. Opin. Rheumatol. 29, 304–310 (2017).

    PubMed  Article  Google Scholar 

  31. 31.

    Lubrano, E., Scriffignano, S., Morelli, R. & Perrotta, F. Assessment of widespread and extra-articular pain in psoriatic arthritis: a case-control study. J. Rheumatol. https://doi.org/10.3899/jrheum.201163 (2021).

    Article  PubMed  Google Scholar 

  32. 32.

    Michelsen, B. et al. Do depression and anxiety reduce the likelihood of remission in rheumatoid arthritis and psoriatic arthritis? Data from the prospective multicentre NOR-DMARD study. Ann. Rheum. Dis. 76, 1906–1910 (2017).

    PubMed  Article  Google Scholar 

  33. 33.

    Elsawy, N. A., Helal, A. H., Abd ElHamid, H. A. & Yousra Hisham, A.-F. Fibromyalgia in patients with psoriatic arthritis: impact on disease activity indices, fatigue and health-related quality of life. Int. J. Rheum. Dis. 24, 189–196 (2021).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Bengtsson, K. et al. Incidence of extra-articular manifestations in ankylosing spondylitis, psoriatic arthritis and undifferentiated spondyloarthritis: results from a national register-based cohort study. Rheumatology 60, 2725–2734 (2021).

    PubMed  Article  Google Scholar 

  35. 35.

    Bradley, P. et al. Prevalence of extra-articular manifestations in psoriatic arthritis: a systematic review and meta-analysis. Rheumatology 59, 2199–2206 (2020).

    Article  Google Scholar 

  36. 36.

    O’Rielly, D. D. & Rahman, P. Genetic, epigenetic and pharmacogenetic aspects of psoriasis and psoriatic arthritis. Rheum. Dis. Clin. North Am. 41, 623–642 (2015).

    PubMed  Article  Google Scholar 

  37. 37.

    Li, Q. et al. Quantifying differences in heritability among psoriatic arthritis (PsA), cutaneous psoriasis (PsC) and psoriasis vulgaris (PsV). Sci. Rep. 10, 4925 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012). An important study of the HLA genetic associations in patients with psoriatic arthritis in comparison to those with psoriasis only.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Bowes, J. et al. Cross-phenotype association mapping of the MHC identifies genetic variants that differentiate psoriatic arthritis from psoriasis. Ann. Rheum. Dis. 76, 1774–1779 (2017).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Winchester, R. & Fitzgerald, O. MHC class I associations beyond HLA-B27: the peptide binding hypothesis of psoriatic arthritis and its implications for disease pathogenesis. Curr. Opin. Rheumatol. 32, 330–336 (2020).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Bowes, J. et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat. Commun. 6, 7741 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Apel, M. et al. Variants in RUNX3 contribute to susceptibility to psoriatic arthritis, exhibiting further common ground with ankylosing spondylitis. Arthritis Rheum. 65, 1224–1231 (2013).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Green, A. et al. Modifiable risk factors and the development of psoriatic arthritis in people with psoriasis. Br. J. Dermatol. 182, 714–720 (2020). An important sudy of modifiable risk factors for the development of psoriatic arthritis in patients with psoriasis.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2017).

    PubMed  Article  Google Scholar 

  47. 47.

    Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Teng, Y. et al. Infection-provoked psoriasis: induced or aggravated (Review). Exp. Ther. Med. 21, 567 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Gilis, E. et al. The role of the microbiome in gut and joint inflammation in psoriatic arthritis and spondyloarthritis. J. Rheumatol. Suppl. 94, 36–39 (2018).

    PubMed  Google Scholar 

  51. 51.

    Abusleme, L. & Moutsopoulos, N. IL-17: overview and role in oral immunity and microbiome. Oral. Dis. 23, 854–865 (2017).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Schluter, J. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature 588, 303–307 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Jadon, D. R., Stober, C., Pennington, S. R. & FitzGerald, O. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat. Rev. Rheumatol. 16, 609–627 (2020). This article discusses unmet clinical needs in psoriatic arthritis focusing on joint damage and treatment response prediction.

    PubMed  Article  Google Scholar 

  54. 54.

    Queiro, R. et al. HLA-C locus alleles may modulate the clinical expression of psoriatic arthritis. Arthritis Res. Ther. 8, R185 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Leijten, E. F. et al. Tissue-resident memory CD8+ T cells from skin differentiate psoriatic arthritis from psoriasis. Arthritis Rheumatol. 73, 1220–1232 (2021).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Polachek, A. et al. The association between HLA genetic susceptibility markers and sonographic enthesitis in psoriatic arthritis. Arthritis Rheumatol. 70, 756–762 (2018); erratum 71, 625 (2019).

  58. 58.

    Costello, P. J. et al. Psoriatic arthritis joint fluids are characterized by CD8 and CD4 T cell clonal expansions appear antigen driven. J. Immunol. 166, 2878–2886 (2001).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Cañete, J. D. et al. Ectopic lymphoid neogenesis in psoriatic arthritis. Ann. Rheum. Dis. 66, 720–726 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Abji, F., Pollock, R. A., Liang, K., Chandran, V. & Gladman, D. D. Brief report: CXCL10 is a possible biomarker for the development of psoriatic arthritis among patients with psoriasis. Arthritis Rheumatol. 68, 2911–2916 (2016).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Moll, J. M. H. & Wright, V. Psoriatic arthritis. Semin. Arthritis Rheum. 3, 55–78 (1973).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Holland, R. et al. Psoriatic arthritis is associated with diagnostic delay and worse outcome at three months when compared to rheumatoid arthritis: results from the UK National Audit for Inflammatory Arthritis [abstract FRI0514]. Ann. Rheum. Dis. 76, 685 (2017).

    Google Scholar 

  64. 64.

    Tillett, W. et al. Smoking and delay to diagnosis are associated with poorer functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 72, 1358–1361 (2013).

    PubMed  Article  Google Scholar 

  65. 65.

    Haroon, M., Gallagher, P. & FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 74, 1045–1050 (2015).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Mease, P. J., Garg, A., Helliwell, P. S., Park, J. J. & Gladman, D. D. Development of criteria to distinguish inflammatory from noninflammatory arthritis, enthesitis, dactylitis, and spondylitis: a report from the GRAPPA 2013 Annual Meeting. J. Rheumatol. 41, 1249–1251 (2014).

    PubMed  Article  Google Scholar 

  67. 67.

    Eder, L. & Gladman, D. D. Psoriatic arthritis: phenotypic variance and nosology. Curr. Rheumatol. Rep. 15, 316 (2013).

    PubMed  Article  Google Scholar 

  68. 68.

    Bonifati, C. et al. The diagnosis of early psoriatic arthritis in an outpatient dermatological centre for psoriasis. J. Eur. Acad. Dermatol. Venereol. 26, 627–633 (2012).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Kane, D., Stafford, L., Bresnihan, B. & FitzGerald, O. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology 42, 1460–1468 (2003).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Moghaddassi, M., Shahram, F., Chams-Davatchi, C., Najafizadeh, S. R. & Davatchi, F. Different aspects of psoriasis: analysis of 150 Iranian patients. Arch. Iran. Med. 12, 279–283 (2009).

    PubMed  Google Scholar 

  71. 71.

    Coates, L. C. et al. Sensitivity and specificity of the classification of psoriatic arthritis criteria in early psoriatic arthritis. Arthritis Rheum. 64, 3150–3155 (2012).

    PubMed  Article  Google Scholar 

  72. 72.

    Niccoli, L. et al. Frequency of iridocyclitis in patients with early psoriatic arthritis: a prospective, follow up study. Int. J. Rheum. Dis. 15, 414–418 (2012).

    PubMed  Article  Google Scholar 

  73. 73.

    Reich, K., Kruger, K., Mossner, R. & Augustin, M. Epidemiology and clinical pattern of psoriatic arthritis in Germany: a prospective interdisciplinary epidemiological study of 1511 patients with plaque-type psoriasis. Br. J. Dermatol. 160, 1040–1047 (2009).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Gladman, D. D., Ziouzina, O., Thavaneswaran, A. & Chandran, V. Dactylitis in psoriatic arthritis: prevalence and response to therapy in the biologic era. J. Rheumatol. 40, 1357–1359 (2013).

    PubMed  Article  Google Scholar 

  75. 75.

    Torre Alonso, J. C. et al. Psoriatic arthritis (PA): a clinical, immunological and radiological study of 180 patients. Br. J. Rheumatol. 30, 245–250 (1991).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Scarpa, R. et al. Early psoriatic arthritis: the clinical spectrum. J. Rheumatol. 35, 137–141 (2008).

    PubMed  Google Scholar 

  77. 77.

    Coates, L. C. et al. Effect of tight control of inflammation in early psoriatic arthritis (TICOPA): a UK multicentre, open-label, randomised controlled trial. Lancet 386, 2589–2598 (2015).

    Article  Google Scholar 

  78. 78.

    Chandran, V., Barrett, J., Schentag, C. T., Farewell, V. T. & Gladman, D. D. Axial psoriatic arthritis: update on a longterm prospective study. J. Rheumatol. 36, 2744–2750 (2009).

    PubMed  Article  Google Scholar 

  79. 79.

    Battistone, M. J., Manaster, B. J., Reda, D. J. & Clegg, D. O. The prevalence of sacroilitis in psoriatic arthritis: new perspectives from a large, multicenter cohort. A Department of Veterans Affairs Cooperative Study. Skelet. Radiol. 28, 196–201 (1999).

    CAS  Article  Google Scholar 

  80. 80.

    Helliwell, P. S., Hickling, P. & Wright, V. Do the radiological changes of classic ankylosing spondylitis differ from the changes found in the spondylitis associated with inflammatory bowel disease, psoriasis, and reactive arthritis? Ann. Rheum. Dis. 57, 135–140 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Jadon, D. R. et al. Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann. Rheum. Dis. 76, 701–707 (2017).

    PubMed  Article  Google Scholar 

  82. 82.

    Gladman, D. D., Shuckett, R., Russell, M. L., Thorne, J. C. & Schachter, R. K. Psoriatic arthritis (PSA)–an analysis of 220 patients. Q. J. Med. 62, 127–141 (1987).

    CAS  PubMed  Google Scholar 

  83. 83.

    Congi, L. & Roussou, E. Clinical application of the CASPAR criteria for psoriatic arthritis compared to other existing criteria. Clin. Exp. Rheumatol. 28, 304–310 (2010).

    PubMed  Google Scholar 

  84. 84.

    Tillett, W. et al. The classification for psoriatic arthritis (CASPAR) criteria–a retrospective feasibility, sensitivity, and specificity study. J. Rheumatol. 39, 154–156 (2012).

    PubMed  Article  Google Scholar 

  85. 85.

    Chandran, V., Schentag, C. T. & Gladman, D. D. Sensitivity of the classification of psoriatic arthritis criteria in early psoriatic arthritis. Arthritis Rheum. 57, 1560–1563 (2007).

    PubMed  Article  Google Scholar 

  86. 86.

    van den Berg, R., van Gaalen, F., van der Helm-van Mil, A., Huizinga, T. & van der Heijde, D. Performance of classification criteria for peripheral spondyloarthritis and psoriatic arthritis in the Leiden Early Arthritis cohort. Ann. Rheum. Dis. 71, 1366–1369 (2012).

    PubMed  Article  Google Scholar 

  87. 87.

    Jones, S. M. et al. Psoriatic arthritis: outcome of disease subsets and relationship of joint disease to nail and skin disease. Br. J. Rheumatol. 33, 834–839 (1994).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Marsal, S. et al. Clinical, radiographic and HLA associations as markers for different patterns of psoriatic arthritis. Rheumatol 38, 332–337 (1999).

    CAS  Article  Google Scholar 

  89. 89.

    Chandran, V., Tolusso, D. C., Cook, R. J. & Gladman, D. D. Risk factors for axial inflammatory arthritis in patients with psoriatic arthritis. J. Rheumatol. 37, 809–815 (2010).

    PubMed  Article  Google Scholar 

  90. 90.

    Gladman, D. D. & Farewell, V. T. Progression in psoriatic arthritis: role of time varying clinical indicators. J. Rheumatol. 26, 2409–2413 (1999).

    CAS  PubMed  Google Scholar 

  91. 91.

    Brockbank, J. E., Stein, M., Schentag, C. T. & Gladman, D. D. Dactylitis in psoriatic arthritis: a marker for disease severity? Ann. Rheum. Dis. 64, 188–190 (2005).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Wervers, K. et al. Influence of disease manifestations on health-related quality of life in early psoriatic arthritis. J. Rheumatol. 45, 1526–1531 (2018).

    PubMed  Article  Google Scholar 

  93. 93.

    Coates, L. C. et al. Comparison of three screening tools to detect psoriatic arthritis in patients with psoriasis (CONTEST study). Br. J. Dermatol. 168, 802–807 (2013).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Haroon, M., Kirby, B. & Fitzgerald, O. High prevalence of psoriatic arthritis in patients with severe psoriasis with suboptimal performance of screening questionnaires. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2012-201706 (2012).

    Article  PubMed  Google Scholar 

  95. 95.

    Coates, L. C. et al. Assessment of two screening tools to identify psoriatic arthritis in patients with psoriasis. J. Eur. Acad. Dermatol. Venereol. 32, 1530–1534 (2018).

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    National Institute for Health and Care Excellence. Psoriasis: assessment and management. Clinical guideline 153 (NICE, 2012).

  97. 97.

    Eder, L. et al. The incidence and risk factors for psoriatic arthritis in patients with psoriasis: a prospective cohort study. Arthritis Rheumatol. 68, 915–923 (2016).

    PubMed  Article  Google Scholar 

  98. 98.

    Orbai, A.-M. et al. Updating the psoriatic arthritis (PsA) core domain set: a report from the PsA workshop at OMERACT 2016. J. Rheumatol. 44, 1522–1528 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Ogdie, A., Coates, L. C. & Mease, P. Measuring outcomes in psoriatic arthritis. Arthritis Care Res. 72 (Suppl. 1), 82–109 (2020).

    Article  Google Scholar 

  100. 100.

    Mease, P. J. Measures of psoriatic arthritis: Tender and Swollen Joint Assessment, Psoriasis Area and Severity Index (PASI), Nail Psoriasis Severity Index (NAPSI), Modified Nail Psoriasis Severity Index (mNAPSI), Mander/Newcastle Enthesitis Index (MEI), Leeds Enthesitis Index (LEI), Spondyloarthritis Research Consortium of Canada (SPARCC), Maastricht Ankylosing Spondylitis Enthesis Score (MASES), Leeds Dactylitis Index (LDI), Patient Global for Psoriatic Arthritis, Dermatology Life Quality Index (DLQI), Psoriatic Arthritis Quality of Life (PsAQOL), Functional Assessment of Chronic Illness Therapy–Fatigue (FACIT-F), Psoriatic Arthritis Response Criteria (PsARC), Psoriatic Arthritis Joint Activity Index (PsAJAI), Disease Activity in Psoriatic Arthritis (DAPSA), and Composite Psoriatic Disease Activity Index (CPDAI). Arthritis Care Res. 63 (Suppl. 1), 64–85 (2011).

    Article  Google Scholar 

  101. 101.

    Mease, P. & van der, H. D. Joint damage in psoriatic arthritis: how is it assessed and can it be prevented? Int. J. Adv. Rheumatol. 4, 38–48 (2006).

    Google Scholar 

  102. 102.

    Kivitz, A. J. et al. A comparison of the efficacy and safety of celecoxib 200 mg and celecoxib 400 mg once daily in treating the signs and symptoms of psoriatic arthritis. Semin. Arthritis Rheum. 37, 164–173 (2007).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Dean, B. J. et al. The risks and benefits of glucocorticoid treatment for tendinopathy: a systematic review of the effects of local glucocorticoid on tendon. Semin. Arthritis Rheum. 43, 570–576 (2014).

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Ritchlin, C. T. et al. Treatment recommendations for psoriatic arthritis. Ann. Rheum. Dis. 68, 1387–1394 (2009).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Mease, P. J. Biologic therapy for psoriatic arthritis. Rheum. Dis. Clin. North Am. 41, 723–738 (2015).

    PubMed  Article  Google Scholar 

  106. 106.

    Ceponis, A. & Kavanaugh, A. Use of methotrexate in patients with psoriatic arthritis. Clin. Exp. Rheumatol. 28 (Suppl. 1), 132–137 (2010).

    Google Scholar 

  107. 107.

    Mease, P. J. Spondyloarthritis: is methotrexate effective in psoriatic arthritis? Nat. Rev. Rheumatol. 8, 251–252 (2012).

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Kingsley, G. H. et al. A randomized placebo-controlled trial of methotrexate in psoriatic arthritis. Rheumatol 51, 1368–1377 (2012).

    CAS  Article  Google Scholar 

  109. 109.

    Mease, P. J. et al. Etanercept and methotrexate as monotherapy or in combination for psoriatic arthritis: primary results from a randomized, controlled phase III trial. Arthritis Rheumatol. 71, 1112–1124 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Clegg, D. O. et al. Comparison of sulfasalazine and placebo in the treatment of psoriatic arthritis. A Department of Veterans Affairs Cooperative Study. Arthritis Rheum. 39, 2013–2020 (1996).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Kaltwasser, J. P. et al. Efficacy and safety of leflunomide in the treatment of psoriatic arthritis and psoriasis: a multinational, double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 50, 1939–1950 (2004).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Mease, P. J. & Armstrong, A. W. Managing patients with psoriatic disease: the diagnosis and pharmacologic treatment of psoriatic arthritis in patients with psoriasis. Drugs 74, 423–441 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Mease, P. J. et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356, 985–990 (2000). This is an early randomized trial of a biological agent in the treatment of psoriatic arthritis.

    Google Scholar 

  114. 114.

    Antoni, C. E. et al. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum. 52, 1227–1236 (2005).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Fénix-Caballero, S. et al. Direct and indirect comparison of the efficacy and safety of adalimumab, etanercept, infliximab and golimumab in psoriatic arthritis. J. Clin. Pharm. Ther. 38, 286–293 (2013).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).

    CAS  Article  Google Scholar 

  117. 117.

    Ritchlin, C. et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann. Rheum. Dis. 73, 990–999 (2014).

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Kavanaugh, A. et al. Efficacy and safety of ustekinumab in psoriatic arthritis patients with peripheral arthritis and physician-reported spondylitis: post-hoc analyses from two phase III, multicentre, double-blind, placebo-controlled studies (PSUMMIT-1/PSUMMIT-2). Ann. Rheum. Dis. 75, 1984–1988 (2016).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Baraliakos, X. et al. Secukinumab in patients with psoriatic arthritis and axial manifestations: results from the double-blind, randomised, phase 3 MAXIMISE trial. Ann. Rheum. Dis. 80, 582–590 (2021).

    CAS  Article  Google Scholar 

  121. 121.

    Mease, P. J. et al. A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naïve patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial. Ann. Rheum. Dis. 79, 123–131 (2020). This is the first head-to-head trial of an anti-TNF therapy versus an anti-IL-17 inhibitor.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    McInnes, I. B. et al. Secukinumab versus adalimumab for treatment of active psoriatic arthritis (EXCEED): a double-blind, parallel-group, randomised, active-controlled, phase 3b trial. Lancet 395, 1496–1505 (2020).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Mease, P. J. et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 370, 2295–2306 (2014).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Mease, P. J. et al. Brodalumab in psoriatic arthritis: results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann. Rheum. Dis. 80, 185–193 (2021).

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Ritchlin, C. T. et al. Bimekizumab in patients with active psoriatic arthritis: results from a 48-week, randomised, double-blind, placebo-controlled, dose-ranging phase 2b trial. Lancet 395, 427–440 (2020).

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Bachelez, H. Interleukin 23 inhibitors for psoriasis: not just another number. Lancet 390, 208–210 (2017).

    PubMed  Article  Google Scholar 

  127. 127.

    Deodhar, A. et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 395, 1115–1125 2020).

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Mease, P. J. et al. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 395, 1126–1136 (2020).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    McInnes, I. B. et al. Efficacy and safety of guselkumab, an interleukin-23p19-specific monoclonal antibody, through one year in biologic-naive patients with psoriatic arthritis. Arthritis Rheumatol. 73, 604–616 (2021).

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Mease, P. Ustekinumab fails to show efficacy in a phase III axial spondyloarthritis program: the importance of negative results. Arthritis Rheumatol. 71, 179–181 (2019).

    PubMed  Article  Google Scholar 

  131. 131.

    Mease, P. Efficacy and safety of risankizumab, a selective il-23p19 inhibitor, in patients with active psoriatic arthritis over 24 weeks: results from a phase 2 trial. Ann. Rheum. Dis. 77, 200–201 (2018).

    Google Scholar 

  132. 132.

    Mease, P. J. et al. Efficacy and safety of tildrakizumab in patients with active psoriatic arthritis: results of a randomised, double-blind, placebo-controlled, multiple-dose, 52-week phase IIb study. Ann. Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-219014 (2021).

    Article  PubMed  Google Scholar 

  133. 133.

    Mease, P. J. et al. Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann. Rheum. Dis. 76, 1550–1558 (2017).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Kavanaugh, A. et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann. Rheum. Dis. 73, 1020–1026 (2014).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Cutolo, M. et al. A phase III, randomized, controlled trial of apremilast in patients with psoriatic arthritis: results of the PALACE 2 trial. J. Rheumatol. 43, 1724–1734 (2016).

    PubMed  Article  Google Scholar 

  136. 136.

    Edwards, C. J. et al. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with psoriatic arthritis and current skin involvement: a phase III, randomised, controlled trial (PALACE 3). Ann. Rheum. Dis. 75, 1065–1073 (2016).

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Mease, P. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377, 1537–1550 (2017).

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Gladman, D. et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N. Engl. J. Med. 377, 1525–1536 (2017).

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Mease, P. et al. Incidence of venous and arterial thromboembolic events reported in the tofacitinib rheumatoid arthritis, psoriasis and psoriatic arthritis development programmes and from real-world data. Ann. Rheum. Dis. 79, 1400–1413 (2020).

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Mease, P. J. et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann. Rheum. Dis. 80, 312–320 (2020).

    Article  CAS  Google Scholar 

  141. 141.

    Mease, P. et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392, 2367–2377 (2018).

    CAS  Article  Google Scholar 

  142. 142.

    Papp, K. et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N. Engl. J. Med. 379, 1313–1321 (2018).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Mease P. J., et al. Efficacy and safety of deucravacitinib (BMS-986165), an oral, selective tyrosine kinase 2 inhibitor, in patients with active psoriatic arthritis: results from a phase 2, randomized, double-blind, placebo-controlled trial [abstract]. Arthritis Rheumatol. 72 (Suppl. 10), L03 (2020).

    Google Scholar 

  144. 144.

    Coates, L. C. et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheumatol. 68, 1060–1071 (2016).

    Google Scholar 

  145. 145.

    Gossec, L. et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann. Rheum. Dis. 79, 700–712 (2020).

    PubMed  Google Scholar 

  146. 146.

    Singh, J. A. et al. Special article: 2018 American College of Rheumatology/National Psoriasis Foundation guideline for the treatment of psoriatic arthritis. Arthritis Rheumatol. 71, 5–32 (2019).

    PubMed  Article  Google Scholar 

  147. 147.

    Husted, J. A., Gladman, D. D., Farewell, V. T. & Cook, R. J. Health-related quality of life of patients with psoriatic arthritis: a comparison with patients with rheumatoid arthritis. Arthritis Rheum. 45, 151–158 (2001).

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Moverley, A. R., Vinall-Collier, K. A. & Helliwell, P. S. It’s not just the joints, it’s the whole thing: qualitative analysis of patients’ experience of flare in psoriatic arthritis. Rheumatology 54, 1448–1453 (2015).

    PubMed  Article  Google Scholar 

  149. 149.

    Gossec, L. et al. A patient-derived and patient-reported outcome measure for assessing psoriatic arthritis: elaboration and preliminary validation of the psoriatic arthritis impact of disease (PsAID) questionnaire, a 13-country EULAR initiative. Ann. Rheum. Dis. 73, 1012–1019 (2014).

    PubMed  Article  Google Scholar 

  150. 150.

    Tillett, W. et al. A multicentre nominal group study to rank outcomes important to patients and their representation in existing composite outcome measures for psoriatic arthritis. J. Rheumatol. 44, 1445–1452 (2017).

    PubMed  Article  Google Scholar 

  151. 151.

    Geijer, M. et al. Health-related quality of life in early psoriatic arthritis compared with early rheumatoid arthritis and a general population. Semin. Arthritis Rheum. 51, 246–252 (2021).

    PubMed  Article  Google Scholar 

  152. 152.

    Orbai, A.-M. et al. International patient and physician consensus on a psoriatic arthritis core outcome set for clinical trials. Ann. Rheum. Dis. 76, 673–680 (2017).

    PubMed  Article  Google Scholar 

  153. 153.

    Ware, J. E. Jr & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

    PubMed  Article  Google Scholar 

  154. 154.

    Nord, E. EuroQol: health-related quality of life measurement. Valuations of health states by the general public in Norway. Health Policy 18, 25–36 (1991).

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    McKenna, S. P. et al. Development of the PsAQoL: a quality of life instrument specific to psoriatic arthritis. Ann. Rheum. Dis. 63, 162–169 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Holland, R. et al. Psoriatic arthritis impact of disease (PsAID12) was provisionally endorsed at Omeract 2018 as core instrument to measure psoriatic arthritis-specific health-related quality of life in randomized controlled trials and longitudinal observational studies. J. Rheumatol. 46, 990–995 (2019).

    PubMed  Article  Google Scholar 

  157. 157.

    Coates, L. C. et al. Results of a global, patient-based survey assessing the impact of psoriatic arthritis discussed in the context of the Psoriatic Arthritis Impact of Disease (PsAID) questionnaire. Health Qual. Life Outcomes 18, 173 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Tillett, W. et al. Disease characteristics and the burden of joint and skin involvement amongst people with psoriatic arthritis: a population survey. Rheumatol. Ther. 7, 617–637 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Kavanaugh, A. et al. The contribution of joint and skin improvements to the health-related quality of life of patients with psoriatic arthritis: a post hoc analysis of two randomised controlled studies. Ann. Rheum. Dis. 78, 1215–1219 (2019).

    PubMed  Article  Google Scholar 

  160. 160.

    McHugh, N. et al. Evaluation of the economic burden of psoriatic arthritis and the relationship between functional status and healthcare costs. J. Rheumatol. 47, 701–707 (2020).

    PubMed  Article  Google Scholar 

  161. 161.

    Thomsen, S. F., Skov, L., Dodge, R., Hedegaard, M. S. & Kjellberg, J. Socioeconomic costs and health inequalities from psoriasis: a cohort study. Dermatology 235, 372–379 (2019).

    PubMed  Article  Google Scholar 

  162. 162.

    Husni, M. E., Merola, J. F. & Davin, S. The psychosocial burden of psoriatic arthritis. Semin. Arthritis Rheum. 47, 351–360 (2017).

    PubMed  Article  Google Scholar 

  163. 163.

    Tillett, W. et al. Factors influencing work disability in psoriatic arthritis: first results from a large UK multicentre study. Rheumatology 54, 157–162 (2015).

    PubMed  Article  Google Scholar 

  164. 164.

    Tillett, W., de-Vries, C. & McHugh, N. J. Work disability in psoriatic arthritis: a systematic review. Rheumatology 46, 990–995 (2012).

    Google Scholar 

  165. 165.

    Tillett, W. et al. Effect of anti-TNF and conventional synthetic disease-modifying anti-rheumatic drug treatment on work disability and clinical outcome in a multicentre observational cohort study of psoriatic arthritis. Rheumatol 56, 603–612 (2017).

    Google Scholar 

  166. 166.

    Kristensen, L. E. et al. Societal costs and patients’ experience of health inequities before and after diagnosis of psoriatic arthritis: a Danish cohort study. Ann. Rheum. Dis. 76, 1495–1501 (2017).

    PubMed  Article  Google Scholar 

  167. 167.

    Conaghan, P. G. et al. Relationship of pain and fatigue with health-related quality of life and work in patients with psoriatic arthritis on TNFi: results of a multi-national real-world study. RMD Open 6, e001240 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Walsh, J. A. et al. Work productivity loss and fatigue in psoriatic arthritis. J. Rheumatol. 41, 1670–1674 (2014).

    PubMed  Article  Google Scholar 

  169. 169.

    Tan, J. S. Q., Fong, W., Kwan, Y. H. & Leung, Y. Y. Prevalence and variables associated with fatigue in psoriatic arthritis: a cross-sectional study. Rheumatol. Int. 40, 1825–1834 (2020).

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Zhao, S. S. et al. Systematic review of mental health comorbidities in psoriatic arthritis. Clin. Rheumatol. 39, 217–225 (2020).

    PubMed  Article  Google Scholar 

  171. 171.

    Visalli, E., Crispino, N. & Foti, R. Multidisciplinary management of psoriatic arthritis: the benefits of a comprehensive approach. Adv. Ther. 36, 806–816 (2019).

    PubMed  Article  Google Scholar 

  172. 172.

    Cobo-Ibanez, T. et al. Multidisciplinary dermatology-rheumatology management for patients with moderate-to-severe psoriasis and psoriatic arthritis: a systematic review. Rheumatol. Int. 36, 221–229 (2016).

    PubMed  Article  Google Scholar 

  173. 173.

    Soare, A. et al. Cutting edge: homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J. Immunol. 200, 1249–1254 (2018).

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Kaeley, G. S., Bakewell, C. & Deodhar, A. The importance of ultrasound in identifying and differentiating patients with early inflammatory arthritis: a narrative review. Arthritis Res. Ther. 22, 1 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Kampylafka, E. et al. Disease interception with interleukin-17 inhibition in high-risk psoriasis patients with subclinical joint inflammation – data from the prospective IVEPSA study. Arthritis Res. Ther. 21, 178 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  176. 176.

    Feld, J. Is axial psoriatic arthritis distinct from ankylosing spondylitis with and without concomitant psoriasis? Rheumatology 59, 1340–1346 (2019).

    Article  Google Scholar 

  177. 177.

    Ritchlin, C. & Scher, J. U. Strategies to improve outcomes in psoriatic arthritis. Curr. Rheumatol. Rep. 21, 72 (2019).

    PubMed  Article  Google Scholar 

  178. 178.

    Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    CAS  PubMed  Article  Google Scholar 

  179. 179.

    Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Haberman, R. H., Castillo, R. & Scher, J. U. Induction of remission in biologic-naive, severe psoriasis and PsA with dual anti-cytokine combination. Rheumatology 60, e225–e226 (2021).

    PubMed  Article  Google Scholar 

  181. 181.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03662542 (2021). A study of the efficacy and safety of combination therapy with guselkumab and golimumab in participants with moderately to severely active ulcerative colitis (VEGA).

  182. 182.

    Goldman, M. The innovative medicines initiative: a European response to the innovation challenge. Clin. Pharmacol. Ther. 91, 418–425 (2012).

    CAS  PubMed  Article  Google Scholar 

  183. 183.

    Dolgin, E. Massive NIH–industry project opens portals to target validation. Nat. Rev. Drug Discov. 18, 240–242 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.C. acknowledges support of the Pfizer Chair Rheumatology Research Award from the Department of Medicine, University of Toronto. L.C.C. is an NIHR Clinician Scientist funded by a National Institute for Health Research Clinician Scientist award. The research was supported by the National Institute for Health Research (NIHR) and the Oxford Biomedical Research Centre (BRC). Y.Y.L. is supported by National Medical Research Council, Singapore.

Author information

Affiliations

Authors

Contributions

Introduction (O.F. and P.J.M.); Epidemiology (A.O.); Mechanisms/pathophysiology (O.F. and V.C.); Diagnosis, screening and prevention (L.C.C.); Management (P.J.M. and A.K.); Quality of life (W.T., Y.Y.L. and M.deW.); Outlook (J.U.S.); Overview of Primer (O.F.).

Corresponding author

Correspondence to Oliver FitzGerald.

Ethics declarations

Competing interests

O.F. has received research grants and/or consulting fees from AbbVie, Amgen, Bristol Myers Squibb (BMS), Celgene, Eli Lilly, Janssen, Novartis, Pfizer Inc. and UCB. A.O. has consulted for AbbVie, Amgen, BMS, Celgene, Corrona, Gilead, Janssen, Lilly, Novartis, Pfizer and UCB, and has received grants from Novartis and Pfizer. Her husband has received royalties from Novartis. V.C. reports grants and personal fees from Amgen, grants and personal fees from AbbVie, grants and personal fees from (and other potential interest (spouse employment) in) Eli Lilly and personal fees from BMS, Janssen, Novartis, Pfizer and UCB, outside the submitted work. L.C.C. is a recipient of research funds from AbbVie, Amgen, Celgene, Gilead, Janssen, Lilly, Novartis, Pfizer and UCB. She has received consultancy fees from AbbVie, Amgen, BMS, Boehringer Ingelheim, Celgene, Domain, Gilead, Janssen, Lilly, Novartis, Pfizer, Serac and UCB. She reports reimbursement for attending a symposium from Janssen and AbbVie, and fees for organizing education from UCB. She has received fees for speaking and hospitality from AbbVie, Amgen, BMS, Biogen, Celgene, Galapagos, Gilead, Janssen, Lilly, Novartis, Pfizer and UCB. A.K. conducted clinical trials sponsored by and/or consulted for Amgen, AbbVie, BMS, Eli Lilly, Janssen, Novartis, Pfizer and UCB. W.T. has received research grants, and consulting or speaker fees from AbbVie, Amgen, Celgene, Eli Lilly, Janssen, MSD, Novartis, Pfizer and UCB. Y.Y.L. is supported by the National Medical Research Council, Singapore. She has received honoraria from Janssen, AbbVie, Novartis and DKSH. M.deW. has received fees for lectures or consultancy through Stichting Tools from Celgene, Eli Lilly, Pfizer and UCB. J.U.S. has received funding for investigator-initiated studies from Novartis and Janssen and has served as a consultant for Janssen, Novartis, Pfizer, Lilly, AbbVie, Sanofi and UCB. P. J. M. has received research grants from AbbVie, Amgen, BMS, Eli Lilly, Galapagos, Gilead, Janssen, Novartis, Pfizer, Sun and UCB. He acts as a consultant with AbbVie, Amgen, Boehringer Ingelheim, BMS, Eli Lilly, Galapagos, Gilead, GSK, Janssen, Novartis, Pfizer, Sun and UCB. He has been a speaker for AbbVie, Amgen, Eli Lilly, Janssen, Novartis, Pfizer and UCB.

Additional information

Disclaimer

The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Peer review information

Nature Reviews Disease Primers thanks U. Kiltz, who co-reviewed with A. Dormann; A.-M. Orbai; D. Zisman; U. Kalyoncu; and S.Z. Aydin for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Psoriasis

Psoriasis is a skin disease that causes itchy, scaly patches commonly on the extensor aspects of the knees and elbows and in the scalp.

Entheses

The enthesis is the site of attachment of ligament to bone.

Rheumatoid factor

Rheumatoid factor is an anti-immunoglobulin antibody found commonly in patients with rheumatoid arthritis.

Anti-cyclic citrullinated peptide

This peptide is an antibody found commonly in patients with rheumatoid arthritis.

Uveitis

Uveitis is inflammation of the uveal tract of the eye.

Sacroiliitis

Inflammation of the sacroiliac joints

Synovitis

Synovitis is inflammation of the synovial tissue, which is normally a thin layer of tissue lining the inside of joints.

Joint erythema

Joint erythema is one of the features of an inflamed joint or arthritis when the joint is red in appearance.

Dactylitis

Dactylitis is sausage-like swelling of a finger or toe.

PEST questionnaire

A questionnaire designed to screen for psoriatic arthritis in patients with psoriasis.

Treatment to target of remission

Treatment to target of remission is where treatment is escalated according to patient response until a target of remission has been achieved.

BASDAI question 2

A questionnaire commonly used to assess disease activity in patients with ankylosing spondylitis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

FitzGerald, O., Ogdie, A., Chandran, V. et al. Psoriatic arthritis. Nat Rev Dis Primers 7, 59 (2021). https://doi.org/10.1038/s41572-021-00293-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing