Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Inherited cardiac arrhythmias

Abstract

The main inherited cardiac arrhythmias are long QT syndrome, short QT syndrome, catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome. These rare diseases are often the underlying cause of sudden cardiac death in young individuals and result from mutations in several genes encoding ion channels or proteins involved in their regulation. The genetic defects lead to alterations in the ionic currents that determine the morphology and duration of the cardiac action potential, and individuals with these disorders often present with syncope or a life-threatening arrhythmic episode. The diagnosis is based on clinical presentation and history, the characteristics of the electrocardiographic recording at rest and during exercise and genetic analyses. Management relies on pharmacological therapy, mostly β-adrenergic receptor blockers (specifically, propranolol and nadolol) and sodium and transient outward current blockers (such as quinidine), or surgical interventions, including left cardiac sympathetic denervation and implantation of a cardioverter–defibrillator. All these arrhythmias are potentially life-threatening and have substantial negative effects on the quality of life of patients. Future research should focus on the identification of genes associated with the diseases and other risk factors, improved risk stratification and, in particular for Brugada syndrome, effective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genes and proteins involved in the pathogenesis of inherited cardiac arrhythmias.
Fig. 2: Variability in baseline QTc.
Fig. 3: Ventricular action potential and ionic currents.
Fig. 4: Spatial dispersion of repolarization.
Fig. 5: Examples of ECG traces.
Fig. 6: Catecholaminergic polymorphic ventricular tachycardia exercise test.

Similar content being viewed by others

References

  1. Meyer, L. et al. Incidence, causes, and survival trends from cardiovascular-related sudden cardiac arrest in children and young adults 0 to 35 years of age: a 30-year review. Circulation 126, 1363–1372 (2012).

    PubMed  Google Scholar 

  2. Winkel, B. G. et al. Nationwide study of sudden cardiac death in persons aged 1–35 years. Eur. Heart J. 32, 983–990 (2011).

    PubMed  Google Scholar 

  3. Bardai, A. et al. Incidence, causes, and outcomes of out-of-hospital cardiac arrest in children. A comprehensive, prospective, population-based study in the Netherlands. J. Am. Coll. Cardiol. 57, 1822–1828 (2011).

    PubMed  Google Scholar 

  4. Bagnall, R. D. et al. A prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 374, 2441–2452 (2016).

    PubMed  Google Scholar 

  5. Kong, M. H. et al. Systematic review of the incidence of sudden cardiac death in the United States. J. Am. Coll. Cardiol. 57, 794–801 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. De Vreede-Swagemakers, J. J. M. et al. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol. 30, 1500–1505 (1997).

    PubMed  Google Scholar 

  7. Bardai, A. et al. Epilepsy is a risk factor for sudden cardiac arrest in the general population. PLoS One 7, e42749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Huikuri, H. V., Castellanos, A. & Myerburg, R. J. Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001).

    CAS  PubMed  Google Scholar 

  9. Priori, S. G. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 10, 1932–1963 (2013). An important consensus document on genetic arrhythmias.

    PubMed  Google Scholar 

  10. Schwartz, P. J. et al. Prevalence of the congenital long-QT syndrome. Circulation 120, 1761–1767 (2009). This is the study that provided the data-based prevalence of LQTS.

    PubMed  PubMed Central  Google Scholar 

  11. Piippo, K. et al. A founder mutation of the potassium channel KCNQ1 in long QT syndrome: implications for estimation of disease prevalence and molecular diagnostics. J. Am. Coll. Cardiol. 37, 562–568 (2001).

    CAS  PubMed  Google Scholar 

  12. Brink, P. A. et al. Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation. 112, 2602–2610 (2005).

    PubMed  Google Scholar 

  13. Arbour, L. et al. A KCNQ1 V205M missense mutation causes a high rate of long QT syndrome in a first nations community of northern British Columbia: a community-based approach to understanding the impact. Genet. Med. 10, 545–550 (2008).

    PubMed  Google Scholar 

  14. Postema, P. G. et al. Founder mutations in the Netherlands: SCN5a 1795insD, the first described arrhythmia overlap syndrome and one of the largest and best characterised families worldwide. Neth. Heart J. 17, 422–428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Winbo, A. et al. Origin of the Swedish long QT syndrome Y111C/KCNQ1 founder mutation. Heart Rhythm. 8, 541–547 (2011).

    PubMed  Google Scholar 

  16. Refaat, M. M., Hotait, M. & Scheinman, M. Brugada syndrome. Card. Electrophysiol. Clin. 8, 239–245 (2016).

    PubMed  Google Scholar 

  17. Antzelevitch, C. et al. J-wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Heart Rhythm. 13, e295–e324 (2016). A ‘must read’ report on J wave syndromes.

    PubMed  PubMed Central  Google Scholar 

  18. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12, 17–23 (1996).

    PubMed  Google Scholar 

  19. Tester, D. J., Will, M. L., Haglund, C. M. & Ackerman, M. J. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2, 507–517 (2005).

    PubMed  Google Scholar 

  20. Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 80, 795–803 (1995).

    CAS  PubMed  Google Scholar 

  21. Wang, Q. et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet. 4, 1603–1607 (1995).

    CAS  PubMed  Google Scholar 

  22. Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies. Heart Rhythm. 8, 1308–1339 (2011).

    PubMed  Google Scholar 

  23. Koopmann, T. T. et al. Long QT syndrome caused by a large duplication in the KCNH2 (HERG) gene undetectable by current polymerase chain reaction-based exon-scanning methodologies. Heart Rhythm. 3, 52–55 (2006).

    PubMed  Google Scholar 

  24. Schwartz, P. J., Priori, S. G. & Napolitano, C. How really rare are rare diseases? The intriguing case of independent compound mutations in the long QT syndrome. J. Cardiovasc. Electrophysiol. 14, 1120–1121 (2003).

    PubMed  Google Scholar 

  25. Moss, A. J. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 115, 2481–2489 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Westenskow, P., Splawski, I., Timothy, K. W., Keating, M. T. & Sanguinetti, M. C. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 109, 1834–1841 (2004).

    PubMed  Google Scholar 

  27. Shimizu, W. et al. Genotype–phenotype aspects of type 2 long QT syndrome. J. Am. Coll. Cardiol. 54, 2052–2062 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Giudicessi, J. R., Wilde, A. A. M. & Ackerman, M. J. The genetic architecture of long QT syndrome: a critical reappraisal. Trends Cardiovasc. Med. 28, 453–464 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Strande, N. T. et al. Evaluating the clinical validity of gene–disease associations: an evidence-based framework developed by the clinical genome resource. Am. J. Hum. Genet. 100, 895–906 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Adler, A. et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 141, 418–428 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Crotti, L. et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127, 1009–1017 (2013).

    CAS  PubMed  Google Scholar 

  32. Boczek, N. J. et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G. Circ. Cardiovasc. Genet. 9, 136–146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Crotti, L. et al. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur. Heart J. 40, 2964–2975 (2019). The analysis of the genetic and clinical knowledge on the effects of calmodulin mutations.

    PubMed  Google Scholar 

  34. Altmann, H. M. et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the triadin knockout syndrome. Circulation 131, 2051–2060 (2015).

    CAS  PubMed  Google Scholar 

  35. Clemens, D. J. et al. International Triadin Knockout Syndrome Registry. Circ. Genom. Precis. Med. 12, e002419 (2019).

    PubMed  Google Scholar 

  36. Neyroud, N. et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat. Genet. 15, 186–189 (1997).

    CAS  PubMed  Google Scholar 

  37. Schulze-Bahr, E. et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat. Genet. 17, 267–268 (1997).

    CAS  PubMed  Google Scholar 

  38. Schwartz, P. J. et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113, 783–790 (2006). A comprehensive review of the Jervell and Lange-Nielsen syndrome.

    PubMed  Google Scholar 

  39. Splawski, I. et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    CAS  PubMed  Google Scholar 

  40. Dufendach, K. A. et al. Clinical outcomes and modes of death in Timothy syndrome: a multicenter international study of a rare disorder. JACC Clin. Electrophysiol. 4, 459–466 (2018).

    PubMed  Google Scholar 

  41. Boczek, N. J. et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ. Cardiovasc. Genet. 6, 279–289 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105, 511–519 (2001).

    CAS  PubMed  Google Scholar 

  43. Brugada, R. et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109, 30–35 (2004).

    CAS  PubMed  Google Scholar 

  44. Bellocq, C. et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109, 2394–2397 (2004).

    PubMed  Google Scholar 

  45. Priori, S. G. et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 96, 800–807 (2005).

    CAS  PubMed  Google Scholar 

  46. Templin, C. et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur. Heart J. 32, 1077–1088 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Antzelevitch, C. et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 115, 442–449 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. Thorsen, K. et al. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat. Commun. 8, 1696 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    CAS  PubMed  Google Scholar 

  50. Lieve, K. V., van der Werf, C. & Wilde, A. A. Catecholaminergic polymorphic ventricular tachycardia. Circ. J. 80, 1285–1291 (2016).

    PubMed  Google Scholar 

  51. Laitinen, P. J. et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103, 485–490 (2001).

    CAS  PubMed  Google Scholar 

  52. Medeiros-Domingo, A. et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J. Am. Coll. Cardiol. 54, 2065–2074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Priori, S. G. & Chen, S. R. W. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ. Res. 108, 871–883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lahat, H., Pras, E. & Eldar, M. A missense mutation in CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Ann. Med. 36, 87–91 (2004).

    CAS  PubMed  Google Scholar 

  55. Nyegaard, M. et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am. J. Hum. Genet. 91, 703–712 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Roux-Buisson, N. et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum. Mol. Genet. 21, 2759–2767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Makita, N. et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ. Cardiovasc. Genet. 7, 466–474 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tester, D. J. et al. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm. 3, 800–805 (2006).

    PubMed  Google Scholar 

  59. Mohler, P. J. et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc. Natl Acad. Sci. USA 101, 9137–9142 (2004).

    CAS  PubMed  Google Scholar 

  60. Devalla, H. D. et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol. Med. 8, 1390–1408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tester, D. J. et al. Plakophilin-2 truncation variants in patients clinically diagnosed with catecholaminergic polymorphic ventricular tachycardia and decedents with exercise-associated autopsy negative sudden unexplained death in the young. JACC Clin. Electrophysiol. 5, 120–127 (2019).

    PubMed  Google Scholar 

  62. Cerrone, M. et al. Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat. Commun. 8, 106 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    CAS  PubMed  Google Scholar 

  64. Hosseini, S. M. et al. Reappraisal of reported genes for sudden arrhythmic death. Circulation 138, 1195–1205 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Le Scouarnec, S. et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum. Mol. Genet. 24, 2757–2763 (2015).

    PubMed  Google Scholar 

  66. Probst, V. et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ. Cardiovasc. Genet. 2, 552–557 (2009).

    CAS  PubMed  Google Scholar 

  67. Bezzina, C. R. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013). Novel insights on the complexity of the genetics of BrS.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hofman, N., Tan, H. L., Alders, M., van Langen, I. M. & Wilde, A. A. M. Active cascade screening in primary inherited arrhythmia syndromes. Does it lead to prophylactic treatment? J. Am. Coll. Cardiol. 55, 2570–2576 (2010).

    PubMed  Google Scholar 

  69. Schwartz, P. J. Cascades or waterfalls, the cataracts of genetic screening are being opened on clinical cardiology. J. Am. Coll. Cardiol. 55, 2577–2579 (2010).

    PubMed  Google Scholar 

  70. Priori, S. G. et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348, 1866–1874 (2003).

    PubMed  Google Scholar 

  71. Schwartz, P. J., Crotti, L. & George, A. L. Modifier genes for sudden cardiac death. Eur. Heart J. 39, 3925–3931 (2018). A comprehensive review on modifier genes associated with sudden death.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee Y.-K. et al. MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvaa019 (2020).

  73. Schwartz, P. J. Sudden cardiac death, founder populations, and mushrooms: what is the link with gold mines and modifier genes? Heart Rhythm. 8, 548–550 (2011).

    PubMed  Google Scholar 

  74. Crotti, L. et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 112, 1251–1258 (2005).

    PubMed  Google Scholar 

  75. Crotti, L. et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120, 1657–1663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. de Villiers, C. P. et al. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ. Cardiovasc. Genet. 7, 599–606 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Antzelevitch, C. & Oliva, A. Amplification of spatial dispersion of repolarization underlies sudden cardiac death associated with catecholaminergic polymorphic VT, long QT, short QT and Brugada syndromes. J. Intern. Med. 259, 48–58 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ueda, N., Zipes, D. P. & Wu, J. Prior ischemia enhances arrhythmogenicity in isolated canine ventricular wedge model of long QT 3. Cardiovasc. Res. 63, 69–76 (2004).

    CAS  PubMed  Google Scholar 

  79. Haïssaguerre, M. et al. Depolarization versus repolarization abnormality underlying inferolateral J-wave syndromes: new concepts in sudden cardiac death with apparently normal hearts. Heart Rhythm. 16, 781–790 (2018).

    PubMed  Google Scholar 

  80. Schwartz, P. J. Idiopathic long QT syndrome: progress and questions. Am. Heart J. 109, 399–411 (1985).

    CAS  PubMed  Google Scholar 

  81. Moss, A. J. et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 84, 1136–1144 (1991).

    CAS  PubMed  Google Scholar 

  82. Zipes, D. P. The long QT interval syndrome. A Rosetta stone for sympathetic related ventricular tachyarrhythmias. Circulation 84, 1414–1419 (1991).

    CAS  PubMed  Google Scholar 

  83. Dumaine, R. & Antzelevitch, C. Molecular mechanisms underlying the long QT syndrome. Curr. Opin. Cardiol. 17, 36–42 (2002).

    PubMed  Google Scholar 

  84. Roden, D. M. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 350, 1013–1022 (2004). A comprehensive review on drug-induced LQTS.

    CAS  PubMed  Google Scholar 

  85. Itoh, H. et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur. Heart J. 37, 1456–1464 (2016).

    PubMed  Google Scholar 

  86. Schwartz, P. J. & Woosley, R. L. Predicting the unpredictable: drug-induced QT prolongation and Torsades de Pointes. J. Am. Coll. Cardiol. 67, 1639–1650 (2016).

    PubMed  Google Scholar 

  87. Antzelevitch, C. & Shimizu, W. Cellular mechanisms underlying the long QT syndrome. Curr. Opin. Cardiol. 17, 43–51 (2002).

    PubMed  Google Scholar 

  88. Sicouri, S., Glass, A., Ferreiro, M. & Antzelevitch, C. Transseptal dispersion of repolarization and its role in the development of Torsade de Pointes arrhythmias. J. Cardiovasc. Electrophysiol. 21, 441–447 (2010).

    PubMed  Google Scholar 

  89. Vandersickel, N. et al. Short-lasting episodes of Torsade de Pointes in the chronic atrioventricular block dog model have a focal mechanism, while longer-lasting episodes are maintained by re-entry. JACC Clin. Electrophysiol. 3, 1565–1576 (2017).

    PubMed  Google Scholar 

  90. Han, J. & Moe, G. K. Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14, 44–60 (1964).

    CAS  PubMed  Google Scholar 

  91. Nof, E., Burashnikov, A. & Antzelevitch, C. Cellular basis for atrial fibrillation in an experimental model of short QT1: implications for a pharmacological approach to therapy. Heart Rhythm. 7, 251–257 (2010).

    PubMed  Google Scholar 

  92. Whittaker, D. G., Colman, M. A., Ni, H., Hancox, J. C. & Zhang, H. Human atrial arrhythmogenesis and sinus bradycardia in KCNQ1-linked short QT syndrome: insights from computational modelling. Front. Physiol. 9, 1402 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Guo, F. et al. Patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of short QT syndrome. Circ. Res. 124, 66–78 (2019).

    CAS  PubMed  Google Scholar 

  94. Shinnawi, R. et al. Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell-derived cardiac cell sheets. J. Am. Coll. Cardiol. 73, 2310–2324 (2019).

    PubMed  Google Scholar 

  95. El-Battrawy, I. et al. Modeling short QT syndrome using human-induced pluripotent stem cell-derived cardiomyocytes. J. Am. Heart Assoc. 7, e007394 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Odening, K. E. et al. Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility. Eur. Heart J. 40, 842–853 (2019).

    CAS  PubMed  Google Scholar 

  97. Wehrens, X. H. T. The molecular basis of catecholaminergic polymorphic ventricular tachycardia: what are the different hypotheses regarding mechanisms? Heart Rhythm. 4, 794–797 (2007).

    PubMed  Google Scholar 

  98. Cerrone, M., Napolitano, C. & Priori, S. G. Catecholaminergic polymorphic ventricular tachycardia: a paradigm to understand mechanisms of arrhythmias associated to impaired Ca2+ regulation. Heart Rhythm. 6, 1652–1659 (2009).

    PubMed  Google Scholar 

  99. Hayashi, M. et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 119, 2426–2434 (2009). A thorough analysis of the clinical manifestations of CPVT.

    CAS  PubMed  Google Scholar 

  100. De Ferrari, G. M. et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation 131, 2185–2193 (2015). The definite evidence for the role of left cardiac sympathetic denervation in CPVT.

    PubMed  Google Scholar 

  101. Nakamura, Y. et al. Ryanodine receptor-bound calmodulin is essential to protect against catecholaminergic polymorphic ventricular tachycardia. JCI insight 4, e126112 (2019).

    PubMed Central  Google Scholar 

  102. Xu, X. et al. Defective calmodulin binding to the cardiac ryanodine receptor plays a key role in CPVT-associated channel dysfunction. Biochem. Biophys. Res. Commun. 394, 660–666 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Klipp, R. C. et al. EL20, a potent antiarrhythmic compound, selectively inhibits calmodulin-deficient ryanodine receptor type 2. Heart Rhythm. 15, 578–586 (2018).

    PubMed  Google Scholar 

  104. Nam, G.-B., Burashnikov, A. & Antzelevitch, C. Cellular mechanisms underlying the development of catecholaminergic ventricular tachycardia. Circulation. 111, 2727–2733 (2005).

    PubMed  PubMed Central  Google Scholar 

  105. Cerrone, M. et al. Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 101, 1039–1048 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Litovsky, S. H. & Antzelevitch, C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res. 62, 116–126 (1988).

    CAS  PubMed  Google Scholar 

  107. Litovsky, S. H. & Antzelevitch, C. Differences in the electrophysiology of ventricular epicardium and endocardium as the basis for the Osborne wave. Circulation 80, II–129 (1989).

    Google Scholar 

  108. Yan, G. X. & Antzelevitch, C. Cellular basis for the electrocardiographic J wave. Circulation 93, 372–379 (1996).

    CAS  PubMed  Google Scholar 

  109. Di Diego, J. M., Sun, Z. Q. & Antzelevitch, C. I(to) and action potential notch are smaller in left vs. right canine ventricular epicardium. Am. J. Physiol. 271, H548–H561 (1996).

    PubMed  Google Scholar 

  110. Boukens, B. J. et al. Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract. Circ. Res. 113, 137–141 (2013).

    CAS  PubMed  Google Scholar 

  111. Koncz, I. et al. Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome. J. Mol. Cell Cardiol. 68, 20–28 (2014).

    CAS  PubMed  Google Scholar 

  112. Ghosh, S. et al. Early repolarization associated with sudden death: insights from noninvasive electrocardiographic imaging. Heart Rhythm. 7, 534–537 (2010).

    PubMed  Google Scholar 

  113. Wilde, A. A. M. et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J. Mol. Cell Cardiol. 49, 543–553 (2010). A thorough analysis of the pathophysiology of BrS.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Morita, H., Zipes, D. P. & Wu, J. Brugada syndrome: insights of ST elevation, arrhythmogenicity, and risk stratification from experimental observations. Heart Rhythm. 6, S34–S43 (2009).

    PubMed  Google Scholar 

  115. Antzelevitch, C. & Yan, G.-X. J-wave syndromes: Brugada and early repolarization syndromes. Heart Rhythm. 12, 1852–1866 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Di Diego, J. et al. In a whole-heart model of the Brugada syndrome, delayed conduction in the RVOT “does not” contribute to inscription of the electrocardiographic J wave/ST segment elevation. Heart Rhythm. 15, S242 (2018).

    Google Scholar 

  117. Brugada, J. et al. Brugada syndrome phenotype elimination by epicardial substrate ablation. Circ. Arrhythmia Electrophysiol. 8, 1373–1381 (2015).

    Google Scholar 

  118. Szél, T. & Antzelevitch, C. Abnormal repolarization as the basis for late potentials and fractionated electrograms recorded from epicardium in experimental models of Brugada syndrome. J. Am. Coll. Cardiol. 63, 2037–2045 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Nademanee, K. et al. Fibrosis, connexin-43, and conduction abnormalities in the Brugada syndrome. J. Am. Coll. Cardiol. 66, 1976–1986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rohr, S. & Kucera, J. P. Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644. Biophys. J. 72, 754–766 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Huelsing, D. J., Spitzer, K. W., Cordeiro, J. M. & Pollard, A. E. Conduction between isolated rabbit Purkinje and ventricular myocytes coupled by a variable resistance. Am. J. Physiol. 274, H1163–H1173 (1998).

    CAS  PubMed  Google Scholar 

  122. Schwartz, P. J. et al. Genotype–phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001). The evidence for the importance of the genotype in the triggering of arrhythmic events in LQTS.

    CAS  PubMed  Google Scholar 

  123. Schwartz, P. J., Periti, M. & Malliani, A. The long Q-T syndrome. Am. Heart J. 89, 378–390 (1975).

    CAS  PubMed  Google Scholar 

  124. Schwartz, P. J. & Ackerman, M. J. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur. Heart J. 34, 3109–3116 (2013). An updated view on the clinical management of LQTS.

    PubMed  Google Scholar 

  125. Kimbrough, J. et al. Clinical implications for affected parents and siblings of probands with long-QT syndrome. Circulation 104, 557–562 (2001).

    CAS  PubMed  Google Scholar 

  126. Crotti, L. et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds: toward a mutation-specific risk stratification. Circulation 116, 2366–2375 (2007).

    CAS  PubMed  Google Scholar 

  127. Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Jervell, A. & Lange-Nielsen, F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am. Heart J. 54, 59–68 (1957).

    CAS  PubMed  Google Scholar 

  129. Schwartz, P. J. & Priori, S. G. in Cardiac electrophysiology. From cell to bedside 4th edn (eds Zipes, D. P. & Jalife, J.) 711–719 (Saunders, 2004).

  130. Schwartz, P. J. & Malliani, A. Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. Am. Heart J. 89, 45–50 (1975).

    CAS  PubMed  Google Scholar 

  131. Schwartz, P. J., Zaza, A., Locati, E. & Moss, A. J. Stress and sudden death. The case of the long QT syndrome. Circulation 83, II71–II80 (1991).

    CAS  PubMed  Google Scholar 

  132. Ackerman, M. J., Tester, D. J. & Porter, C. J. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin. Proc. 74, 1088–1094 (1999).

    CAS  PubMed  Google Scholar 

  133. Khositseth, A., Tester, D. J., Will, M. L., Bell, C. M. & Ackerman, M. J. Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm. 1, 60–64 (2004).

    PubMed  Google Scholar 

  134. Seth, R. et al. Long QT syndrome and pregnancy. J. Am. Coll. Cardiol. 49, 1092–1098 (2007).

    PubMed  Google Scholar 

  135. Schwartz, P. J., Spazzolini, C. & Crotti, L. All LQT3 patients need an ICD: true or false? Heart Rhythm. 6, 113–120 (2009).

    PubMed  Google Scholar 

  136. Arnestad, M. et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 115, 361–367 (2007).

    PubMed  Google Scholar 

  137. Tester, D. J. et al. Cardiac genetic predisposition in sudden infant death syndrome. J. Am. Coll. Cardiol. 71, 1217–1227 (2018).

    PubMed  Google Scholar 

  138. Schwartz, P. J. et al. Prolongation of the QT interval and the sudden infant death syndrome. N. Engl. J. Med. 338, 1709–1714 (1998).

    CAS  PubMed  Google Scholar 

  139. Schwartz, P. J. et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N. Engl. J. Med. 343, 262–267 (2000).

    CAS  PubMed  Google Scholar 

  140. Schwartz, P. J. Molecular diagnosis in a child with sudden infant death syndrome. Lancet 358, 1342–1343 (2001).

    CAS  PubMed  Google Scholar 

  141. Saul, J. P. et al. Rationale and objectives for ECG screening in infancy. Heart Rhythm 11, 2316–2321 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Giustetto, C. et al. Long-term follow-up of patients with short QT syndrome. J. Am. Coll. Cardiol. 58, 587–595 (2011).

    PubMed  Google Scholar 

  143. Mazzanti, A. et al. Novel insight into the natural history of short QT syndrome. J. Am. Coll. Cardiol. 63, 1300–1308 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Tester, D. J. et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm. 4, 733–739 (2007).

    PubMed  PubMed Central  Google Scholar 

  145. Choi, G. et al. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation 110, 2119–2124 (2004).

    PubMed  Google Scholar 

  146. Tester, D. J., Medeiros-Domingo, A., Will, M. L., Haglund, C. M. & Ackerman, M. J. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin. Proc. 87, 524–539 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Leinonen, J. T. et al. The genetics underlying idiopathic ventricular fibrillation: a special role for catecholaminergic polymorphic ventricular tachycardia? Int. J. Cardiol. 250, 139–145 (2018).

    PubMed  Google Scholar 

  148. Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992). The original description of BrS.

    CAS  PubMed  Google Scholar 

  149. Mizusawa, Y. & Wilde, A. A. M. Brugada syndrome. Circ. Arrhythmia Electrophysiol. 5, 606–616 (2012).

    Google Scholar 

  150. Matsuo, K. et al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur. Heart J. 20, 465–470 (1999).

    CAS  PubMed  Google Scholar 

  151. Morita, H. et al. Atrial fibrillation and atrial vulnerability in patients with Brugada syndrome. J. Am. Coll. Cardiol. 40, 1437–1444 (2002).

    PubMed  Google Scholar 

  152. Milman, A. et al. Age of first arrhythmic event in Brugada syndrome: data from the SABRUS (Survey on Arrhythmic Events in Brugada Syndrome) in 678 patients. Circ. Arrhythm. Electrophysiol. 10, e005222 (2017).

    PubMed  Google Scholar 

  153. Michowitz, Y. et al. Fever-related arrhythmic events in the multicenter survey on arrhythmic events in Brugada syndrome. Heart Rhythm. 15, 1394–1401 (2018).

    PubMed  Google Scholar 

  154. Mizusawa, Y. et al. Prognostic significance of fever-induced Brugada syndrome. Heart Rhythm. 13, 1515–1520 (2016).

    PubMed  Google Scholar 

  155. Smits, J. P. P. et al. Genotype–phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J. Am. Coll. Cardiol. 40, 350–356 (2002).

    CAS  PubMed  Google Scholar 

  156. Kapplinger, J. D. et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 7, 33–46 (2010).

    PubMed  Google Scholar 

  157. Adler, A. et al. Risk stratification in Brugada syndrome: clinical characteristics, electrocardiographic parameters, and auxiliary testing. Heart Rhythm. 13, 299–310 (2016).

    PubMed  Google Scholar 

  158. Sroubek, J. et al. Programmed ventricular stimulation for risk stratification in the Brugada syndrome: a pooled analysis. Circulation 133, 622–630 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Schwartz, P. J., Moss, A. J., Vincent, G. M. & Crampton, R. S. Diagnostic criteria for the long QT syndrome. An update. Circulation 88, 782–784 (1993).

    CAS  PubMed  Google Scholar 

  160. Schwartz, P. J. & Crotti, L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation 124, 2181–2184 (2011).

    PubMed  Google Scholar 

  161. Schwartz, P. J. & Crotti, L. in Cardiac Electrophysiology. From Cell to Bedside 7th edn. (eds Zipes, D. P. & Jalife, J.) 893–904 (Elsevier, 2009).

  162. Horner, J. M., Horner, M. M. & Ackerman, M. J. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 8, 1698–1704 (2011).

    PubMed  Google Scholar 

  163. Crotti, L. et al. Vagal reflexes following an exercise stress test: a simple clinical tool for gene-specific risk stratification in the long QT syndrome. J. Am. Coll. Cardiol. 60, 2515–2524 (2012).

    PubMed  PubMed Central  Google Scholar 

  164. Nador, F. et al. Unsuspected echocardiographic abnormality in the long QT syndrome. Diagnostic, prognostic, and pathogenetic implications. Circulation 84, 1530–1542 (1991). The first evidence for a mechanical abnormality in LQTS.

    CAS  PubMed  Google Scholar 

  165. De Ferrari, G. M. et al. Effect of calcium channel block on the wall motion abnormality of the idiopathic long QT syndrome. Circulation 89, 2126–2132 (1994).

    PubMed  Google Scholar 

  166. De Ferrari, G. M. & Schwartz, P. J. Vox clamantis in deserto. We spoke but nobody was listening: echocardiography can help risk stratification of the long-QT syndrome. Eur. Heart J. 36, 148–150 (2015).

    PubMed  Google Scholar 

  167. Ter Bekke, R. M. A. et al. Electromechanical window negativity in genotyped long-QT syndrome patients: relation to arrhythmia risk. Eur. Heart J. 36, 179–186 (2015).

    PubMed  Google Scholar 

  168. Haugaa, K. H. et al. Left ventricular mechanical dispersion by tissue Doppler imaging: a novel approach for identifying high-risk individuals with long QT syndrome. Eur. Heart J. 30, 330–337 (2009).

    PubMed  Google Scholar 

  169. De Ferrari, G. M. & Schwartz, P. J. Long QT syndrome, a purely electrical disease? Not anymore. Eur. Heart J. 30, 253–255 (2009).

    PubMed  Google Scholar 

  170. Ackerman, M. J. Genetic purgatory and the cardiac channelopathies: exposing the variants of uncertain/unknown significance issue. Heart Rhythm. 12, 2325–2331 (2015). A practical and insightful view of the complexities of the genetics of channelopathies.

    PubMed  Google Scholar 

  171. Viskin, S. et al. Is idiopathic ventricular fibrillation a short QT syndrome? Comparison of QT intervals of patients with idiopathic ventricular fibrillation and healthy controls. Heart Rhythm. 1, 587–591 (2004).

    PubMed  Google Scholar 

  172. Schimpf, R., Wolpert, C., Gaita, F., Giustetto, C. & Borggrefe, M. Short QT syndrome. Cardiovasc. Res. 67, 357–366 (2005). An expert review on SQTS.

    CAS  PubMed  Google Scholar 

  173. Anttonen, O. et al. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation 116, 714–720 (2007).

    CAS  PubMed  Google Scholar 

  174. Guerrier, K. et al. Short QT interval prevalence and clinical outcomes in a pediatric population. Circ. Arrhythm. Electrophysiol. 8, 1460–1464 (2015).

    PubMed  Google Scholar 

  175. Priori, S. G. & Blomström-Lundqvist, C. 2015 European Society of Cardiology guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur. Heart J. 36, 2757–2759 (2015).

    PubMed  Google Scholar 

  176. Wolpert, C. et al. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J. Cardiovasc. Electrophysiol. 16, 54–58 (2005).

    PubMed  PubMed Central  Google Scholar 

  177. Anttonen, O. et al. Differences in twelve-lead electrocardiogram between symptomatic and asymptomatic subjects with short QT interval. Heart Rhythm. 6, 267–271 (2009).

    PubMed  Google Scholar 

  178. Schimpf, R. et al. Electromechanical coupling in patients with the short QT syndrome: further insights into the mechanoelectrical hypothesis of the U wave. Heart Rhythm. 5, 241–245 (2008).

    PubMed  Google Scholar 

  179. Tülümen, E. et al. PQ segment depression in patients with short QT syndrome: a novel marker for diagnosing short QT syndrome? Heart Rhythm. 11, 1024–1030 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Watanabe, H. et al. High prevalence of early repolarization in short QT syndrome. Heart Rhythm. 7, 647–652 (2010).

    PubMed  Google Scholar 

  181. Postma, A. V. et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J. Med. Genet. 42, 863–870 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wilde, A. A. M. et al. Proposed diagnostic criteria for the Brugada syndrome. Eur. Heart J. 23, 1648–1654 (2002).

    CAS  PubMed  Google Scholar 

  183. Makimoto, H. et al. Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome. J. Am. Coll. Cardiol. 56, 1576–1584 (2010).

    PubMed  Google Scholar 

  184. Baranchuk, A. et al. Brugada phenocopy: new terminology and proposed classification. Ann. Noninvasive Electrocardiol. 17, 299–314 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. Chockalingam, P. et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2: higher recurrence of events under metoprolol. J. Am. Coll. Cardiol. 60, 2092–2099 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Chatrath, R., Bell, C. M. & Ackerman, M. J. Beta-blocker therapy failures in symptomatic probands with genotyped long-QT syndrome. Pediatr. Cardiol. 25, 459–465 (2004).

    CAS  PubMed  Google Scholar 

  187. Wilde, A. A. M. et al. Clinical aspects of type 3 long-QT syndrome: an international multicenter study. Circulation 134, 872–882 (2016). The study that proved that β-adrenergic receptor blockers are effective also for patients with LQT3.

    PubMed  PubMed Central  Google Scholar 

  188. Schwartz, P. J. et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation. 92, 3381–3386 (1995). The first suggestion for gene-specific therapy.

    CAS  PubMed  Google Scholar 

  189. Mazzanti, A. et al. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J. Am. Coll. Cardiol. 67, 1053–1058 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Schwartz, P. J. Management of long QT syndrome. Nat. Clin. Pract. Cardiovasc. Med. 2, 346–351 (2005).

    PubMed  Google Scholar 

  191. Bos, J. M. et al. Mexiletine shortens the QT interval in patients with potassium channel-mediated type 2 long QT syndrome. Circ. Arrhythm. Electrophysiol. 12, e007280 (2019).

    CAS  PubMed  Google Scholar 

  192. Mehta, A. et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur. Heart J. 39, 1446–1455 (2018).

    CAS  PubMed  Google Scholar 

  193. Schwartz, P. J. et al. From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome type 2. Eur. Heart J. 40, 1832–1836 (2019). The first attempt to verify clinically the responses to drugs made in iPS-CMs from patients with LQTS.

    CAS  PubMed  Google Scholar 

  194. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary. J. Am. Coll. Cardiol. 138, e210–e271 (2018).

    Google Scholar 

  195. Ackerman, M. J. et al. Beta-blocker therapy for long QT syndrome and catecholaminergic polymorphic ventricular tachycardia: are all beta-blockers equivalent? Heart Rhythm. 14, e41–e44 (2017).

    PubMed  Google Scholar 

  196. Leren, I. S. et al. Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β-blockers in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 13, 432–440 (2016).

    Google Scholar 

  197. Zhou, Q. et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat. Med. 17, 1003–1009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Watanabe, H. et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat. Med. 15, 380–383 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. van der Werf, C. et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J. Am. Coll. Cardiol. 57, 2244–2254 (2011).

    PubMed  PubMed Central  Google Scholar 

  200. Kannankeril, P. J. et al. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2, 759–766 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Watanabe, H. et al. Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 10, 542–547 (2013).

    PubMed  Google Scholar 

  202. Belhassen, B. Management of Brugada syndrome 2016: should all high risk patients receive an ICD? Alternatives to implantable cardiac defibrillator therapy for Brugada syndrome. Circ. Arrhythm. Electrophysiol. 9, e004185 (2016).

    PubMed  Google Scholar 

  203. Postema, P. G. et al. Drugs and Brugada syndrome patients: review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm. 6, 1335–1341 (2009).

    PubMed  PubMed Central  Google Scholar 

  204. Pundi, K. N., Bos, J. M., Cannon, B. C. & Ackerman, M. J. Automated external defibrillator rescues among children with diagnosed and treated long QT syndrome. Heart Rhythm. 12, 776–781 (2015).

    PubMed  Google Scholar 

  205. Moss, A. J. & McDonald, J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N. Engl. J. Med. 285, 903–904 (1971).

    CAS  PubMed  Google Scholar 

  206. Schwartz, P. J. et al. Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome. A worldwide report. Circulation 84, 503–511 (1991).

    CAS  PubMed  Google Scholar 

  207. Schwartz, P. J. et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109, 1826–1833 (2004).

    PubMed  Google Scholar 

  208. Schwartz, P. J. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat. Rev. Cardiol. 11, 346–353 (2014). The updated review on cardiac sympathetic denervation in the prevention of lethal arrhythmias.

    PubMed  Google Scholar 

  209. Schwartz, P. J., Snebold, N. G. & Brown, A. M. Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am. J. Cardiol. 37, 1034–1040 (1976).

    CAS  PubMed  Google Scholar 

  210. Schwartz, P. J. & Stone, H. L. Left stellectomy and denervation supersensitivity in conscious dogs. Am. J. Cardiol. 49, 1185–1190 (1982).

    CAS  PubMed  Google Scholar 

  211. Collura, C. A., Johnson, J. N., Moir, C. & Ackerman, M. J. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm. 6, 752–759 (2009).

    PubMed  Google Scholar 

  212. Bos, J. M., Bos, K. M., Johnson, J. N., Moir, C. & Ackerman, M. J. Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ. Arrhythm. Electrophysiol. 6, 705–711 (2013).

    PubMed  Google Scholar 

  213. Schwartz, P. J., De Ferrari, G. M. & Pugliese, L. Cardiac sympathetic denervation 100 years later: Jonnesco would have never believed it. Int. J. Cardiol. 237, 25–28 (2017).

    PubMed  Google Scholar 

  214. Odero, A., Bozzani, A., De Ferrari, G. M. & Schwartz, P. J. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: the surgical supraclavicular approach to cervicothoracic sympathectomy. Heart Rhythm. 7, 1161–1165 (2010).

    PubMed  Google Scholar 

  215. Vincent, G. M. et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment “failures”. Circulation 119, 215–221 (2009).

    CAS  PubMed  Google Scholar 

  216. Horner, J. M. et al. Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience. Heart Rhythm. 7, 1616–1622 (2010).

    PubMed  Google Scholar 

  217. Schwartz, P. J. Efficacy of left cardiac sympathetic denervation has an unforeseen side effect: medicolegal complications. Heart Rhythm. 7, 1330–1332 (2010).

    PubMed  Google Scholar 

  218. Schwartz, P. J. et al. Who are the long-QT syndrome patients who receive an implantable cardioverter–defibrillator and what happens to them? Data from the European Long-QT Syndrome Implantable Cardioverter–Defibrillator (LQTS ICD) registry. Circulation 122, 1272–1282 (2010).

    PubMed  Google Scholar 

  219. Johnson, J. N. & Ackerman, M. J. Competitive sports participation in athletes with congenital long QT syndrome. JAMA 308, 764–765 (2012).

    CAS  PubMed  Google Scholar 

  220. Johnson, J. N. & Ackerman, M. J. Return to play? Athletes with congenital long QT syndrome. Br. J. Sports Med. 47, 28–33 (2013).

    PubMed  Google Scholar 

  221. Pelliccia, A. Long QT syndrome, implantable cardioverter defibrillator (ICD) and competitive sport participation: when science overcomes ethics. Br. J. Sports Med. 48, 1135–1136 (2014).

    PubMed  Google Scholar 

  222. Schwartz, P. J. in Exercise and Sport Cardiology Vol. 3 (eds Thompson, P. & Fernandez, A.) 269–278 (World Scientific Publishing Europe, 2018).

  223. Schwartz, P. J. The congenital long QT syndromes from genotype to phenotype: clinical implications. J. Intern. Med. 259, 39–47 (2006).

    CAS  PubMed  Google Scholar 

  224. Wilde, A. A. M. et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N. Engl. J. Med. 358, 2024–2029 (2008).

    CAS  PubMed  Google Scholar 

  225. Miyake, C. Y. et al. Efficacy of implantable cardioverter defibrillators in young patients with catecholaminergic polymorphic ventricular tachycardia: success depends on substrate. Circ. Arrhythm. Electrophysiol. 6, 579–587 (2013).

    CAS  PubMed  Google Scholar 

  226. Roses-Noguer, F., Jarman, J. W. E., Clague, J. R. & Till, J. Outcomes of defibrillator therapy in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 11, 58–66 (2014).

    PubMed  Google Scholar 

  227. Roston, T. M. et al. Implantable cardioverter–defibrillator use in catecholaminergic polymorphic ventricular tachycardia: a systematic review. Heart Rhythm. 15, 1791–1799 (2018).

    PubMed  Google Scholar 

  228. van der Werf, C. et al. Implantable cardioverter–defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. Eur. Heart J. 40, 2953–2961 (2019). A large study on the disquieting consequences of the ICDs in patients with CPVT.

    PubMed  Google Scholar 

  229. Nademanee, K. et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation 123, 1270–1279 (2011).

    PubMed  Google Scholar 

  230. Pappone, C. et al. Electrical substrate elimination in 135 consecutive patients with Brugada syndrome. Circ. Arrhythmia Electrophysiol. 10, 1–13 (2017).

    Google Scholar 

  231. Viskin, S. Radiofrequency ablation of asymptomatic Brugada syndrome: don’t go burning my heart. Circulation 137, 1883–1884 (2018).

    PubMed  Google Scholar 

  232. Cheung, C. C. et al. Pregnancy in catecholaminergic polymorphic ventricular tachycardia. JACC Clin. Electrophysiol. 5, 387–394 (2019).

    PubMed  Google Scholar 

  233. Rodríguez-Mañero, M. et al. The clinical significance of pregnancy in Brugada syndrome. Rev. Esp. Cardiol. 67, 176–180 (2014).

    PubMed  Google Scholar 

  234. Heradien, M. J. et al. Does pregnancy increase cardiac risk for LQT1 patients with the KCNQ1-A341V mutation? J. Am. Coll. Cardiol. 48, 1410–1415 (2006).

    CAS  PubMed  Google Scholar 

  235. Ishibashi, K. et al. Arrhythmia risk and β-blocker therapy in pregnant women with long QT syndrome. Heart 103, 1374–1379 (2017).

    PubMed  Google Scholar 

  236. Duan, L., Ng, A., Chen, W., Spencer, H. T. & Lee, M.-S. Beta-blocker subtypes and risk of low birth weight in newborns. J. Clin. Hypertens. 20, 1603–1609 (2018).

    CAS  Google Scholar 

  237. Cuneo, B. F. et al. Mothers with long QT syndrome are at increased risk for fetal death: findings from a multicenter international study. Am. J. Obstet. Gynecol. 222, 263.e1–263.e11 (2020). The risk of fetal death in LQTS families.

    Google Scholar 

  238. Vogl, S. E. et al. Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG 113, 441–445 (2006).

    CAS  PubMed  Google Scholar 

  239. Fazio, G., Vernuccio, F., Grutta, G. & Re, G. L. Drugs to be avoided in patients with long QT syndrome: focus on the anaesthesiological management. World J. Cardiol. 5, 87–93 (2013).

    PubMed  PubMed Central  Google Scholar 

  240. Bodi, I. et al. Postpartum hormones oxytocin and prolactin cause pro-arrhythmic prolongation of cardiac repolarization in long QT syndrome type 2. Europace 21, 1126–1138 (2019).

    PubMed  Google Scholar 

  241. Martillotti, G., Talajic, M., Rey, E. & Leduc, L. Long QT syndrome in pregnancy: are vaginal delivery and use of oxytocin permitted? A case report. J. Obstet. Gynaecol. Can. 34, 1073–1076 (2012).

    PubMed  Google Scholar 

  242. Schwartz, P. J. et al. Guidelines for the interpretation of the neonatal electrocardiogram. A task force of the European Society of Cardiology. Eur. Heart J. 23, 1329–1344 (2002).

    CAS  PubMed  Google Scholar 

  243. Walsh, S. Z. Electrocardiographic intervals during the first week of life. Am. Heart J. 66, 36–41 (1963).

    CAS  PubMed  Google Scholar 

  244. Stramba-Badiale, M. et al. For neonatal ECG screening there is no reason to relinquish old Bazett’s correction. Eur. Heart J. 39, 2888–2895 (2018).

    PubMed  Google Scholar 

  245. Dahdouh, E. M. et al. Technical update: preimplantation genetic diagnosis and screening. J Obstet. Gynaecol. Can. 37, 451–463 (2015).

    PubMed  Google Scholar 

  246. Treff, N. R. & Zimmerman, R. S. Advances in preimplantation genetic testing for monogenic disease and aneuploidy. Annu. Rev. Genomics Hum. Genet. 18, 189–200 (2017).

    CAS  PubMed  Google Scholar 

  247. Regitz-Zagrosek, V. et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur. Heart J. 39, 3165–3241 (2018).

    PubMed  Google Scholar 

  248. Antiel, R. M. et al. Quality of life after videoscopic left cardiac sympathetic denervation in patients with potentially life-threatening cardiac channelopathies/cardiomyopathies. Heart Rhythm. 13, 62–69 (2016).

    PubMed  Google Scholar 

  249. Schwartz, P. J. When the risk is sudden death, does quality of life matter? Heart Rhythm. 13, 70–71 (2016).

    PubMed  Google Scholar 

  250. Ackerman, M. J., Zipes, D. P., Kovacs, R. J. & Maron, B. J. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 10: the cardiac channelopathies: a scientific statement from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 66, 2424–2428 (2015).

    PubMed  Google Scholar 

  251. Heidbüchel, H. et al. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace https://doi.org/10.1093/europace/euaa106 (2020).

  252. Wu, J. C. et al. Towards precision medicine with human iPSCs for cardiac channelopathies. Circ. Res. 125, 653–658 (2019).

    CAS  PubMed  Google Scholar 

  253. Liu, D. W., Gintant, G. A. & Antzelevitch, C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ. Res. 72, 671–687 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. De Tomasi (Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy) for an extraordinary editorial support. C.A. acknowledges support from NHLBI (HL47678, HL138103 and HL152201), the W.W. Smith Charitable Trust and the Martha and Wistar Morris Fund; C.R.B., P.J.S. and A.A.M.W. acknowledge the support of ERN GUARD-Heart; C.R.B. and A.A.M.W. acknowledge the support of the Netherlands Heart Foundation (CVON Predict2 project) and Leducq Foundation for Cardiovascular Research grant 17CVD02 “The sodium channel as a therapeutic target for prevention of lethal cardiac arrhythmias”; P.J.S. acknowledges the support of Leducq Foundation for Cardiovascular Research grant 18CVD05 “Towards Precision Medicine with Human iPSCs for Cardiac Channelopathies” and of ESCAPE-NET project (European Union’s Framework Horizon 2020 programme under grant agreement no. 733381). M.B. acknowledges support from the German Center for Cardiovascular Research (DZHK) and Hector Foundation. M.J.A. acknowledges support from the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.J.S.); Epidemiology (P.J.S. and C.R.B.); Mechanisms/pathophysiology (P.J.S., C.R.B., C.A., A.A.M.W., M.B. and M.J.A.); Diagnosis, screening and prevention (P.J.S., A.A.M.W., M.B. and M.J.A.); Management (P.J.S., A.A.M.W., M.B., M.J.A. and B.F.C.); Quality of life (P.J.S., A.A.M.W. and M.J.A.); Outlook (P.J.S., A.A.M.W., M.B. and M.J.A.); Overview of Primer (P.J.S.).

Corresponding author

Correspondence to Peter J. Schwartz.

Ethics declarations

Competing interests

M.J.A. is a consultant for Audentes Therapeutics, Boston Scientific, Gilead Sciences, Invitae, Medtronic, MyoKardia and St. Jude Medical, and holds equity/royalties of AliveCor, Blue Ox Health and StemoniX. C.A. is a consultant for Novartis Institutes for BioMedical Research, Inc. and Trevena, Inc. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks J. Kanters, R. Kass, H. Morita, S. Nattel, S. Ohno, Y. Rudy, K. Shivkumar, M. Yano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Brugadadrugs.org: www.brugadadrugs.org

European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART): http://guardheart.ern-net.eu

Glossary

U wave

A small deflection immediately following the T wave and usually in the same direction.

Polymorphic ventricular tachycardia

Rapid ventricular rhythm with a continuously varying QRS complex morphology.

Refractoriness

Also known as refractory period. The period of depolarization and repolarization of the cell membrane after excitation during which the cell cannot respond to a second electrical stimulus.

Reentry

A self-sustaining rhythm abnormality that occurs when the propagating electric impulse fails to conclude and the action potential propagates in a closed loop manner.

Torsades de Pointes

A specific form of polymorphic ventricular tachycardia characterized by a gradual change in the amplitude and twisting of the QRS complexes around the isoelectric line.

Conduction velocity

The speed at which an action potential is distributed throughout the myocardium; conduction velocity is still the primary metric for quantifying the spread of electrical activity in cardiac muscle.

Transmural dispersion of repolarization

The difference between the longest and the shortest repolarization times measured at two points across the cardiac wall.

Early afterdepolarization

Spontaneous diastolic depolarization that occurs during phase 2 and/or phase 3 of the cardiac action potential, thereby delaying repolarization.

Triggered activity

The generation of spontaneous action potentials outside the sinus node as a result of afterdepolarizations.

Focal activity

Abnormal formation of a depolarizing impulse outside the sinus node.

Wavelength

The distance travelled by the excitation wave during its refractory period.

Delayed afterdepolarizations

Spontaneous diastolic depolarizations that occur after repolarization is complete.

Bidirectional VT

A ventricular tachycardia (VT) in which the QRS axis (as seen in the frontal electrocardiogram leads) shifts 180° with each alternate beat.

J waves

Dome-like deflections of the electrocardiogram trace between the QRS complex and the ST segment.

Right ventricular outflow tract

(RVOT). An extension of the infundibulum (a conical pouch of the right ventricle) in the ventricular cavity through which the blood flows towards the pulmonary artery.

T wave alternans

Beat-to-beat variation in the polarity or amplitude of T waves; this phenomenon indicates an unevenness in the refractoriness of the myocardium and points to elevated cardiac electrical instability.

Electrical axis

The net direction of the depolarization activity, resulting from the sum of all the electrical vectors on ECG.

Bigeminy

Heart rhythm characterized by two beats close together with a pause following each pair of beats; the first beat in the pair is the sinus beat, whereas the second one is a premature contraction. Bigeminy rhythm is often associated with the sensation of the heart skipping a beat.

PVC couplets

Two premature ventricular contractions (PVCs) in consecutive heart beats.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, P.J., Ackerman, M.J., Antzelevitch, C. et al. Inherited cardiac arrhythmias. Nat Rev Dis Primers 6, 58 (2020). https://doi.org/10.1038/s41572-020-0188-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0188-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing