Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hodgkin lymphoma

Subjects

An Author Correction to this article was published on 20 October 2021

This article has been updated

Abstract

Hodgkin lymphoma (HL) is a B cell lymphoma characterized by few malignant cells and numerous immune effector cells in the tumour microenvironment. The incidence of HL is highest in adolescents and young adults, although HL can affect elderly individuals. Diagnosis is based on histological and immunohistochemical analyses of tissue from a lymph node biopsy; the tissue morphology and antigen expression profile enable classification into one of the four types of classic HL (nodular sclerosis, mixed cellularity, lymphocyte-depleted or lymphocyte-rich HL), which account for the majority of cases, or nodular lymphocyte-predominant HL. Although uncommon, HL remains a crucial test case for progress in cancer treatment. HL was among the first systemic neoplasms shown to be curable with radiation therapy and multiagent chemotherapy. The goal of multimodality therapy is to minimize lifelong residual treatment-associated toxicity while maintaining high levels of effectiveness. Recurrent or refractory disease can be effectively treated or cured with high-dose chemotherapy followed by autologous haematopoietic stem cell transplantation, and prospective trials have demonstrated the potency of immunotherapeutic approaches with antibody–drug conjugates and immune checkpoint inhibitors. This Primer explores the wealth of information that has been assembled to understand HL; these updated observations verify that HL investigation and treatment remain at the leading edge of oncological research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphological and cellular characteristics of Hodgkin lymphoma.
Fig. 2: Relationship between age and subtype of Hodgkin lymphoma.
Fig. 3: Annual age-specific incidence of Hodgkin lymphoma in different regions.
Fig. 4: Tumour microenvironment.
Fig. 5: Morphological features of HRS cells and EBV infection of HRS cells.
Fig. 6: Management algorithm for classic Hodgkin lymphoma.
Fig. 7: Management algorithm for nodular lymphocyte-predominant Hodgkin lymphoma.
Fig. 8: Freedom from progression in Hodgkin lymphoma.

Similar content being viewed by others

Change history

References

  1. Stein, H. et al. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn (eds Swerdlow, S. H. et al.) 423–442 (International Agency for Research on Cancer, 2017). The most widely internationally accepted current classification and description of the histopathological findings for the lymphoid cancers including Hodgkin lymphoma.

  2. Forman, D. et al. Cancer Incidence in Five Continents Vol. X (International Agency for Research on Cancer, 2013).

  3. International Agency for Research on Cancer. Biological Agents Vol 100 B: A Review of Human Carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans (International Agency for Research on Cancer, 2012).

  4. Swerdlow, S. H. et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127, 2375–2390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Villa, D. et al. Interim PET-directed therapy in limited stage Hodgkin lymphoma initially treated with ABVD. Haematologica 103, e590–e593 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Straus, D. J. et al. CALGB 50604: risk-adapted treatment of nonbulky early-stage Hodgkin lymphoma based on interim PET. Blood 132, 1013–1013. (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer, R. M. et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N. Engl. J. Med. 366, 399–408 (2012).

    CAS  PubMed  Google Scholar 

  8. Sasse, S. et al. Long-term follow-up of contemporary treatment in early-stage Hodgkin lymphoma: updated analyses of the German Hodgkin Study Group HD7, HD8, HD10, and HD11 trials. J. Clin. Oncol. 35, 1999–2007 (2017).

    CAS  PubMed  Google Scholar 

  9. Radford, J. et al. Involved field radiotherapy versus no further treatment in patients with clinical stages IA and IIA Hodgkin lymphoma and a ‘negative’ PET scan after 3 cycles ABVD. Results of the UK NCRI RAPID trial. Blood 120, 547 (2012).

    Google Scholar 

  10. Engert, A. et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 379, 1791–1799 (2012).

    CAS  PubMed  Google Scholar 

  11. Gordon, L. I. et al. Randomized phase III trial of ABVD versus Stanford V with or without radiation therapy in locally extensive and advanced-stage Hodgkin lymphoma: an intergroup study coordinated by the Eastern Cooperative Oncology Group (E2496). J. Clin. Oncol. 31, 684–691 (2013).

    PubMed  Google Scholar 

  12. Stephens, D. M. et al. Five-year follow-up of SWOG S0816: limitations and values of a PET-adapted approach with stage III/IV Hodgkin lymphoma. Blood 134, 1238–46. (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Casasnovas, R. O. et al. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 20, 202–215 (2019). This complex prospective clinical trial explored the use of interim FDG-PET scanning to guide a de-escalation treatment approach from escalated BEACOPP to standard dose ABVD for favourably responding patients with advanced-stage Hodgkin lymphoma.

    PubMed  Google Scholar 

  14. Borchmann, P. et al. PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin Study Group. Lancet 390, 2790–802 (2018).

    Google Scholar 

  15. Linch, D. C. et al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet 341, 1051–1054 (1993).

    CAS  PubMed  Google Scholar 

  16. Schmitz, N. et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet 359, 2065–2071 (2002). The randomized prospective clinical trial establishing the superiority of high-dose chemotherapy followed by autologous haematopoietic stem cell transplantation compared with standard-dose chemotherapy for relapsed Hodgkin lymphoma.

    CAS  PubMed  Google Scholar 

  17. Zhou, L. et al. Global, regional, and national burden of Hodgkin lymphoma from 1990 to 2017: estimates from the 2017 Global Burden of Disease study. J. Haematol. Oncol. 12, 107 (2019).

    Google Scholar 

  18. National Cancer Institute Surveillance Epidemiology and End Results Program. Cancer stat facts: Hodgkin lymphoma. SEER https://seer.cancer.gov/statfacts/html/hodg.html (2019).

  19. Cozen, W., Katz, J. & Mack, T. Hodgkin’s disease varies by cell type in Los Angeles. Cancer Epidemiol. Biomarkers Prev. 1, 261–268 (1992). This study shows that the incidence of Hodgkin lymphoma varies by subtype, race, age, sex and social class.

    CAS  PubMed  Google Scholar 

  20. Correa, P. & O’Conor, G. Epidemiologic patterns of Hodgkin’s disease. Int. J. Cancer 8, 192–201 (1971).

    CAS  PubMed  Google Scholar 

  21. Glaser, S. L. et al. Racial/ethnic variation in EBV-positive classical Hodgkin lymphoma in California populations. Int. J. Cancer 123, 1499–1507 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mack, T. M., Norman, J. E. Jr, Rappaport, E. & Cozen, W. Childhood determination of Hodgkin lymphoma among U.S. servicemen. Cancer Epidemiol. Biomarkers Prev. 24, 1707–1715 (2015). This study shows that Hodgkin lymphoma incidence is influenced by sibship size, socio-economic status and level of education.

    PubMed  Google Scholar 

  23. Cozen, W. et al. A protective role for early oral exposures in the etiology of young adult Hodgkin lymphoma. Blood 114, 4014–4020 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rafiq, M. et al. Allergic disease, corticosteroid use, and risk of Hodgkin lymphoma: a United Kingdom nationwide case-control study. J. Allergy Clin. Immunol. 145, 868–876 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hjalgrim, H. et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N. Engl. J. Med. 349, 1324–1332 (2003).

    CAS  PubMed  Google Scholar 

  26. Hjalgrim, H. et al. Risk of Hodgkin’s disease and other cancers after infectious mononucleosis. J. Natl Cancer Inst. 92, 1522–1528 (2000).

    CAS  PubMed  Google Scholar 

  27. Anagnostopoulos I., Piris M., Isaacson P., Jaffe E., Stein H. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn (eds Swerdlow, S. H. et al.) 438–440 (International Agency for Research on Cancer, 2017).

  28. Stein, H. et al. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn (eds Swerdlow, S. H. et al.) 431–434 (International Agency for Research on Cancer, 2017).

  29. Saarinen, S. et al. High familial risk in nodular lymphocyte-predominant Hodgkin lymphoma. J. Clin. Onc. 31, 938–943 (2013).

    CAS  Google Scholar 

  30. Hasenclever, D. & Diehl, V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N. Engl. J. Med. 339, 1506–1514 (1998).

    CAS  PubMed  Google Scholar 

  31. Evens, A. M. et al. The efficacy and tolerability of adriamycin, bleomycin, vinblastine, dacarbazine and Stanford V in older Hodgkin lymphoma patients: a comprehensive analysis from the North American intergroup trial E2496. Br. J. Haematol. 161, 76–86 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Evens, A. M., Antillon, M., Aschebrook-Kilfoy, B. & Chiu, B. C. Racial disparities in Hodgkin’s lymphoma: a comprehensive population-based analysis. Ann. Oncol. 23, 2128–2137 (2012).

    CAS  PubMed  Google Scholar 

  33. Carbone, A. et al. Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat. Rev. Clin. Oncol. 11, 223–238 (2014).

    CAS  PubMed  Google Scholar 

  34. Hernandez-Ramirez, R. U., Shiels, M. S., Dubrow, R. & Engels, E. A. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV. 4, e495–e504 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Biggar, R. J. et al. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 108, 3786–3791 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mack, T. et al. Concordance for Hodgkin’s disease in identical twins suggests genetic susceptibility to the young-adult form of the disease. N Eng J. Med. 332, 413–418 (1995).

    CAS  Google Scholar 

  37. McAulay, K. & Jarrett, R. Human leukocyte antigens and genetic susceptibility to lymphoma. Tissue Antigens 86, 98–113 (2015).

    CAS  PubMed  Google Scholar 

  38. Cozen, W. et al. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat. Commun. 25, 3856 (2014). This study shows that the genetic variants associated with Hodgkin lymphoma are typically found in genes that regulate immunological function.

    Google Scholar 

  39. Sud, A. et al. Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood 132, 2040–2052 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Urayama, K. Y. et al. Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. J. Natl Cancer Inst. 104, 240–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Delahaye-Sourdeix, M. et al. A novel risk locus at 6p21.3 for Epstein-Barr virus-positive Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev. 24, 1838–1843 (2015).

    CAS  PubMed  Google Scholar 

  42. Hjalgrim, H. et al. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc. Natl Acad. Sci. USA 107, 6400–6405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Khankhanian, P. et al. Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis. Int. J. Epidemiol. 45, 728–740 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Kuppers, R., Engert, A. & Hansmann, M. L. Hodgkin lymphoma. J. Clin. Invest. 122, 3439–3447 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Brune, V. et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J. Exp. Med. 205, 2251–2268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schuhmacher, B. et al. JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte-rich large B-cell lymphoma. Haematologica 104, 330–337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuppers, R. et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl Acad. Sci. USA 91, 10962–10966 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanzler, H., Kuppers, R., Hansmann, M. L. & Rajewsky, K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 184, 1495–1505 (1996).

    CAS  PubMed  Google Scholar 

  49. Weniger, M. A. et al. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J. Clin. Invest. 128, 2996–3007 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Re, D. et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res. 61, 2080–2084 (2001).

    CAS  PubMed  Google Scholar 

  51. Schwering, I. et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101, 1505–1512 (2003).

    CAS  PubMed  Google Scholar 

  52. Steidl, C. et al. Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood 116, 418–427 (2010).

    CAS  PubMed  Google Scholar 

  53. Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Steidl, C. et al. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood 120, 3530–3540 (2012).

    CAS  PubMed  Google Scholar 

  55. Reichel, J. et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125, 1061–1072 (2015).

    CAS  PubMed  Google Scholar 

  56. Spina, V. et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131, 2413–2425 (2018).

    CAS  PubMed  Google Scholar 

  57. Tiacci, E. et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131, 2454–2465 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanchez-Aguilera, A. et al. Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood 108, 662–668 (2006).

    CAS  PubMed  Google Scholar 

  60. Devilard, E. et al. Gene expression profiling defines molecular subtypes of classical Hodgkin’s disease. Oncogene 21, 3095–3102 (2002).

    CAS  PubMed  Google Scholar 

  61. Greaves, P. et al. Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood 122(16), 2856–2863 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Carey, C. D. et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 130, 2420–2430 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cader, F. Z. et al. Mass cytometry of Hodgkin lymphoma reveals a CD4(+) exhausted T-effector and T-regulatory cell rich microenvironment. Blood 132, 825–836 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015). One of the phase II clinical trials demonstrating the efficacy and safety of a checkpoint inhibitor, nivolumab, in the treatment of relapsed or refractory Hodgkin lymphoma.

    PubMed  Google Scholar 

  65. Connors, J. M. et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med. 378, 331–344 (2018). This is the international prospective randomized clinical trial demonstrating the superiority of AVD–brentuximab vedotin compared with standard ABVD in the primary treatment of advanced stage Hodgkin lymphoma.

    CAS  PubMed  Google Scholar 

  66. Sorg, U. R. et al. Hodgkin’s cells express CD83, a dendritic cell lineage associated antigen. Pathology 29, 294–299 (1997).

    CAS  PubMed  Google Scholar 

  67. Venkataraman, G. et al. Aberrant T-cell antigen expression in classical Hodgkin lymphoma is associated with decreased event-free survival and overall survival. Blood 121, 1795–1804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathas, S. et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat. Immunol. 7, 207–215 (2006).

    CAS  PubMed  Google Scholar 

  69. Renne, C. et al. Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am. J. Pathol. 169, 655–664 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jundt, F. et al. Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 22, 1587–1594 (2008).

    CAS  PubMed  Google Scholar 

  71. Ushmorov, A. et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 107, 2493–2500 (2006).

    CAS  PubMed  Google Scholar 

  72. Dukers, D. F. et al. Unique polycomb gene expression pattern in Hodgkin’s lymphoma and Hodgkin’s lymphoma-derived cell lines. Am. J. Pathol. 164, 873–881 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Muschen, M. et al. Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J. Exp. Med. 191, 387–394 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Steidl, C., Connors, J. M. & Gascoyne, R. D. Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J. Clin. Oncol. 29, 1812–1826 (2011). This study provides molecular biological evidence for the primary influence of the tumour microenvironment in the pathophysiology of Hodgkin lymphoma.

    CAS  PubMed  Google Scholar 

  75. Schmitz, R., Stanelle, J., Hansmann, M. L. & Kuppers, R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu. Rev. Pathol. 4, 151–174 (2009).

    CAS  PubMed  Google Scholar 

  76. Vockerodt, M. et al. The Epstein-Barr virus and the pathogenesis of lymphoma. J. Pathol. 235, 312–322 (2015).

    PubMed  Google Scholar 

  77. Carbone, A., Gloghini, A., Caruso, A., De Paoli, P. & Dolcetti, R. The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis. Int. J. Cancer 140, 1233–1245 (2017).

    CAS  PubMed  Google Scholar 

  78. Barth, T. F. et al. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 101, 3681–3686 (2003).

    CAS  PubMed  Google Scholar 

  79. Jungnickel, B. et al. Clonal deleterious mutations in the Iκbα gene in the malignant cells in Hodgkin’s lymphoma. J. Exp. Med. 191, 395–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schmitz, R. et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med. 206, 981–989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    CAS  PubMed  Google Scholar 

  82. Nomoto, J. et al. Deletion of the TNFAIP3/A20 gene detected by FICTION analysis in classical Hodgkin lymphoma. BMC Cancer 12, 457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gunawardana, J. et al. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat. Genet. 46, 329–335 (2014).

    CAS  PubMed  Google Scholar 

  84. Weniger, M. A. et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25, 2679–2684 (2006).

    CAS  PubMed  Google Scholar 

  85. Skinnider, B. F. et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 99, 618–626 (2002).

    CAS  PubMed  Google Scholar 

  86. Lollies, A. et al. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia 32, 92–101 (2018).

    CAS  PubMed  Google Scholar 

  87. Kapp, U. et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J. Exp. Med. 189, 1939–1946 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lamprecht, B. et al. Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3α. Blood 112, 3339–3347 (2008).

    CAS  PubMed  Google Scholar 

  89. Younes, A. et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J. Clin. Oncol. 30, 4161–4167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, S. J. et al. Ruxolitinib shows activity against Hodgkin lymphoma but not primary mediastinal large B-cell lymphoma. BMC Cancer 19, 1080 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Dutton, A., Reynolds, G. M., Dawson, C. W., Young, L. S. & Murray, P. G. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J. Pathol. 205, 498–506 (2005).

    CAS  PubMed  Google Scholar 

  92. Renne, C., Willenbrock, K., Kuppers, R., Hansmann, M. L. & Brauninger, A. Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood 105, 4051–4059 (2005).

    CAS  PubMed  Google Scholar 

  93. Oki, Y. et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br. J. Haematol. 171, 463–470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Johnston, P. B. et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am. J. Hematol. 85, 320–324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Aldinucci, D., Gloghini, A., Pinto, A., De Filippi, R. & Carbone, A. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J. Pathol. 221, 248–263 (2010).

    CAS  PubMed  Google Scholar 

  96. Mani, H. & Jaffe, E. S. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin. Lymphoma Myeloma 9, 206–216 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Reichel, J., Eng, K., Elemento, O., Cesarman, E. & Roshal, M. Exome sequencing of purified Hodgkin Reed-Sternberg cells reveals recurrent somatic mutations in genes responsible for antigen presentation, chromosome integrity, transcriptional regulation and protein ubiquitination. Blood 122, 625 (2013).

    Google Scholar 

  98. Chetaille, B. et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113, 2765–3775 (2009).

    CAS  PubMed  Google Scholar 

  99. Cozen, W. et al. A genome-wide meta-analysis of nodular sclerosing Hodgkin lymphoma identifies risk loci at 6p21.32. Blood 119, 469–475 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mack, T. M. et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N. Engl. J. Med. 332, 413–418 (1995).

    CAS  PubMed  Google Scholar 

  101. Cozen, W. et al. Interleukin-2, interleukin-12, and interferon-γ levels and risk of young adult Hodgkin lymphoma. Blood 111, 3377–3382 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Aoki, T. et al. Single-cell transcriptome analysis reveals disease-defining T-cell subsets in the tumor microenvironment of classic Hodgkin lymphoma. Cancer Discov. 10, 406–421 (2020).

    PubMed  Google Scholar 

  103. Chan, F. C. et al. Prognostic model to predict post-autologous stem-cell transplantation outcomes in classical Hodgkin lymphoma. J. Clin. Oncol. 35, 3722–3733 (2017).

    CAS  PubMed  Google Scholar 

  104. Diepstra, A. et al. Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet 365, 2216–2224 (2005).

    CAS  PubMed  Google Scholar 

  105. Roemer, M. G. et al. Classical Hodgkin lymphoma with reduced β2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status. Cancer Immunol. Res. 4, 910–916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Roemer, M. G. M. et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J. Clin. Oncol. 36, 942–950 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mottok, A. & Steidl, C. Genomic alterations underlying immune privilege in malignant lymphomas. Curr. Opin. Hematol. 22, 343–354 (2015).

    CAS  PubMed  Google Scholar 

  108. Twa, D. D. et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123, 2062–2065 (2014).

    CAS  PubMed  Google Scholar 

  109. Juszczynski, P. et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl Acad. Sci. USA 104, 13134–13139 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Roemer, M. G. et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J. Clin. Oncol. 34, 2690–2697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Green, M. R. et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin. Cancer Res. 18, 1611–1618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kamphorst, A. O. et al. Proliferation of PD-1+CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fan, Z., Natkunam, Y., Bair, E., Tibshirani, R. & Warnke, R. A. Characterization of variant patterns of nodular lymphocyte predominant Hodgkin lymphoma with immunohistologic and clinical correlation. Am. J. Surg. Pathol. 27, 1346–1356 (2003).

    PubMed  Google Scholar 

  118. Mason, D. Y. et al. Nodular lymphocyte predominance Hodgkin’s disease. A distinct clinicopathological entity. Am. J. Surg. Pathol. 18, 526–530 (1994).

    CAS  PubMed  Google Scholar 

  119. Relecom, A. et al. Resources-stratified guidelines for classical Hodgkin lymphoma. Int. J. Env. Res. Public. Health 17, 1783 (2020).

    Google Scholar 

  120. Harris, N. L. et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361–1392 (1994).

    CAS  PubMed  Google Scholar 

  121. Stein, H. et al. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 3rd edn (eds Swerdlow, S. H. et al.) 326–329 (International Agency for Research on Cancer, 2008).

  122. Jackson, H. Jr & Parker, F. Jr Hodgkin’s disease I. General considerations. N. Engl. J. Med. 230, 1–8 (1944).

    Google Scholar 

  123. Lukes, R. J. & Butler, J. J. The pathology and nomenclature of Hodgkin’s disease. Cancer Res. 26, 1063–1083 (1966).

    CAS  PubMed  Google Scholar 

  124. Lukes, R. J., Craver, L. F., Hall, T. C., Rappaport, H. & Ruben, P. Report of the Nomenclature Committee. Cancer Res. 26, 1311 (1966).

    Google Scholar 

  125. Younes, A. et al. in Cancer: Principles and Practice of Oncology 10th edn Ch. 102 (eds. DeVita V. T., Lawrence T. S., Rosenberg S. A.) 1526–1551 (Wolters Kluwer Health, 2014).

  126. Shimabukuro-Vornhagen, A. et al. Lymphocyte-rich classical Hodgkin’s lymphoma: clinical presentation and treatment outcome in 100 patients treated within German Hodgkin’s Study Group trials. J. Clin. Oncol. 23, 5739–5745 (2005).

    PubMed  Google Scholar 

  127. Benharroch D., Stein H., Peh S.-C. in WHO Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues 4th edn (eds. Swerdlow, A. J. et al.) 441–442 (International Agency for Research on Cancer, 2017).

  128. Anagnostopoulos, I. et al. European Task Force on Lymphoma Project on Lymphocyte Predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood 96, 1889–1899 (2000). This study established the necessity for immunophenotypic profiling to determine the diagnosis of nodular lymphocyte-predominant Hodgkin lymphoma and to distinguish it from lymphocyte-rich classic Hodgkin lymphoma.

    CAS  PubMed  Google Scholar 

  129. Hartmann, S. et al. The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood 122, 4246–4252 (2013).

    CAS  PubMed  Google Scholar 

  130. Carbone, A. & Gloghini, A. Intrafollicular neoplasia” of nodular lymphocyte predominant Hodgkin lymphoma: description of a hypothetic early step of the disease. Hum. Pathol. 43, 619–628 (2012).

    PubMed  Google Scholar 

  131. Gloghini, A., Bosco, A., Ponzoni, M., Spina, M. & Carbone, A. Immunoarchitectural patterns in nodular lymphocyte predominant Hodgkin lymphoma: pathologic and clinical implications. Expert. Rev. Hematol. 8, 217–223 (2015).

    CAS  PubMed  Google Scholar 

  132. Carbone, A. Does “in situ lymphoma” occur as a distinct step in the development of nodular lymphocyte-predominant Hodgkin lymphoma? Cancer 118, 15–16 (2012).

    PubMed  Google Scholar 

  133. Carbone, A. et al. Nodular lymphocyte predominant Hodgkin lymphoma with non-invasive or early invasive growth pattern suggests an early step of the disease with a highly favorable outcome. Am. J. Hematol. 88, 161–162 (2013).

    PubMed  Google Scholar 

  134. Jaffe E. S., Harris N. L., Swerdlow S. H., O’tt G., Nathwani B. N. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn (eds Swerdlow S. H. et al.) 267–277 (International Agency for Research on Cancer, 2017).

  135. Medeiros, L. J. et al. AFIP Atlas of Tumor Pathology, Series 4: Tumors of the lymph nodes and spleen 97–107 (American Registry of Pathology, 2017).

  136. Carbone, A. & Gloghini, A. Hodgkin lymphoma classification: are we at a crossroads? Cancer 123, 3654–3655 (2017). Hodgkin lymphoma is a heterogeneous disease that includes classic forms and other forms closer to germinal centre-derived non-Hodgkin lymphoma.

    PubMed  Google Scholar 

  137. Nam-Cha, S. H. et al. Lymphocyte-rich classical Hodgkin’s lymphoma: distinctive tumor and microenvironment markers. Mod. Pathol. 22, 1006–1015 (2009).

    CAS  PubMed  Google Scholar 

  138. Hall, C. A. & Olson, K. B. Alcohol-induced pain in Hodgkin’s disease. N. Engl. J. Med. 253, 608–609 (1955).

    CAS  PubMed  Google Scholar 

  139. Cheson, B. D. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol. 32, 3059–3068 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Schwab, U. et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature 299, 65–67 (1982).

    CAS  PubMed  Google Scholar 

  141. Carbone, A. et al. Expression pattern of MUM1/IRF4 in the spectrum of pathology of Hodgkin’s disease. Br. J. Haematol. 117, 366–372 (2002).

    CAS  PubMed  Google Scholar 

  142. Schmid, C., Pan, L., Diss, T. & Isaacson, P. G. Expression of B-cell antigens by Hodgkin’s and Reed-Sternberg cells. Am. J. Pathol. 139, 701–707 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Torlakovic, E., Tierens, A., Dang, H. D. & Delabie, J. The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin’s disease. Am. J. Pathol. 159, 1807–1814 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Carbone, A. & Gloghini, A. Current and potential use of pathological targets in the treatment of Hodgkin lymphoma. Am. J. Hematol. 93, E117–E120 (2018).

    PubMed  Google Scholar 

  145. Gloghini, A. et al. Expression of histone deacetylases in lymphoma: implication for the development of selective inhibitors. Br. J. Haematol. 147, 515–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lister, T. A. et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J. Clin. Oncol. 7, 1630–1636 (1989).

    CAS  PubMed  Google Scholar 

  147. Shenoy, P., Maggioncalda, A., Malik, N. & Flowers, C. R. Incidence patterns and outcomes for Hodgkin lymphoma patients in the United States. Adv. Hematol. 2011, 725219 (2011).

    PubMed  Google Scholar 

  148. German Hodgkin Study Group. Hodgkin lymphoma: disease stages and risk factors. GHSG https://en.ghsg.org/disease-stages (2020).

  149. Eichenauer, D. A. et al. Hodgkin lymphoma: ESMO Clinical Practice Guidelines. Ann. Oncol. 29 (Suppl. 4), iv19–iv29 (2018).

    CAS  PubMed  Google Scholar 

  150. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines. Hodgkin lymphoma. NCCN https://www.nccn.org/professionals/physician_gls/default.aspx#site (2019).

  151. Kharazmi, E. et al. Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: a joint study from five Nordic countries. Blood 126, 1990–1995 (2015).

    CAS  PubMed  Google Scholar 

  152. Hessol, N. A. et al. Increased incidence of Hodgkin disease in homosexual men with HIV infection. Ann. Intern. Med. 117, 309–311 (1992).

    CAS  PubMed  Google Scholar 

  153. Kanda, J. et al. Association between obesity and the risk of malignant lymphoma in Japanese: a case-control study. Int. J. Cancer 126, 2416–2425 (2010).

    CAS  PubMed  Google Scholar 

  154. Shivappa, N. et al. Dietary inflammatory index and cardiovascular risk and mortality – a meta-analysis. Nutrients 10, 200 (2018).

    PubMed Central  Google Scholar 

  155. Shivappa, N. et al. Association between dietary inflammatory index and Hodgkin’s lymphoma in an Italian case-control study. Nutrition 53, 43–48 (2018).

    PubMed  Google Scholar 

  156. Balfour, H. H. Jr. Progress, prospects, and problems in Epstein-Barr virus vaccine development. Curr. Opin. Virol. 6, 1–5 (2014).

    CAS  PubMed  Google Scholar 

  157. von Tresckow, B. et al. Dose-intensification in early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD14 trial. J. Clin. Oncol. 30, 907–913 (2012).

    Google Scholar 

  158. Loeffler, M. et al. Meta-analysis of chemotherapy versus combined modality treatment trials in Hodgkin’s disease. International database on Hodgkin’s Disease Overview Study Group. J. Clin. Oncol. 16, 818–829 (1998).

    CAS  PubMed  Google Scholar 

  159. Hoskin, P. J. et al. Randomized comparison of the Stanford V regimen and ABVD in the treatment of advanced Hodgkin’s lymphoma: United Kingdom National Cancer Research Institute Lymphoma Group Study ISRCTN 64141244. J. Clin. Oncol. 27, 5390–5396 (2009).

    PubMed  Google Scholar 

  160. Moccia, A. A. et al. International Prognostic Score in advanced-stage Hodgkin’s lymphoma: altered utility in the modern era. J. Clin. Oncol. 30, 3383–3388 (2012).

    PubMed  Google Scholar 

  161. Aleman, B. M. et al. Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J. Clin. Oncol. 21, 3431–3439 (2003).

    PubMed  Google Scholar 

  162. Ferme, C. et al. Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N. Engl. J. Med. 357, 1916–1927 (2007).

    CAS  PubMed  Google Scholar 

  163. Girinsky, T. et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother. Oncol. 79, 270–277 (2006).

    PubMed  Google Scholar 

  164. Specht, L. et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. Biol. Phys. 89, 854–862 (2014). International consensus guidelines regarding the techniques and optimal utilization of radiation therapy in the management of Hodgkin lymphoma.

    PubMed  Google Scholar 

  165. Engert, A. et al. Reduced treatment intensity in patients with early-stage Hodgkin lymphoma. N. Engl. J. Med. 363, 640–652 (2010). This is the German Hodgkin Study Group clinical trial establishing the effectiveness of brief chemotherapy followed by reduced dose involved field radiation for limited stage Hodgkin lymphoma.

    CAS  PubMed  Google Scholar 

  166. Girinsky, T., Pichenot, C., Beaudre, A., Ghalibafian, M. & Lefkopoulos, D. Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin’s disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes? Int. J. Radiat. Oncol. Biol. Phys. 64, 218–226 (2006).

    PubMed  Google Scholar 

  167. Filippi, A. R. et al. Optimized volumetric modulated arc therapy versus 3D-CRT for early stage mediastinal Hodgkin lymphoma without axillary involvement: a comparison of second cancers and heart disease risk. Int. J. Radiat. Oncol. Biol. Phys. 92, 161–168 (2015).

    PubMed  Google Scholar 

  168. Petersen, P. M. et al. Prospective phase II trial of image-guided radiotherapy in Hodgkin lymphoma: benefit of deep inspiration breath-hold. Acta Oncol. 54, 60–66 (2015).

    CAS  PubMed  Google Scholar 

  169. Hoppe, B. S. et al. Consolidative proton therapy after chemotherapy for patients with Hodgkin lymphoma. Ann. Oncol. 28, 2179–2184 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Radford, J. et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N. Engl. J. Med. 372, 1598–1607 (2015). This is the clinical trial that demonstrated the effectiveness and minimal toxicity of treatment of limited stage Hodgkin lymphoma employing management driven by interim PET.

    CAS  PubMed  Google Scholar 

  171. Andre, M. P. E. et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 Trial. J. Clin. Oncol. 35, 1786–1794 (2017). This is a pivotal large European trial focused on the use of interim FDG-PET scanning to guide the use of radiation therapy versus chemotherapy alone in patients with favourable and unfavourable limited stage Hodgkin lymphoma.

    CAS  PubMed  Google Scholar 

  172. Borchmann, S. et al. Active surveillance for nodular lymphocyte-predominant Hodgkin lymphoma. Blood 133, 2121–2129 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Fanale, M. A. et al. Encouraging activity for R-CHOP in advanced stage nodular lymphocyte-predominant Hodgkin lymphoma. Blood 130, 472–477 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sweetenham, J. W. et al. High-dose therapy and autologous stem-cell transplantation versus conventional-dose consolidation/maintenance therapy as postremission therapy for adult patients with lymphoblastic lymphoma: results of a randomized trial of the European Group for Blood and Marrow Transplantation and the United Kingdom Lymphoma Group. J. Clin. Oncol. 19, 2927–2936 (2001).

    CAS  PubMed  Google Scholar 

  175. Merli, F. et al. Long-term results of the HD2000 trial comparing ABVD versus BEACOPP versus COPP-EBV-CAD in untreated patients with advanced Hodgkin lymphoma: a study by Fondazione Italiana Linfomi. J. Clin. Oncol. 34, 1175–1181 (2016).

    CAS  PubMed  Google Scholar 

  176. Carde, P. et al. Eight cycles of ABVD versus four cycles of BEACOPPescalated plus four cycles of BEACOPPbaseline in stage III to IV, International Prognostic Score ≥ 3, high-risk Hodgkin lymphoma: first results of the phase III EORTC 20012 intergroup trial. J. Clin. Oncol. 34, 2028–2036 (2016).

    CAS  PubMed  Google Scholar 

  177. Mounier, N. et al. ABVD (8 cycles) versus BEACOPP (4 escalated cycles ≥ 4 baseline): final results in stage III-IV low-risk Hodgkin lymphoma (IPS 0-2) of the LYSA H34 randomized trial. Ann. Oncol. 25, 1622–1628 (2014).

    CAS  PubMed  Google Scholar 

  178. Viviani, S. et al. ABVD versus BEACOPP for Hodgkin’s lymphoma when high-dose salvage is planned. N. Engl. J. Med. 365, 203–212 (2011). One of the pivotal studies demonstrating that primary treatment with ABVD produces overall survival in patients with advanced-stage Hodgkin lymphoma equivalent to that with escalated BEACOPP.

    CAS  PubMed  Google Scholar 

  179. Johnson, P. et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N. Engl. J. Med. 374, 2419–2429 (2016). The clinical trial demonstrating that interim PET can guide treatment of advanced stage Hodgkin lymphoma and permit omission of bleomycin when scanning is negative after two cycles of ABVD.

    PubMed  PubMed Central  Google Scholar 

  180. Gallamini, A. et al. Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage Hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: long-term results of the GITIL/FIL HD 0607 trial. J. Clin. Oncol. 36, 454–462 (2018).

    CAS  PubMed  Google Scholar 

  181. Press, O. W. et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose-positron emission tomography imaging: Southwest Oncology Group S0816. J. Clin. Oncol. 34, 2020–2027 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Kobe, C. et al. Outcome-based interpretation of early interim PET in advanced-stage Hodgkin lymphoma. Blood 132, 2273–2279 (2018).

    CAS  PubMed  Google Scholar 

  183. Straus, D. J. et al. Brentuximab vedotin with chemotherapy for stage III/IV classical Hodgkin lymphoma: 3-year update of the ECHELON-1 study. Blood 135, 735–742 (2020).

    PubMed  Google Scholar 

  184. Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 30, 2183–2189 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Gopal, A. K. et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood 125, 1236–1243 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Moskowitz, C. H. et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 385, 1853–1862 (2015). The randomized prospective clinical trial demontrating that post-transplant consolidation with brentuximab vedotin improves outcomes in patients undergoing autologous haematopoietic stem cell transplantation for relapsed Hodgkin lymphoma.

    CAS  PubMed  Google Scholar 

  187. Sweetenham, J. W. et al. Updated efficacy and safety data from the AETHERA trial of consolidation with brentuximab vedotin after autologous stem cell transplant (ASCT) in Hodgkin lymphoma patients at high risk of relapse. Biol. Blood Marrow Transpl. 22, S36–S37 (2016).

    Google Scholar 

  188. Kuruvilla, J., Keating, A. & Crump, M. How I treat relapsed and refractory Hodgkin lymphoma. Blood 117, 4208–4217 (2011).

    CAS  PubMed  Google Scholar 

  189. Moskowitz, C. H. et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood 97, 616–623 (2001).

    CAS  PubMed  Google Scholar 

  190. Josting, A. et al. Time-intensified dexamethasone/cisplatin/cytarabine: an effective salvage therapy with low toxicity in patients with relapsed and refractory Hodgkin’s disease. Ann. Oncol. 13, 1628–1635 (2002).

    CAS  PubMed  Google Scholar 

  191. Baetz, T. et al. Gemcitabine, dexamethasone and cisplatin is an active and non-toxic chemotherapy regimen in relapsed or refractory Hodgkin’s disease: a phase II study by the National Cancer Institute of Canada Clinical Trials Group. Ann. Oncol. 14, 1762–1767 (2003).

    CAS  PubMed  Google Scholar 

  192. Bartlett, N. et al. Gemcitabine, vinorelbine, and pegylated liposomal doxorubicin (GVD), a salvage regimen in relapsed Hodgkin’s lymphoma: CALGB 59804. Ann. Oncol. 18, 1071–1079 (2007).

    CAS  PubMed  Google Scholar 

  193. Bierman, P. J. et al. High dose chemotherapy followed by autologous hematopoietic rescue in Hodgkin’s disease: long-term follow-up in 128 patients. Ann. Oncol. 4, 767–773 (1993).

    CAS  PubMed  Google Scholar 

  194. Crump, M. et al. High-dose etoposide and melphalan, and autologous bone marrow transplantation for patients with advanced Hodgkin’s disease: importance of disease status at transplant. J. Clin. Oncol. 11, 704–711 (1993).

    CAS  PubMed  Google Scholar 

  195. Constine, L. S. et al. The role of radiation therapy in patients with relapsed or refractory Hodgkin lymphoma: guidelines from the International Lymphoma Radiation Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 100, 1100–1118 (2018).

    PubMed  Google Scholar 

  196. Josting, A. et al. Dose intensity of chemotherapy in patients with relapsed Hodgkin’s lymphoma. J. Clin. Oncol. 28, 5074–5080 (2010).

    PubMed  Google Scholar 

  197. Burns, L. J. Late effects after autologous hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 15, 21–24 (2009).

    Google Scholar 

  198. Brockelmann, P. J. et al. Risk factors and a prognostic score for survival after autologous stem-cell transplantation for relapsed or refractory Hodgkin lymphoma. Ann. Oncol. 28, 1352–1358 (2017).

    CAS  PubMed  Google Scholar 

  199. Josting, A. et al. Salvage radiotherapy in patients with relapsed and refractory Hodgkin’s lymphoma: a retrospective analysis from the German Hodgkin Lymphoma Study Group. J. Clin. Oncol. 23, 1522–1529 (2005).

    PubMed  Google Scholar 

  200. Smeltzer, J. P. et al. Prognostic significance of FDG-PET in relapsed or refractory classical Hodgkin lymphoma treated with standard salvage chemotherapy and autologous stem cell transplantation. Biol. Blood Marrow Transpl. 17, 1646–1652 (2011).

    Google Scholar 

  201. Moskowitz, A. J. et al. Pretransplantation functional imaging predicts outcome following autologous stem cell transplantation for relapsed and refractory Hodgkin lymphoma. Blood 116, 4934–4937 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Jabbour, E. et al. Pretransplant positive positron emission tomography/gallium scans predict poor outcome in patients with recurrent/refractory Hodgkin lymphoma. Cancer 109, 2481–2489 (2007).

    PubMed  Google Scholar 

  203. Gerrie, A. S. et al. Chemoresistance can be overcome with high-dose chemotherapy and autologous stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Ann. Oncol. 25, 2218–2223 (2014).

    CAS  PubMed  Google Scholar 

  204. Gopal, A. K. et al. High-dose therapy and autologous stem cell transplantation for chemoresistant Hodgkin lymphoma: the Seattle experience. Cancer 113, 1344–1350 (2008).

    PubMed  Google Scholar 

  205. Thomson, K. J., Peggs, K. S., Blundell, E., Goldstone, A. H. & Linch, D. C. A second autologous transplant may be efficacious in selected patients with Hodgkin’s lymphoma relapsing after a previous autograft. Leuk. Lymphoma 48, 881–884 (2007).

    CAS  PubMed  Google Scholar 

  206. Josting, A. et al. Cologne high-dose sequential chemotherapy in relapsed and refractory Hodgkin lymphoma: results of a large multicenter study of the German Hodgkin Lymphoma Study Group (GHSG). Ann. Oncol. 16, 116–123 (2005).

    CAS  PubMed  Google Scholar 

  207. Josting, A. et al. Novel three phase high dose sequential chemotherapy and autologous stem cell support for relapsed or refractory Hodgkin’s and non-Hodgkin’s lymphoma [abstract 638]. Ann. Oncol. 10(Suppl. 3), 173 (1999).

    Google Scholar 

  208. Spina, F. et al. Allogeneic transplantation for relapsed and refractory Hodgkin lymphoma: long-term outcomes and graft-versus-host disease-free/relapse-free survival. Leuk. Lymphoma 60, 101–109 (2019).

    PubMed  Google Scholar 

  209. Rashidi, A., Ebadi, M. & Cashen, A. F. Allogeneic hematopoietic stem cell transplantation in Hodgkin lymphoma: a systematic review and meta-analysis. Bone Marrow Transpl. 51, 521–528 (2016).

    CAS  Google Scholar 

  210. Moskowitz, C. H. et al. from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse. Blood 132, 2639–2642 (2018).

    CAS  PubMed  Google Scholar 

  211. Behringer, K. et al. Cancer-related fatigue in patients with and survivors of Hodgkin lymphoma: the impact on treatment outcome and social reintegration. J. Clin. Oncol. 34, 4329–4337 (2016).

    PubMed  Google Scholar 

  212. Trachtenberg, E. et al. Cognitive impairment in Hodgkin lymphoma survivors. Br. J. Haematol. 182, 670–678 (2018).

    PubMed  Google Scholar 

  213. Behringer, K. et al. Sexual quality of life in Hodgkin lymphoma: a longitudinal analysis by the German Hodgkin Study Group. Br. J. Cancer 108, 49–57 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Linendoll, N. et al. Health-related quality of life in Hodgkin lymphoma: a systematic review. Health Qual. Life Outcomes 14, 114 (2016). This study shows the impact on quality of life of treatment for Hodgkin lymphoma.

    PubMed  PubMed Central  Google Scholar 

  215. Loge, J. H., Abrahamsen, A. F., Ekeberg, O. & Kaasa, S. Hodgkin’s disease survivors more fatigued than the general population. J. Clin. Oncol. 17, 253–261 (1999).

    CAS  PubMed  Google Scholar 

  216. Hjermstad, M. J. et al. Quality of life in long-term Hodgkin’s disease survivors with chronic fatigue. Eur. J. Cancer 42, 327–333 (2006).

    PubMed  Google Scholar 

  217. Kreissl, S. et al. Cancer-related fatigue in patients with and survivors of Hodgkin’s lymphoma: a longitudinal study of the German Hodgkin Study Group. Lancet Oncol. 17, 1453–1462 (2016).

    PubMed  Google Scholar 

  218. Joly, F. et al. Late psychosocial sequelae in Hodgkin’s disease survivors: a French population-based case-control study. J. Clin. Oncol. 14, 2444–2453 (1996).

    CAS  PubMed  Google Scholar 

  219. Wettergren, L., Bjorkholm, M., Axdorph, U. & Langius-Eklof, A. Determinants of health-related quality of life in long-term survivors of Hodgkin’s lymphoma. Qual. Life Res. 13, 1369–1379 (2004).

    CAS  PubMed  Google Scholar 

  220. Ng, A. K. et al. Long-term survival and competing causes of death in patients with early- stage Hodgkin’s disease treated at age 50 or younger. J. Clin. Oncol. 20, 2101–2108 (2002).

    PubMed  Google Scholar 

  221. van der Kaaij, M. A. et al. Premature ovarian failure and fertility in long-term survivors of Hodgkin’s lymphoma: a European Organisation for Research and Treatment of Cancer Lymphoma Group and Groupe d’Etude des Lymphomes de l’Adulte cohort study. J. Clin. Oncol. 30, 291–299 (2012).

    PubMed  Google Scholar 

  222. Sieniawski, M. et al. Fertility in male patients with advanced Hodgkin lymphoma treated with BEACOPP: a report of the German Hodgkin Study Group (GHSG). Blood 111, 71–76 (2008).

    CAS  PubMed  Google Scholar 

  223. Schaapveld, M. et al. Second cancer risk up to 40 years after treatment for Hodgkin’s lymphoma. N. Engl. J. Med. 373, 2499–2511 (2015).

    CAS  PubMed  Google Scholar 

  224. Swerdlow, A. J. et al. Second cancer risk after chemotherapy for Hodgkin’s lymphoma: a collaborative British cohort study. J. Clin. Oncol. 29, 4096–4104 (2011).

    CAS  PubMed  Google Scholar 

  225. Franklin, J. et al. Second malignancy risk associated with treatment of Hodgkin’s lymphoma: meta-analysis of the randomised trials. Ann. Oncol. 17, 1749–1760 (2006).

    CAS  PubMed  Google Scholar 

  226. Li, Y. et al. Long-term survival rates of patients with stage III-IV Hodgkin lymphoma according to age, sex, race, and socioeconomic status, 1984-2013. Oncologist 23, 1328–1336 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Brenner, H., Gondos, A. & Pulte, D. Ongoing improvement in long-term survival of patients with Hodgkin disease at all ages and recent catch-up of older patients. Blood 111, 2977–2983 (2008).

    CAS  PubMed  Google Scholar 

  228. Heutte, N. et al. Quality of life after successful treatment of early-stage Hodgkin’s lymphoma: 10-year follow-up of the EORTC-GELA H8 randomised controlled trial. Lancet Oncol. 10, 1160–1170 (2009). This study shows the long-term impact on quality of life of treatment for Hodgkin lymphoma.

    PubMed  Google Scholar 

  229. US Department of Health and Human Services. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims. FDA https://www.fda.gov/downloads/drugs/guidances/ucm193282.pdf (2009).

  230. Cella, D. F. et al. The functional assessment of cancer therapy scale: development and validation of the general measure. J. Clin. Oncol. 11, 570–579 (1993).

    CAS  PubMed  Google Scholar 

  231. Aaronson, N. K. et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J. Natl Cancer Inst. 85, 365–376 (1993).

    CAS  PubMed  Google Scholar 

  232. Rach, A. M. et al. Predictors of fatigue and poor sleep in adult survivors of childhood Hodgkin’s lymphoma: a report from the childhood cancer survivor study. J. Cancer Surviv. 11, 256–263 (2017).

    PubMed  Google Scholar 

  233. Calaminus, G. et al. Quality of life in long-term survivors following treatment for Hodgkin’s disease during childhood and adolescence in the German multicentre studies between 1978 and 2002. Support. Care Cancer 22, 1519–1529 (2014).

    PubMed  Google Scholar 

  234. van de Poll-Franse, L. et al. International development of four EORTC disease-specific quality of life questionnaires for patients with Hodgkin lymphoma, high- and low-grade non-Hodgkin lymphoma and chronic lymphocytic leukaemia. Qual. Life Res. 27, 333–345 (2018).

    PubMed  Google Scholar 

  235. Desch, A. K. et al. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia 34, 151–166 (2020).

    CAS  PubMed  Google Scholar 

  236. Di Trani, M. et al. Longitudinal assessment of circulating tumor mutational burden using a next-generation sequencing cancer gene panel: a potential biomarker of response to programmed cell death 1 (PD-1) blockade in patients with relapsed/refractory classical Hodgkin lymphoma. Blood 134, 131 (2019).

    Google Scholar 

  237. Bessi, L. et al. Somatic mutations of cell-free circulating DNA detected by targeted next-generation sequencing and digital droplet PCR in classical Hodgkin lymphoma. Leuk. Lymphoma 60, 498–502 (2019).

    CAS  PubMed  Google Scholar 

  238. Vandenberghe, P. et al. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol. 2, e55–e65 (2015).

    PubMed  Google Scholar 

  239. Oki, Y. et al. Detection of classical Hodgkin lymphoma specific sequence in peripheral blood using a next-generation sequencing approach. Br. J. Haematol. 169, 689–693 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Barrington, S. F. et al. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood 127, 1531–1538 (2016).

    CAS  PubMed  Google Scholar 

  241. Huntington, S. F., von Keudell, G., Davidoff, A. J., Gross, C. P. & Prasad, S. A. Cost-effectiveness analysis of brentuximab vedotin with chemotherapy in newly diagnosed stage III and IV Hodgkin lymphoma. J. Clin. Oncol. 36, 3307–3314 (2018).

    CAS  PubMed Central  Google Scholar 

  242. Evens, A. M. et al. Multicenter phase II study of sequential brentuximab vedotin and doxorubicin, vinblastine, and dacarbazine chemotherapy for older patients with untreated classical Hodgkin lymphoma. J. Clin. Oncol. 36, 3015–3022 (2018).

    CAS  PubMed  Google Scholar 

  243. Friedberg, J. W. et al. Frontline brentuximab vedotin in combination with dacarbazine or bendamustine in patients aged ≥60 years with HL. Blood 130, 2829–2837 (2017).

    CAS  PubMed  Google Scholar 

  244. Cassaday, R. D. et al. Safety and activity of brentuximab vedotin (BV) plus ifosfamide, carboplatin, and etoposide (ICE) for relapsed/refractory (Rel/Ref) classical Hodgkin lymphoma (cHL): initial results of a phase I/II trial. Blood 128, 1834 (2016).

    Google Scholar 

  245. Garcia-Sanz, R. et al. Brentuximab vedotin and ESHAP is highly effective as second-line therapy for Hodgkin lymphoma patients (long-term results of a trial by the Spanish GELTAMO group). Ann. Oncol. 30, 612–620 (2019).

    CAS  PubMed  Google Scholar 

  246. O’Connor, O. A. et al. Brentuximab vedotin plus bendamustine in relapsed or refractory Hodgkin’s lymphoma: an international, multicentre, single-arm, phase 1-2 trial. Lancet Oncol. 19, 257–266 (2018).

    PubMed  Google Scholar 

  247. Bartlett, N. L. et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J. Hematol. Oncol. 7, 24 (2014).

    PubMed  PubMed Central  Google Scholar 

  248. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Younes, A. et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 17, 1283–1294 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Chen, R. et al. Keynote. phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J. Clin. Oncol. 35, 2125–2132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Ramchandren, R. et al. Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma: safety and efficacy in the phase II CheckMate 205 study. J. Clin. Oncol. 37, 1997–2007 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Herrera, A. F. et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 131, 1183–1194 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Diefenbach, C. et al. A phase I study with an expansion cohort of the combinations of ipilimumab, nivolumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: a trial of the ECOG-ACRIN Research Group (E4412: arms G-I). Blood 132, 279 (2018).

    Google Scholar 

  254. Hamadani, M. et al. Phase 1 study of Adct-301 (camidanlumab tesirine), a novel pyrrolobenzodiazepine-based antibody drug conjugate, in relapsed/refractory classical Hodgkin lymphoma. Blood 132, 928 (2018).

    Google Scholar 

  255. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Wang, C. M. et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin. Cancer Res. 23, 1156–1166 (2017).

    CAS  PubMed  Google Scholar 

  258. Ramos, C. A. et al. CD30-chimeric antigen receptor (CAR) T cells for therapy of Hodgkin lymphoma (HL) [abstract 79]. Biol. Blood Marrow Transpl. 25, S63 (2019).

    Google Scholar 

  259. Ramos, C. A. et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J. Clin. Invest. 127, 3462–3471 (2017).

    PubMed  PubMed Central  Google Scholar 

  260. Martin-Subero, J. I. et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood 108, 401–402 (2006).

    CAS  PubMed  Google Scholar 

  261. Emmerich, F. et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J. Pathol. 201, 413–420 (2003).

    CAS  PubMed  Google Scholar 

  262. Joos, S. et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 60, 549–552 (2000).

    CAS  PubMed  Google Scholar 

  263. Mottok, A. et al. Genomic alterations in CIITA are frequent in primary mediastinal large B cell lymphoma and are associated with diminished MHC class II expression. Cell Rep. 13, 1418–1431 (2015).

    CAS  PubMed  Google Scholar 

  264. Liu, Y., Sattarzadeh, A., Diepstra, A., Visser, L. & van den Berg, A. The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin. Cancer Biol. 24, 15–22 (2014).

    CAS  PubMed  Google Scholar 

  265. Carbone, A., Gloghini, A., Castagna, L., Santoro, A. & Carlo-Stella, C. Primary refractory and early-relapsed Hodgkin’s lymphoma: strategies for therapeutic targeting based on the tumour microenvironment. J. Pathol. 237, 4–13 (2015). This study of the tumour microenvironment is the basis for selecting cellular or humoral targets for innovative therapies in individuals affected by cHL and refractory to conventional therapies.

    PubMed  Google Scholar 

  266. Kuppers, R. The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 9, 15–27 (2009). Full description of the underlying biology of Hodgkin lymphoma.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.M.C.); Epidemiology (W.C., A.C. and J.M.C.); Mechanisms/pathophysiology (C.S., A.C. and J.M.C.); Diagnosis, screening and prevention (A.C., W.C., C.S. and J.M.C.); Management (R.T.H., N.L.B. and J.M.C.); Quality of life (H.-H.F. and J.M.C.); Outlook (N.L.B. and J.M.C.); Overview of Primer (J.M.C.).

Corresponding author

Correspondence to Joseph M. Connors.

Ethics declarations

Competing interests

J.M.C. has received research support and honoraria from Seattle Genetics and Takeda Pharmaceuticals; N.L.B. has received research support from Seattle Genetics, Takeda Pharmaceuticals, Bristol-Myers Squibb and Merck, and is on the Advisory Board of ADC Therapeutics and Seattle Genetics. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks P. Borchmann, L. Castagna, A. Gallamini, R. Jarrett, R. Küppers, A. Sureda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connors, J.M., Cozen, W., Steidl, C. et al. Hodgkin lymphoma. Nat Rev Dis Primers 6, 61 (2020). https://doi.org/10.1038/s41572-020-0189-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0189-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing