Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Ehlers–Danlos syndromes

Subjects

Abstract

The Ehlers–Danlos syndromes (EDS) are a heterogeneous group of hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing and easy bruising. Fourteen different types of EDS are recognized, of which the molecular cause is known for 13 types. These types are caused by variants in 20 different genes, the majority of which encode the fibrillar collagen types I, III and V, modifying or processing enzymes for those proteins, and enzymes that can modify glycosaminoglycan chains of proteoglycans. For the hypermobile type of EDS, the molecular underpinnings remain unknown. As connective tissue is ubiquitously distributed throughout the body, manifestations of the different types of EDS are present, to varying degrees, in virtually every organ system. This can make these disorders particularly challenging to diagnose and manage. Management consists of a care team responsible for surveillance of major and organ-specific complications (for example, arterial aneurysm and dissection), integrated physical medicine and rehabilitation. No specific medical or genetic therapies are available for any type of EDS.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: General structure of fibrillar type I collagen.
Fig. 2: Collagen fibrillogenesis in the context of Ehlers–Danlos syndromes.
Fig. 3: Biosynthetic pathway of CS/DS and HS/heparin proteoglycans.
Fig. 4: Clinical presentations of Ehlers–Danlos syndromes.
Fig. 5: Clinical skin features associated with Ehlers–Danlos syndromes.
Fig. 6: The Beighton scale.

References

  1. Ehlers, E. Cutis laxa, neigung zu haemorrhagien in der haut, lockerung meherer artikulationen [German]. Dermatol. Z. 8, 173–174 (1901).

    Google Scholar 

  2. Danlos, M. Un cas de cutis laxa avec tumeurs par contusion chronique des coudes et des genoux (xanthome juvénile pseudo-diabétique de MM. Hallopeau et Macé de Lépinay) [French]. Bull. Soc. Fr. Dermatol. Syphiligr. 19, 70–72 (1908).

    Google Scholar 

  3. Chernogubow, A. N. Uber einen Fall von Cutis Laxa [German]. Jahresber. Ges. Med. 27, 562 (1892).

    Google Scholar 

  4. Weber, F. P. Ehlers–Danlos syndrome. Proc. R. Soc. Med. 30, 30–31 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Beighton, P. et al. International nosology of heritable disorders of connective tissue, Berlin, 1986. Am. J. Med. Genet. 29, 581–594 (1988).

    CAS  PubMed  Google Scholar 

  6. Beighton, P., De Paepe, A., Steinmann, B., Tsipouras, P. & Wenstrup, R. J. Ehlers–Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers–Danlos National Foundation (USA) and Ehlers–Danlos support group (UK). Am. J. Med. Genet. 77, 31–37 (1998).

    CAS  PubMed  Google Scholar 

  7. Malfait, F. et al. The 2017 international classification of the Ehlers–Danlos syndromes. Am. J. Med. Genet. Part. C, Semin. Med. Genetics 175, 8–26 (2017). This paper presents the 2017 revised classification of EDS with major and minor clinical diagnostic criteria and strategies for molecular testing.

    Google Scholar 

  8. Blackburn, P. R. et al. Bi-allelic alterations in AEBP1 lead to defective collagen assembly and connective tissue structure resulting in a variant of Ehlers–Danlos syndrome. Am. J. Hum. Genet. 102, 696–705 (2018). This paper adds a 14th type of EDS to the EDS classification by delineating a novel EDS type caused by genetic defects in AEBP1, thereby expanding the list of EDS-associated genes to 20.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Steinmann, B., Royce, P. M. & Superti-Furga, A. in Connective Tissue and its Heritable Disorders (eds Royce, P. M. & Steinmann, B.) 431−523 (Wiley-Liss, 2002). This is a very comprehensive, detailed and accurate book on the biochemistry, genetics, clinics and pathology of connective tissue, including a chapter on EDS.

  10. Pepin, M. G. et al. Survival is affected by mutation type and molecular mechanism in vascular Ehlers–Danlos syndrome (EDS type IV). Genet. Med. 16, 881–888 (2014). The largest retrospective review of clinical and molecular data of >1,200 patients with vEDS provides insights into the natural history of vEDS and genotype–phenotype correlations.

    CAS  PubMed  Google Scholar 

  11. Symoens, S. et al. Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum. Mutat. 33, 1485–1493 (2012).

    CAS  PubMed  Google Scholar 

  12. Brady, A. F. et al. The Ehlers–Danlos syndromes, rare types. Am. J. Med. Genet. C Semin. Med. Genet. 175, 70–115 (2017).

    PubMed  Google Scholar 

  13. Byers, P. H. et al. Diagnosis, natural history, and management in vascular Ehlers–Danlos syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 175, 40–47 (2017).

    PubMed  Google Scholar 

  14. Rare Disease Day. What is a rare disease? Rare Disease Day https://www.rarediseaseday.org/article/what-is-a-rare-disease (2020).

  15. Grahame, R., Bird, H. A. & Child, A. The revised (Brighton 1998) criteria for the diagnosis of benign joint hypermobility syndrome (BJHS). J. Rheumatol. 27, 1777–1779 (2000).

    CAS  PubMed  Google Scholar 

  16. Tinkle, B. T. et al. The lack of clinical distinction between the hypermobility type of Ehlers–Danlos syndrome and the joint hypermobility syndrome (a.k.a. hypermobility syndrome). Am. J. Med. Genet. A 149A, 2368–2370 (2009).

    PubMed  Google Scholar 

  17. Hakim, A. J. & Sahota, A. Joint hypermobility and skin elasticity: the hereditary disorders of connective tissue. Clin. Dermatol. 24, 521–533 (2006).

    PubMed  Google Scholar 

  18. Tinkle, B. et al. Hypermobile Ehlers–Danlos syndrome (a.k.a. Ehlers–Danlos syndrome type III and Ehlers–Danlos syndrome hypermobility type): clinical description and natural history. Am. J. Med. Genet. C Semin. Med. Genet. 175, 48–69 (2017).

    PubMed  Google Scholar 

  19. Castori, M. et al. A framework for the classification of joint hypermobility and related conditions. Am. J. Med. Genet. C Semin. Med. Genet. 175, 148–157 (2017). This paper provides a simplified categorization of genetic syndromes featuring joint hypermobility and introduces the term ‘hypermobility spectrum disorders’.

    PubMed  Google Scholar 

  20. Burgeson, R. E., El Adli, F. A., Kaitila, I. I. & Hollister, D. W. Fetal membrane collagens: identification of two new collagen alpha chains. Proc. Natl Acad. Sci. USA 73, 2579–2583 (1976).

    CAS  PubMed  Google Scholar 

  21. Gay, S., Rhodes, R. K., Gay, R. E. & Miller, E. J. Collagen molecules comprised of alpha 1(V)-chains (B-chains): an apparent localization in the exocytoskeleton. Coll. Relat. Res. 1, 53–58 (1981).

    CAS  PubMed  Google Scholar 

  22. Imamura, Y., Scott, I. C. & Greenspan, D. S. The pro-alpha3(V) collagen chain. Complete primary structure, expression domains in adult and developing tissues, and comparison to the structures and expression domains of the other types V and XI procollagen chains. J. Biol. Chem. 275, 8749–8759 (2000).

    CAS  PubMed  Google Scholar 

  23. Birk, D. E. Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32, 223–237 (2001).

    CAS  PubMed  Google Scholar 

  24. Birk, D. E., Fitch, J. M., Babiarz, J. P. & Linsenmayer, T. F. Collagen type I and type V are present in the same fibril in the avian corneal stroma. J. Cell Biol. 106, 999–1008 (1988).

    CAS  PubMed  Google Scholar 

  25. Wenstrup, R. J., Florer, J. B., Cole, W. G., Willing, M. C. & Birk, D. E. Reduced type I collagen utilization: a pathogenic mechanism in COL5A1 haplo-insufficient Ehlers–Danlos syndrome. J. Cell. Biochem. 92, 113–124 (2004).

    CAS  PubMed  Google Scholar 

  26. Wenstrup, R. J. et al. Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 279, 53331–53337 (2004).

    CAS  PubMed  Google Scholar 

  27. Emanuel, B. S., Cannizzaro, L. A., Seyer, J. M. & Myers, J. C. Human alpha 1(III) and alpha 2(V) procollagen genes are located on the long arm of chromosome 2. Proc. Natl Acad. Sci. USA 82, 3385–3389 (1985).

    CAS  PubMed  Google Scholar 

  28. Gelse, K., Poschl, E. & Aigner, T. Collagens — structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    CAS  PubMed  Google Scholar 

  29. Keene, D. R., Sakai, L. Y., Bachinger, H. P. & Burgeson, R. E. Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J. Cell Biol. 105, 2393–2402 (1987).

    CAS  PubMed  Google Scholar 

  30. Romanic, A. M., Adachi, E., Kadler, K. E., Hojima, Y. & Prockop, D. J. Copolymerization of pNcollagen III and collagen I. pNcollagen III decreases the rate of incorporation of collagen I into fibrils, the amount of collagen I incorporated, and the diameter of the fibrils formed. J. Biol. Chem. 266, 12703–12709 (1991).

    CAS  PubMed  Google Scholar 

  31. Liu, X., Wu, H., Byrne, M., Krane, S. & Jaenisch, R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl Acad. Sci. USA 94, 1852–1856 (1997).

    CAS  PubMed  Google Scholar 

  32. D’Hondt, S. et al. Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biol. 70, 72–83 (2018).

    PubMed  Google Scholar 

  33. Marini, J. C. et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 3, 17052 (2017).

    PubMed  Google Scholar 

  34. Schwarze, U., Atkinson, M., Hoffman, G. G., Greenspan, D. S. & Byers, P. H. Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers–Danlos syndrome (types I and II). Am. J. Hum. Genet. 66, 1757–1765 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wenstrup, R. J. et al. COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am. J. Hum. Genet. 66, 1766–1776 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Malfait, F. & De Paepe, A. Molecular genetics in classic Ehlers–Danlos syndrome. Am. J. Med. Genet. C Semin. Med Genet. 139C, 17–23 (2005).

    CAS  PubMed  Google Scholar 

  37. Ritelli, M. et al. Clinical and molecular characterization of 40 patients with classic Ehlers–Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J. Rare Dis. 8, 58 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Wenstrup, R. J. et al. Murine model of the Ehlers–Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J. Biol. Chem. 281, 12888–12895 (2006).

    CAS  PubMed  Google Scholar 

  39. Chanut-Delalande, H. et al. Development of a functional skin matrix requires deposition of collagen V heterotrimers. Mol. Cell Biol. 24, 6049–6057 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowen, J. M. et al. Ehlers–Danlos syndrome, classical type. Am. J. Med. Genet. C Semin. Med. Genet. 175, 27–39 (2017).

    PubMed  Google Scholar 

  41. Symoens, S. et al. COL5A1 signal peptide mutations interfere with protein secretion and cause classic Ehlers–Danlos syndrome. Hum. Mutat. 30, E395–E403 (2009).

    PubMed  Google Scholar 

  42. Wenstrup, R. J., Langland, G. T., Willing, M. C., D’Souza, V. N. & Cole, W. G. A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro alpha 1(V) chains results in the gravis form of the Ehlers–Danlos syndrome (type I). Hum. Mol. Genet. 5, 1733–1736 (1996).

    CAS  PubMed  Google Scholar 

  43. De Paepe, A., Nuytinck, L., Hausser, I., Anton-Lamprecht, I. & Naeyaert, J. M. Mutations in the COL5A1 gene are causal in the Ehlers–Danlos syndromes I and II. Am. J. Hum. Genet. 60, 547–554 (1997).

    PubMed  PubMed Central  Google Scholar 

  44. Zoppi, N., Gardella, R., De Paepe, A., Barlati, S. & Colombi, M. Human fibroblasts with mutations in COL5A1 and COL3A1 genes do not organize collagens and fibronectin in the extracellular matrix, down-regulate alpha2beta1 integrin, and recruit alphavbeta3 instead of alpha5beta1 integrin. J. Biol. Chem. 279, 18157–18168 (2004).

    CAS  PubMed  Google Scholar 

  45. Viglio, S. et al. Rescue of migratory defects of Ehlers–Danlos syndrome fibroblasts in vitro by type V collagen but not insulin-like binding protein-1. J. Investig. Dermatol. 128, 1915–1919 (2008).

    CAS  PubMed  Google Scholar 

  46. Chiarelli, N., Carini, G., Zoppi, N., Ritelli, M. & Colombi, M. Molecular insights in the pathogenesis of classical Ehlers–Danlos syndrome from transcriptome-wide expression profiling of patients’ skin fibroblasts. PLoS One 14, e0211647 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chiarelli, N., Ritelli, M., Zoppi, N. & Colombi, M. Cellular and molecular mechanisms in the pathogenesis of classical, vascular, and hypermobile Ehlers–Danlos syndromes. Genes 10, 609 (2019).

    CAS  PubMed Central  Google Scholar 

  48. Vogel, A., Holbrook, K. A., Steinmann, B., Gitzelmann, R. & Byers, P. H. Abnormal collagen fibril structure in the gravis form (type I) of Ehlers–Danlos syndrome. Lab. Invest. 40, 201–206 (1979).

    CAS  PubMed  Google Scholar 

  49. Hausser, I. & Anton-Lamprecht, I. Differential ultrastructural aberrations of collagen fibrils in Ehlers–Danlos syndrome types I–IV as a means of diagnostics and classification. Hum. Genet. 93, 394–407 (1994).

    CAS  PubMed  Google Scholar 

  50. Kirschner, J. et al. Ullrich congenital muscular dystrophy: connective tissue abnormalities in the skin support overlap with Ehlers–Danlos syndromes. Am. J. Med. Genet. A 132A, 296–301 (2005).

    PubMed  Google Scholar 

  51. Holbrook, K. A. & Byers, P. H. Structural abnormalities in the dermal collagen and elastic matrix from the skin of patients with inherited connective tissue disorders. J. Invest. Dermatol. 79, 7s–16s (1982).

    PubMed  Google Scholar 

  52. Byers, P. H., Holbrook, K. A., Barsh, G. S., Smith, L. T. & Bornstein, P. Altered secretion of type III procollagen in a form of type IV Ehlers–Danlos syndrome. Biochemical studies in cultured fibroblasts. Lab. Invest. 44, 336–341 (1981).

    CAS  PubMed  Google Scholar 

  53. Schwarze, U. et al. Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers–Danlos syndrome, Ehlers–Danlos syndrome type IV. Am. J. Hum. Genet. 69, 989–1001 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Frank, M. et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers–Danlos syndrome. Eur. J. Hum. Genet. 23, 1657–1664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghali, N. et al. Atypical COL3A1 variants (glutamic acid to lysine) cause vascular Ehlers–Danlos syndrome with a consistent phenotype of tissue fragility and skin hyperextensibility. Genet. Med. 21, 2081–2091 (2019).

    CAS  PubMed  Google Scholar 

  56. Jorgensen, A. et al. Vascular Ehlers–Danlos syndrome in siblings with biallelic COL3A1 sequence variants and marked clinical variability in the extended family. Eur. J. Hum. Genet. 23, 796–802 (2015).

    PubMed  Google Scholar 

  57. Plancke, A. et al. Homozygosity for a null allele of COL3A1 results in recessive Ehlers–Danlos syndrome. Eur. J. Hum. Genet. 17, 1411–1416 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Horn, D. et al. Biallelic COL3A1 mutations result in a clinical spectrum of specific structural brain anomalies and connective tissue abnormalities. Am. J. Med. Genet. A 173, 2534–2538 (2017).

    CAS  PubMed  Google Scholar 

  59. Vandervore, L. et al. Bi-allelic variants in COL3A1 encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts. J. Med. Genet. 54, 432–440 (2017).

    CAS  PubMed  Google Scholar 

  60. Loeys, B. L. et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N. Engl. J. Med. 355, 788–798 (2006).

    CAS  PubMed  Google Scholar 

  61. Chiarelli, N., Carini, G., Zoppi, N., Ritelli, M. & Colombi, M. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers–Danlos syndrome. PLoS One 13, e0191220 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Holbrook, K. A. & Byers, P. H. Ultrastructural characteristics of the skin in a form of the Ehlers–Danlos syndrome type IV. Storage in the rough endoplasmic reticulum. Lab. Invest. 44, 342–350 (1981).

    CAS  PubMed  Google Scholar 

  63. Smith, L. T., Schwarze, U., Goldstein, J. & Byers, P. H. Mutations in the COL3A1 gene result in the Ehlers–Danlos syndrome type IV and alterations in the size and distribution of the major collagen fibrils of the dermis. J. Investig. Dermatol. 108, 241–247 (1997).

    CAS  PubMed  Google Scholar 

  64. Byers, P. H. et al. Ehlers–Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am. J. Med. Genet. 72, 94–105 (1997).

    CAS  PubMed  Google Scholar 

  65. Chiodo, A. A., Hockey, A. & Cole, W. G. A base substitution at the splice acceptor site of intron 5 of the COL1A2 gene activates a cryptic splice site within exon 6 and generates abnormal type I procollagen in a patient with Ehlers–Danlos syndrome type VII. J. Biol. Chem. 267, 6361–6369 (1992).

    CAS  PubMed  Google Scholar 

  66. Colige, A. et al. Human Ehlers–Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am. J. Hum. Genet. 65, 308–317 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi, L. et al. Comprehensive population screening in the Ashkenazi Jewish population for recurrent disease-causing variants. Clin. Genet. 91, 599–604 (2017).

    CAS  PubMed  Google Scholar 

  68. Van Damme, T. et al. Expanding the clinical and mutational spectrum of the Ehlers–Danlos syndrome, dermatosparaxis type. Genet. Med. 18, 882–891 (2016).

    PubMed  Google Scholar 

  69. Fernandes, R. J. et al. Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J. Biol. Chem. 276, 31502–31509 (2001).

    CAS  PubMed  Google Scholar 

  70. Colige, A. et al. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J. Biol. Chem. 277, 5756–5766 (2002).

    CAS  PubMed  Google Scholar 

  71. Smith, L. T. et al. Human dermatosparaxis: a form of Ehlers–Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am. J. Hum. Genet. 51, 235–244 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nusgens, B. V. et al. Evidence for a relationship between Ehlers–Danlos type VII C in humans and bovine dermatosparaxis. Nat. Genet. 1, 214–217 (1992).

    CAS  PubMed  Google Scholar 

  73. Le Goff, C. et al. Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133, 1587–1596 (2006).

    PubMed  Google Scholar 

  74. Colige, A. et al. Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I–III and V. J. Biol. Chem. 280, 34397–34408 (2005).

    CAS  PubMed  Google Scholar 

  75. Schwarze, U. et al. Rare autosomal recessive cardiac valvular form of Ehlers–Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am. J. Hum. Genet. 74, 917–930 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Malfait, F. et al. Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers–Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J. Med. Genet. 43, e36 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sasaki, T. et al. Ehlers–Danlos syndrome. A variant characterized by the deficiency of pro alpha 2 chain of type I procollagen. Arch. Dermatol. 123, 76–79 (1987).

    CAS  PubMed  Google Scholar 

  78. Kojima, T., Shinkai, H., Fujita, M., Morita, E. & Okamoto, S. Case report and study of collagen metabolism in Ehlers–Danlos syndrome type II. J. Dermatol. 15, 155–160 (1988).

    CAS  PubMed  Google Scholar 

  79. Guarnieri, V. et al. Cardiac valvular Ehlers–Danlos syndrome is a well-defined condition due to recessive null variants in COL1A2. Am. J. Med. Genet. A 179, 846–851 (2019).

    CAS  PubMed  Google Scholar 

  80. Nicholls, A. C. et al. The clinical features of homozygous alpha 2(I) collagen deficient osteogenesis imperfecta. J. Med. Genet. 21, 257–262 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pihlajaniemi, T. et al. Osteogenesis imperfecta: cloning of a pro-alpha 2(I) collagen gene with a frameshift mutation. J. Biol. Chem. 259, 12941–12944 (1984).

    CAS  PubMed  Google Scholar 

  82. Byers, P. H. & Murray, M. L. Ehlers–Danlos syndrome: a showcase of conditions that lead to understanding matrix biology. Matrix Biol. 33, 10–15 (2014).

    CAS  PubMed  Google Scholar 

  83. Malfait, F. et al. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers–Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum. Mutat. 28, 387–395 (2007).

    CAS  PubMed  Google Scholar 

  84. Adham, S. et al. Classical Ehlers–Danlos syndrome with a propensity to arterial events: a new report on a French family with a COL1A1 p.(Arg312Cys) variant. Clin. Genet. 97, 357–361 (2019).

    PubMed  Google Scholar 

  85. Cabral, W. A. et al. Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers–Danlos syndrome phenotype. Hum. Mutat. 28, 396–405 (2007).

    CAS  PubMed  Google Scholar 

  86. Gaines, R. et al. Spontaneous ruptured dissection of the right common iliac artery in a patient with classic Ehlers–Danlos syndrome phenotype. Ann. Vasc. Surg. 29, 595.e11–595.e14 (2015).

    Google Scholar 

  87. Nuytinck, L. et al. Classical Ehlers–Danlos syndrome caused by a mutation in type I collagen. Am. J. Hum. Genet. 66, 1398–1402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Duong, J. et al. A family with classical Ehlers–Danlos syndrome (cEDS), mild bone fragility and without vascular complications, caused by the p.Arg312Cys mutation in COL1A1. Eur. J. Med. Genet. 63, 103730 (2019).

    Google Scholar 

  89. Colombi, M. et al. Delineation of Ehlers–Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: report on a three-generation family without cardiovascular events, and literature review. Am. J. Med. Genet. A 173, 524–530 (2017).

    CAS  PubMed  Google Scholar 

  90. Lund, A. et al. A novel arginine-to-cysteine substitution in the triple helical region of the alpha1(I) collagen chain in a family with an osteogenesis imperfecta/Ehlers–Danlos phenotype. Clin. Genet. 73, 97–101 (2008).

    CAS  PubMed  Google Scholar 

  91. Pinnell, S. R., Krane, S. M., Kenzora, J. E. & Glimcher, M. J. A heritable disorder of connective tissue. Hydroxylysine-deficient collagen disease. N. Engl. J. Med. 286, 1013–1020 (1972). This study presents the first heritable disorder of collagen biosynthesis in humans.

    CAS  PubMed  Google Scholar 

  92. Yeowell, H. N. & Walker, L. C. Mutations in the lysyl hydroxylase 1 gene that result in enzyme deficiency and the clinical phenotype of Ehlers–Danlos syndrome type VI. Mol. Genet. Metab. 71, 212–224 (2000).

    CAS  PubMed  Google Scholar 

  93. Yeowell, H. N. & Steinmann, B. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  94. Giunta, C., Randolph, A. & Steinmann, B. Mutation analysis of the PLOD1 gene: an efficient multistep approach to the molecular diagnosis of the kyphoscoliotic type of Ehlers–Danlos syndrome (EDS VIA). Mol. Genet. Metab. 86, 269–276 (2005).

    CAS  PubMed  Google Scholar 

  95. Baumann, M. et al. Mutations in FKBP14 cause a variant of Ehlers–Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am. J. Hum. Genet. 90, 201–216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Giunta, C. et al. A cohort of 17 patients with kyphoscoliotic Ehlers–Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history. Genet. Med. 20, 42–54 (2018).

    CAS  PubMed  Google Scholar 

  97. Dordoni, C. et al. Further delineation of FKBP14-related Ehlers–Danlos syndrome: a patient with early vascular complications and non-progressive kyphoscoliosis, and literature review. Am. J. Med. Genet. A 170, 2031–2038 (2016).

    CAS  PubMed  Google Scholar 

  98. Murray, M. L., Yang, M., Fauth, C. & Byers, P. H. FKBP14-related Ehlers–Danlos syndrome: expansion of the phenotype to include vascular complications. Am. J. Med. Genet. A 164A, 1750–1755 (2014).

    PubMed  Google Scholar 

  99. Boudko, S. P., Ishikawa, Y., Nix, J., Chapman, M. S. & Bachinger, H. P. Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs. Protein Sci. 23, 67–75 (2014).

    CAS  PubMed  Google Scholar 

  100. Ishikawa, Y., Mizuno, K. & Bachinger, H. P. Ziploc-ing the structure 2.0: endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline. J. Biol. Chem. 292, 9273–9282 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ishikawa, Y. & Bachinger, H. P. A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis. J. Biol. Chem. 289, 18189–18201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gjaltema, R. A., van der Stoel, M. M., Boersema, M. & Bank, R. A. Disentangling mechanisms involved in collagen pyridinoline cross-linking: the immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2. Proc. Natl Acad. Sci. USA 113, 7142–7147 (2016).

    CAS  PubMed  Google Scholar 

  103. Burch, G. H. et al. Tenascin-X Deficiency is associated with Ehlers–Danlos syndrome. Nat. Genet. 17, 104–108 (1997).

    CAS  PubMed  Google Scholar 

  104. Schalkwijk, J. et al. A recessive form of the Ehlers–Danlos syndrome caused by tenascin-X deficiency. N. Engl. J. Med. 345, 1167–1175 (2001).

    CAS  PubMed  Google Scholar 

  105. Narasimhan, M. L. & Khattab, A. Genetics of congenital adrenal hyperplasia and genotype-phenotype correlation. Fertil. Steril. 111, 24–29 (2019).

    CAS  PubMed  Google Scholar 

  106. Zweers, M. C. et al. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers–Danlos syndrome. Am. J. Hum. Genet. 73, 214–217 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zweers, M. C., Kucharekova, M. & Schalkwijk, J. Tenascin-X: a candidate gene for benign joint hypermobility syndrome and hypermobility type Ehlers–Danlos syndrome? Ann. Rheum. Dis. 64, 504–505 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hicks, D. et al. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Hum. Mol. Genet. 23, 2353–2363 (2014).

    CAS  PubMed  Google Scholar 

  109. Zou, Y. et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum. Mol. Genet. 23, 2339–2352 (2014).

    CAS  PubMed  Google Scholar 

  110. Delbaere, S. et al. Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers–Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix. Genet. Med. 22, 112–123 (2020).

    CAS  PubMed  Google Scholar 

  111. Veit, G. et al. Collagen XII interacts with avian tenascin-X through its NC3 domain. J. Biol. Chem. 281, 27461–27470 (2006).

    CAS  PubMed  Google Scholar 

  112. Valcourt, U., Alcaraz, L. B., Exposito, J. Y., Lethias, C. & Bartholin, L. Tenascin-X: beyond the architectural function. Cell Adhes. Migr. 9, 154–165 (2015).

    CAS  Google Scholar 

  113. Koch, M. et al. Large and small splice variants of collagen XII: differential expression and ligand binding. J. Cell Biol. 130, 1005–1014 (1995).

    CAS  PubMed  Google Scholar 

  114. Keene, D. R., Lunstrum, G. P., Morris, N. P., Stoddard, D. W. & Burgeson, R. E. Two type XII-like collagens localize to the surface of banded collagen fibrils. J. Cell Biol. 113, 971–978 (1991).

    CAS  PubMed  Google Scholar 

  115. Font, B., Eichenberger, D., Rosenberg, L. M. & van der Rest, M. Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin. Matrix Biol. 15, 341–348 (1996).

    CAS  PubMed  Google Scholar 

  116. Bristow, J., Carey, W., Egging, D. & Schalkwijk, J. Tenascin-X, collagen, elastin, and the Ehlers–Danlos syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 139C, 24–30 (2005).

    CAS  PubMed  Google Scholar 

  117. Hernandez, A. et al. A distinct variant of the Ehlers–Danlos syndrome. Clin. Genet. 16, 335–339 (1979).

    CAS  PubMed  Google Scholar 

  118. Hernandez, A. et al. Ehlers–Danlos features with progeroid facies and mild mental retardation. Further delineation of the syndrome. Clin. Genet. 30, 456–461 (1986).

    CAS  PubMed  Google Scholar 

  119. Hernandez, A., Aguirre-Negrete, M. G., Liparoli, J. C. & Cantu, J. M. Third case of a distinct variant of the Ehlers–Danlos syndrome (EDS). Clin. Genet. 20, 222–224 (1981).

    CAS  PubMed  Google Scholar 

  120. Kresse, H. et al. Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am. J. Hum. Genet. 41, 436–453 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Quentin, E., Gladen, A., Roden, L. & Kresse, H. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc. Natl Acad. Sci. USA 87, 1342–1346 (1990). This article is the first to link a genetic defect in GAG biosynthesis to EDS.

    CAS  PubMed  Google Scholar 

  122. Okajima, T., Fukumoto, S., Furukawa, K. & Urano, T. Molecular basis for the progeroid variant of Ehlers–Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J. Biol. Chem. 274, 28841–28844 (1999).

    CAS  PubMed  Google Scholar 

  123. Malfait, F. et al. Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers–Danlos-syndrome-like connective tissue disorder. Am. J. Hum. Genet. 92, 935–945 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nakajima, M. et al. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am. J. Hum. Genet. 92, 927–934 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Seidler, D. G. et al. Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers–Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7). J. Mol. Med. 84, 583–594 (2006).

    CAS  PubMed  Google Scholar 

  126. Van Damme, T. et al. Biallelic B3GALT6 mutations cause spondylodysplastic Ehlers–Danlos syndrome. Hum. Mol. Genet. 27, 3475–3487 (2018).

    PubMed  Google Scholar 

  127. Ritelli, M. et al. Insights in the etiopathology of galactosyltransferase II (GalT-II) deficiency from transcriptome-wide expression profiling of skin fibroblasts of two sisters with compound heterozygosity for two novel B3GALT6 mutations. Mol. Genet. Metab. Rep. 2, 1–15 (2015).

    CAS  PubMed  Google Scholar 

  128. Dündar, M. et al. Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. Am. J. Hum. Genet. 85, 873–882 (2009).

    PubMed  PubMed Central  Google Scholar 

  129. Müller, T. et al. Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers–Danlos syndrome. Hum. Mol. Genet. 22, 3761–3772 (2013).

    PubMed  Google Scholar 

  130. Miyake, N. et al. Loss-of-function mutations of CHST14 in a new type of Ehlers–Danlos syndrome. Hum. Mutat. 31, 966–974 (2010).

    CAS  PubMed  Google Scholar 

  131. Syx, D. et al. Genetic heterogeneity and clinical variability in musculocontractural Ehlers–Danlos syndrome caused by impaired dermatan sulfate biosynthesis. Hum. Mutat. 36, 535–547 (2015).

    CAS  PubMed  Google Scholar 

  132. Malfait, F. et al. Musculocontractural Ehlers–Danlos syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum. Mutat. 31, 1233–1239 (2010).

    CAS  PubMed  Google Scholar 

  133. Mizumoto, S. et al. Defect in dermatan sulfate in urine of patients with Ehlers–Danlos syndrome caused by a CHST14/D4ST1 deficiency. Clin. Biochem. 50, 670–677 (2017).

    CAS  PubMed  Google Scholar 

  134. Nomura, Y. Structural change in decorin with skin aging. Connect. Tissue Res. 47, 249–255 (2006).

    CAS  PubMed  Google Scholar 

  135. Schirwani, S. et al. DSE associated musculocontractural EDS, a milder phenotype or phenotypic variability. Eur. J. Med. Genet. 63, 103798 (2019).

    PubMed  Google Scholar 

  136. Hirose, T. et al. Structural alteration of glycosaminoglycan side chains and spatial disorganization of collagen networks in the skin of patients with mcEDS-CHST14. Biochim. Biophys. Acta Gen. Subj. 1863, 623–631 (2019).

    CAS  PubMed  Google Scholar 

  137. Watanabe, T. et al. Ring-mesh model of proteoglycan glycosaminoglycan chains in tendon based on three-dimensional reconstruction by focused ion beam scanning electron microscopy. J. Biol. Chem. 291, 23704–23708 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Giunta, C. et al. Spondylocheiro dysplastic form of the Ehlers–Danlos syndrome — an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am. J. Hum. Genet. 82, 1290–1305 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Fukada, T. et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development: its involvement in BMP/TGF-beta signaling pathways. PLoS One 3, e3642 (2008).

    PubMed  PubMed Central  Google Scholar 

  140. Dusanic, M. et al. Novel nonsense mutation in SLC39A13 initially presenting as myopathy: case report and review of the literature. Mol. Syndromol. 9, 100–109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jeong, J. & Eide, D. J. The SLC39 family of zinc transporters. Mol. Asp. Med. 34, 612–619 (2013).

    CAS  Google Scholar 

  142. Jeong, J. et al. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers–Danlos syndrome. Proc. Natl Acad. Sci. USA 109, E3530–E3538 (2012).

    CAS  PubMed  Google Scholar 

  143. Xiao, G., Wan, Z., Fan, Q., Tang, X. & Zhou, B. The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster. eLife 3, e03191 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Cameron, J. A. Corneal abnormalities in Ehlers–Danlos syndrome type VI. Cornea 12, 54–59 (1993).

    CAS  PubMed  Google Scholar 

  145. Royce PM, S. B., Vogel, A., Steinhorst, U. & Kohlschuetter, A. Brittle cornea syndrome: an heritable connective tissue disorder distinct from Ehlers–Danlos syndrome type VI and fragilitas oculi, with spontaneous perforations of the eye, blue sclerae, red hair, and normal collagen lysyl hydroxylation. Eur. J. Pediatr. 149, 465–469 (1990).

    PubMed  Google Scholar 

  146. Al-Hussain H, Z. S., Huber, P. R., Giunta, C. & Steinmann, B. Brittle cornea syndrome and its delineation from the kyphoscoliotic type of Ehlers–Danlos syndrome (EDS VI): report on 23 patients and review of the literature. Am. J. Med. Genet. A 124, 28–34 (2004).

    Google Scholar 

  147. Abu A, F. M. et al. Deleterious mutations in the zinc-finger 469 gene cause brittle cornea syndrome. Am. J. Hum. Genet. 82, 1217–1222 (2008).

    PubMed  PubMed Central  Google Scholar 

  148. Burkitt Wright, E. M. et al. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am. J. Hum. Genet. 88, 767–777 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Meani, N., Pezzimenti, F., Deflorian, G., Mione, M. & Alcalay, M. The tumor suppressor PRDM5 regulates Wnt signaling at early stages of zebrafish development. PLoS One 4, e4273 (2009).

    PubMed  PubMed Central  Google Scholar 

  150. Porter, L. F. et al. Bruch’s membrane abnormalities in PRDM5-related brittle cornea syndrome. Orphanet. J. Rare Dis. 10, 145 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Rohrbach, M. et al. ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components. Mol. Genet. Metab. 109, 289–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Stewart, R. E., Hollister, D. W. & Rimoin, D. L. A new variant of Ehlers–Danlos syndrome: an autosomal dominant disorder of fragile skin, abnormal scarring, and generalized periodontitis. Birth Defects Orig. Artic. Ser. 13, 85–93 (1977).

    CAS  PubMed  Google Scholar 

  153. Rahman, N. et al. Ehlers–Danlos syndrome with severe early-onset periodontal disease (EDS-VIII) is a distinct, heterogeneous disorder with one predisposition gene at chromosome 12p13. Am. J. Hum. Genet. 73, 198–204 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kapferer-Seebacher, I. et al. Periodontal Ehlers–Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am. J. Hum. Genet. 99, 1005–1014 (2016). The identification of genetic defects in C1r and C1s in pEDS opens a connection between the inflammatory classical complement pathway and connective tissue homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cooper, N. R. The classical complement pathway: activation and regulation of the first complement component. Adv. Immunol. 37, 151–216 (1985).

    CAS  PubMed  Google Scholar 

  156. Arlaud, G. J., Colomb, M. G. & Gagnon, J. A functional model of the human C1 complex: emergence of a functional model. Immunol. Today 8, 106–111 (1987).

    CAS  PubMed  Google Scholar 

  157. Arlaud, G. J. et al. Structural and functional studies on C1r and C1s: new insights into the mechanisms involved in C1 activity and assembly. Immunobiology 199, 303–316 (1998).

    CAS  PubMed  Google Scholar 

  158. Arlaud, G. J. et al. Structural biology of C1: dissection of a complex molecular machinery. Immunol. Rev. 180, 136–145 (2001).

    CAS  PubMed  Google Scholar 

  159. Bally, I. et al. Identification of the C1q-binding sites of human C1r and C1s: a refined three-dimensional model of the C1 complex of complement. J. Biol. Chem. 284, 19340–19348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bork, P. & Beckmann, G. The CUB domain. A widespread module in developmentally regulated proteins. J. Mol. Biol. 231, 539–545 (1993).

    CAS  PubMed  Google Scholar 

  161. Vadon-Le Goff, S. et al. Procollagen C-proteinase enhancer stimulates procollagen processing by binding to the C-propeptide region only. J. Biol. Chem. 286, 38932–38938 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Steiglitz, B. M., Keene, D. R. & Greenspan, D. S. PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. J. Biol. Chem. 277, 49820–49830 (2002).

    CAS  PubMed  Google Scholar 

  163. Grobner, R. et al. C1R mutations trigger constitutive complement 1 activation in periodontal Ehlers–Danlos syndrome. Front. Immunol. 10, 2537 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Layne, M. D. et al. Impaired abdominal wall development and deficient wound healing in mice lacking aortic carboxypeptidase-like protein. Mol. Cell. Biol. 21, 5256–5261 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ith, B., Wei, J., Yet, S. F., Perrella, M. A. & Layne, M. D. Aortic carboxypeptidase-like protein is expressed in collagen-rich tissues during mouse embryonic development. Gene Expr. Patterns 5, 533–537 (2005).

    CAS  PubMed  Google Scholar 

  166. Schissel, S. L. et al. Aortic carboxypeptidase-like protein is expressed in fibrotic human lung and its absence protects against bleomycin-induced lung fibrosis. Am. J. Pathol. 174, 818–828 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Tumelty, K. E., Smith, B. D., Nugent, M. A. & Layne, M. D. Aortic carboxypeptidase-like protein (ACLP) enhances lung myofibroblast differentiation through transforming growth factor beta receptor-dependent and -independent pathways. J. Biol. Chem. 289, 2526–2536 (2014).

    CAS  PubMed  Google Scholar 

  168. Teratani, T. et al. Aortic carboxypeptidase-like protein, a WNT ligand, exacerbates nonalcoholic steatohepatitis. J. Clin. Invest. 128, 1581–1596 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Ritelli, M. et al. Expanding the clinical and mutational spectrum of recessive AEBP1-related classical-like Ehlers–Danlos syndrome. Genes 10, 135 (2019).

    CAS  PubMed Central  Google Scholar 

  170. Beighton, P., Solomon, L. & Soskolne, C. L. Articular mobility in an African population. Ann. Rheum. Dis. 32, 413–418 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Remvig, L., Jensen, D. V. & Ward, R. C. Are diagnostic criteria for general joint hypermobility and benign joint hypermobility syndrome based on reproducible and valid tests? A review of the literature. J. Rheumatol. 34, 798–803 (2007).

    PubMed  Google Scholar 

  172. Juul-Kristensen, B., Schmedling, K., Rombaut, L., Lund, H. & Engelbert, R. H. Measurement properties of clinical assessment methods for classifying generalized joint hypermobility — a systematic review. Am. J. Med. Genet. C Semin. Med. Genet. 175, 116–147 (2017).

    PubMed  Google Scholar 

  173. Steinmann, B., Eyre, D. R. & Shao, P. Urinary pyridinoline cross-links in Ehlers–Danlos syndrome type VI. Am. J. Hum. Genet. 57, 1505–1508 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rohrbach, M. et al. Phenotypic variability of the kyphoscoliotic type of Ehlers–Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation. Orphanet J. Rare Dis. 6, 46 (2011).

    PubMed  PubMed Central  Google Scholar 

  175. Legrand, A. et al. Frequency of de novo variants and parental mosaicism in vascular Ehlers–Danlos syndrome. Genet. Med. 21, 1568–1575 (2019).

    CAS  PubMed  Google Scholar 

  176. Sulli, A. et al. Ehlers–Danlos syndromes: state of the art on clinical practice guidelines. RMD Open 4, e000790 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. Kosho, T. et al. A new Ehlers–Danlos syndrome with craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. Am. J. Med. Genet. A 152, 1333–1346 (2010).

    Google Scholar 

  178. Mast, K. J., Nunes, M. E., Ruymann, F. B. & Kerlin, B. A. Desmopressin responsiveness in children with Ehlers–Danlos syndrome associated bleeding symptoms. Br. J. Haematol. 144, 230–233 (2009).

    PubMed  Google Scholar 

  179. Stine, K. C. & Becton, D. L. DDAVP therapy controls bleeding in Ehlers–Danlos syndrome. J. Pediatr. Hematol. Oncol. 19, 156–158 (1997).

    CAS  PubMed  Google Scholar 

  180. Engelbert, R. H. et al. The evidence-based rationale for physical therapy treatment of children, adolescents, and adults diagnosed with joint hypermobility syndrome/hypermobile Ehlers Danlos syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 175, 158–167 (2017).

    PubMed  Google Scholar 

  181. Levy, H. P. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  182. Bathen, T., Hangmann, A. B., Hoff, M., Andersen, L. O. & Rand-Hendriksen, S. Multidisciplinary treatment of disability in Ehlers–Danlos syndrome hypermobility type/hypermobility syndrome: a pilot study using a combination of physical and cognitive-behavioral therapy on 12 women. Am. J. Med. Genet. A 161A, 3005–3011 (2013).

    PubMed  Google Scholar 

  183. Ericson, W. B. Jr & Wolman, R. Orthopaedic management of the Ehlers–Danlos syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 175, 188–194 (2017).

    PubMed  Google Scholar 

  184. Chopra, P. et al. Pain management in the Ehlers–Danlos syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 175, 212–219 (2017).

    PubMed  Google Scholar 

  185. Syx, D., De Wandele, I., Rombaut, L. & Malfait, F. Hypermobility, the Ehlers–Danlos syndromes and chronic pain. Clin. Exp. Rheumatol. 35, 116–122 (2017).

    PubMed  Google Scholar 

  186. Castori, M. et al. Re-writing the natural history of pain and related symptoms in the joint hypermobility syndrome/Ehlers–Danlos syndrome, hypermobility type. Am. J. Med. Genet. A 161A, 2989–3004 (2013).

    PubMed  Google Scholar 

  187. Rauser-Foltz, K. K., Starr, L. J. & Yetman, A. T. Utilization of echocardiography in Ehlers–Danlos syndrome. Congenit. Heart Dis. 14, 864–867 (2019).

    PubMed  Google Scholar 

  188. Oderich, G. S. et al. The spectrum, management and clinical outcome of Ehlers–Danlos syndrome type IV: a 30-year experience. J. Vasc. Surg. 42, 98–106 (2005).

    PubMed  Google Scholar 

  189. Shalhub, S. et al. A multi-institutional experience in vascular Ehlers–Danlos syndrome. J. Vasc. Surg. 71, 149–157 (2020).

    PubMed  Google Scholar 

  190. Ong, K. T. et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers–Danlos syndrome: a prospective randomised, open, blinded-endpoints trial. Lancet 376, 1476–1484 (2010). This article presents the first and only clinical pharmacological trial on EDS.

    CAS  PubMed  Google Scholar 

  191. Frank, M. et al. Vascular Ehlers–Danlos syndrome: long-term observational study. J. Am. Coll. Cardiol. 73, 1948–1957 (2019).

    PubMed  Google Scholar 

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02597361 (2018).

  193. Speake, D., Dvorkin, L., Vaizey, C. J. & Carlson, G. L. Management of colonic complications of type IV Ehlers–Danlos syndrome: a systematic review and evidence-based management strategy. Colorectal Dis. 22, 129–135 (2020).

    CAS  PubMed  Google Scholar 

  194. Adham, S., Finzindohoué, F. M., Jeunemaitre, X. & Frank, M. Natural history and surgical management of colonic perforations in vascular Ehlers–Danlos syndrome: a retrospective review. Dis. Colon Rectum 62, 859–866 (2019).

    PubMed  Google Scholar 

  195. Kosho, T. CHST14/D4ST1 deficiency: new form of Ehlers–Danlos syndrome. Pediatr. Int. 58, 88–99 (2016).

    CAS  PubMed  Google Scholar 

  196. Nee, J. et al. Prevalence of functional GI diseases and pelvic floor symptoms in Marfan syndrome and Ehlers–Danlos syndrome: a national cohort study. J. Clin. Gastroenterol. 53, 653–659 (2019).

    CAS  PubMed  Google Scholar 

  197. Fikree, A., Chelimsky, G., Collins, H., Kovacic, K. & Aziz, Q. Gastrointestinal involvement in the Ehlers–Danlos syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 175, 181–187 (2017).

    PubMed  Google Scholar 

  198. Biswas, M. et al. Prescription pattern & adverse drug reactions of prokinetics. Indian J. Med. Res. 149, 748–754 (2019).

    PubMed  PubMed Central  Google Scholar 

  199. Malfait, F. et al. Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an osteogenesis imperfecta/Ehlers–Danlos syndrome overlap syndrome. Orphanet J. Rare Dis. 8, 78 (2013).

    PubMed  PubMed Central  Google Scholar 

  200. Morlino, S. et al. COL1-related overlap disorder: a novel connective tissue disorder incorporating the osteogenesis imperfecta/Ehlers–Danlos syndrome overlap. Clin. Genet. 97, 396–406 (2020).

    CAS  PubMed  Google Scholar 

  201. Marom, R., Lee, Y. C., Grafe, I. & Lee, B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am. J. Med. Genet. C Semin. Med. Genet. 172, 367–383 (2016).

    CAS  PubMed  Google Scholar 

  202. Murray, M. L., Pepin, M., Peterson, S. & Byers, P. H. Pregnancy-related deaths and complications in women with vascular Ehlers–Danlos syndrome. Genet. Med. 16, 874–880 (2014).

    PubMed  Google Scholar 

  203. Berglund, B., Pettersson, C., Pigg, M. & Kristiansson, P. Self-reported quality of life, anxiety and depression in individuals with Ehlers–Danlos syndrome (EDS): a questionnaire study. BMC Musculoskelet. Disord. 16, 89 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Johannessen, E. C., Reiten, H. S., Lovaas, H., Maeland, S. & Juul-Kristensen, B. Shoulder function, pain and health related quality of life in adults with joint hypermobility syndrome/Ehlers–Danlos syndrome-hypermobility type. Disabil. Rehabil. 38, 1382–1390 (2016).

    PubMed  Google Scholar 

  205. Bovet, C., Carlson, M. & Taylor, M. Quality of life, unmet needs, and iatrogenic injuries in rehabilitation of patients with Ehlers–Danlos syndrome hypermobility type/joint hypermobility Syndrome. Am. J. Med. Genet. A 170, 2044–2051 (2016).

    PubMed  Google Scholar 

  206. Scheper, M. C. et al. Disability in adolescents and adults diagnosed with hypermobility-related disorders: a meta-analysis. Arch. Phys. Med. Rehabil. 97, 2174–2187 (2016).

    PubMed  Google Scholar 

  207. Zeitoun, J. D. et al. Functional digestive symptoms and quality of life in patients with Ehlers–Danlos syndromes: results of a national cohort study on 134 patients. PLoS One 8, e80321 (2013).

    PubMed  PubMed Central  Google Scholar 

  208. Pacey, V., Tofts, L., Adams, R. D., Munns, C. F. & Nicholson, L. L. Quality of life prediction in children with joint hypermobility syndrome. J. Paediatr. Child. Health 51, 689–695 (2015).

    PubMed  Google Scholar 

  209. Muriello, M. et al. Pain and sleep quality in children with non-vascular Ehlers–Danlos syndromes. Am. J. Med. Genet. A 176, 1858–1864 (2018).

    PubMed  PubMed Central  Google Scholar 

  210. Domany, K. A. et al. Sleep disorders and their management in children with Ehlers–Danlos syndrome referred to sleep clinics. J. Clin. Sleep Med. 14, 623–629 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. Scheper, M. C., Nicholson, L. L., Adams, R. D., Tofts, L. & Pacey, V. The natural history of children with joint hypermobility syndrome and Ehlers–Danlos hypermobility type: a longitudinal cohort study. Rheumatology 56, 2073–2083 (2017).

    PubMed  Google Scholar 

  212. Chiarelli, N. et al. Transcriptome-wide expression profiling in skin fibroblasts of patients with joint hypermobility syndrome/Ehlers–Danlos syndrome hypermobility type. PLoS One 11, e0161347 (2016).

    PubMed  PubMed Central  Google Scholar 

  213. Barabas, A. P. Heterogeneity of the Ehlers–Danlos syndrome: description of three clinical types and a hypothesis to explain the basic defect(s). Br. Med. J. 2, 612–613 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Beighton, P. Ehlers–Danlos syndrome. Ann. Rheum. Dis. 29, 332–333 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Morissette, R. et al. Transforming growth factor-beta and inflammation in vascular (type IV) Ehlers–Danlos syndrome. Circ. Cardiovasc. Genet. 7, 80–88 (2014). This study presents the first evidence for a pre-inflammatory state in vEDS and for changes in serum biomarker profiles.

    CAS  PubMed  Google Scholar 

  216. Lindsay, M. E. & Dietz, H. C. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473, 308–316 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Milewicz, D. M., Prakash, S. K. & Ramirez, F. Therapeutics targeting drivers of thoracic aortic aneurysms and acute aortic dissections: insights from predisposing genes and mouse models. Annu. Rev. Med. 68, 51–67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Briest, W. et al. Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers–Danlos syndrome. J. Pharmacol. Exp. Ther. 337, 621–627 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Tae, H. J. et al. Chronic treatment with a broad-spectrum metalloproteinase inhibitor, doxycycline, prevents the development of spontaneous aortic lesions in a mouse model of vascular Ehlers–Danlos syndrome. J. Pharmacol. Exp. Ther. 343, 246–251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Dubacher, N. et al. Celiprolol but not losartan improves the biomechanical integrity of the aorta in a mouse model of vascular Ehlers–Danlos syndrome. Cardiovasc. Res. 116, 457–465 (2020).

    CAS  PubMed  Google Scholar 

  221. Bowen, C. J. et al. Targetable cellular signaling events mediate vascular pathology in vascular Ehlers–Danlos syndrome. J. Clin. Invest. 130, 686–698 (2020).

    CAS  PubMed  Google Scholar 

  222. Muller, G. A. et al. Allele-specific siRNA knockdown as a personalized treatment strategy for vascular Ehlers–Danlos syndrome in human fibroblasts. FASEB J. 26, 668–677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Kadler, K. E., Hill, A. & Canty-Laird, E. G. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20, 495–501 (2008). A comprehensive review on collagen biosynthesis and the role of organizers, nucleators and regulators in this process.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Kadler, K. E., Holmes, D. F., Trotter, J. A. & Chapman, J. A. Collagen fibril formation. Biochem. J. 316, 1–11 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    CAS  PubMed  Google Scholar 

  226. Syx, D. et al. Bi-allelic AEBP1 mutations in two patients with Ehlers–Danlos syndrome. Hum. Mol. Genet. 28, 1853–1864 (2019).

    CAS  PubMed  Google Scholar 

  227. Castori, M. & Hakim, A. Contemporary approach to joint hypermobility and related disorders. Curr. Opin. Pediatr. 29, 640–649 (2017).

    PubMed  Google Scholar 

  228. Merke, D. P. et al. Tenascin-X haploinsufficiency associated with Ehlers–Danlos syndrome in patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 98, E379–E387 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Hakim, A. J. & Grahame, R. A simple questionnaire to detect hypermobility: an adjunct to the assessment of patients with diffuse musculoskeletal pain. Int. J. Clin. Pract. 57, 163–166 (2003).

    CAS  PubMed  Google Scholar 

  230. Dolan, A. L., Mishra, M. B., Chambers, J. B. & Grahame, R. Clinical and echocardiographic survey of the Ehlers–Danlos syndrome. Br. J. Rheumatol. 36, 459–462 (1997).

    CAS  PubMed  Google Scholar 

  231. McDonnell, N. B. et al. Echocardiographic findings in classical and hypermobile Ehlers–Danlos syndromes. Am. J. Med. Genet. A 140, 129–136 (2006).

    PubMed  Google Scholar 

  232. Atzinger, C. L., Meyer, R. A., Khoury, P. R., Gao, Z. & Tinkle, B. T. Cross-sectional and longitudinal assessment of aortic root dilation and valvular anomalies in hypermobile and classic Ehlers–Danlos syndrome. J. Pediatr. 158, 826–830.e1 (2011).

    PubMed  Google Scholar 

  233. Camerota, F. et al. Heart rate, conduction and ultrasound abnormalities in adults with joint hypermobility syndrome/Ehlers–Danlos syndrome, hypermobility type. Clin. Rheumatol. 33, 981–987 (2014).

    PubMed  Google Scholar 

  234. Kozanoglu, E., Coskun Benlidayi, I., Eker Akilli, R. & Tasal, A. Is there any link between joint hypermobility and mitral valve prolapse in patients with fibromyalgia syndrome? Clin. Rheumatol. 35, 1041–1044 (2016).

    PubMed  Google Scholar 

  235. Zilocchi, M. et al. Vascular Ehlers–Danlos syndrome: imaging findings. AJR Am. J. Roentgenol. 189, 712–719 (2007).

    PubMed  Google Scholar 

  236. Shalhub, S. et al. Molecular diagnosis in vascular Ehlers–Danlos syndrome predicts pattern of arterial involvement and outcomes. J. Vasc. Surg. 60, 160–169 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.M. is partly supported by the Research Foundation, Flanders, Belgium. M.C. is partly supported by the Ricerca Corrente program 2020. C.A.F. is partly supported by the Ehlers–Danlos Society as the Director of the Center for Ehlers–Danlos Syndromes at Indiana University Health. T.K. is supported by the Japan Society for the Promotion of Science (grant-in-aid for scientific research), the Ministry of Health, Labour and Welfare, Japan (Research on Rare and Intractable Diseases), and the Japan Agency for Medical Research Development (AMED) (the Practical Research Project for Rare/Intractable Diseases, Initiative on Rare and Intractable Diseases, and Program for an Integrated Database of Clinical and Genomic Information).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (F.M. and P.H.B.); Epidemiology (F.M., M.C. and P.H.B.); Mechanisms/pathophysiology (F.M., C.G., T.K. and P.H.B.); Diagnosis, screening and prevention (F.M., M.C. and P.H.B.); Management (F.M., M.C., C.A.F. and P.H.B.); Quality of life (F.M., C.A.F. and P.H.B.); Outlook (F.M. and P.H.B.); Overview of the Primer (F.M.).

Corresponding author

Correspondence to Fransiska Malfait.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Ehlers–Danlos Society: https://www.Ehlers–Danlos.com

European Reference Networks for Rare Diseases: https://vascern.eu and https://reconnet.ern-net.eu

The International EDS Consortium: https://www.ehlers-danlos.com/international-consortium

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malfait, F., Castori, M., Francomano, C.A. et al. The Ehlers–Danlos syndromes. Nat Rev Dis Primers 6, 64 (2020). https://doi.org/10.1038/s41572-020-0194-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0194-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing