Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Immune-related adverse events of checkpoint inhibitors

Abstract

Cancer immunotherapies have changed the landscape of cancer treatment during the past few decades. Among them, immune checkpoint inhibitors, which target PD-1, PD-L1 and CTLA-4, are increasingly used for certain cancers; however, this increased use has resulted in increased reports of immune-related adverse events (irAEs). These irAEs are unique and are different to those of traditional cancer therapies, and typically have a delayed onset and prolonged duration. IrAEs can involve any organ or system. These effects are frequently low grade and are treatable and reversible; however, some adverse effects can be severe and lead to permanent disorders. Management is primarily based on corticosteroids and other immunomodulatory agents, which should be prescribed carefully to reduce the potential of short-term and long-term complications. Thoughtful management of irAEs is important in optimizing quality of life and long-term outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of immune checkpoints and immune checkpoint inhibitors.
Fig. 2: Mechanism of immune-related adverse events.
Fig. 3: Radiological and/or photographical appearance of immune-related adverse events.
Fig. 4: Rate of reactivation/flare of pre-existing autoimmune diseases after immune checkpoint inhibitor therapy.
Fig. 5: Suggested therapeutic algorithm for the organ-by-organ management of irAEs.

Similar content being viewed by others

References

  1. Sanmamed, M. F. & Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoos, A. Development of immuno-oncology drugs — from CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 15, 235–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018). One of the first central reviews surveying the irAEs associated with ICIs and their management.

    Article  CAS  PubMed  Google Scholar 

  4. Ramos-Casals, M. et al. Immune-related adverse events induced by cancer immunotherapies. Big data analysis of 13,051 cases (Immunocancer International Registry). Ann. Rheum. Dis. 78, 607–608 (2019).

  5. National Cancer Institute. Common terminology criteria for adverse events (CTCAE). NCI https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm (2019).

  6. Xu, C. et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363, k4226 (2018). An elegant systematic review and network meta-analysis providing a complete toxicity profile, toxicity spectrum and a safety ranking of the main ICI drugs (nivolumab, pembrolizumab, ipilimumab, tremelimumab and atezolizumab).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Yoest, J. M. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: a short review. ImmunoTargets Ther. 6, 73–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parakh, S., Cebon, J. & Klein, O. Delayed autoimmune toxicity occurring several months after cessation of anti-PD-1 therapy. Oncologist 23, 849–851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kanjanapan, Y. et al. Delayed immune-related adverse events in assessment for dose-limiting toxicity in early phase immunotherapy trials. Eur. J. Cancer 107, 1–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Sandigursky, S. & Mor, A. Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Curr. Rheumatol. Rep. 20, 65 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pauken, K. E., Dougan, M., Rose, N. R., Lichtman, A. H. & Sharpe, A. H. Adverse events following cancer immunotherapy: obstacles and opportunities. Trends Immunol. 40, 511–523 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L. & Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Seidel, J. A., Otsuka, A. & Kabashima, K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol. 8, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felis-Giemza, A. & Moots, R. J. Measurement of anti-drug antibodies to biologic drugs. Rheumatology 54, 1941–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Agrawal, S. et al. Evaluation of immunogenicity of nivolumab monotherapy and its clinical relevance in patients with metastatic solid tumors. J. Clin. Pharmacol. 57, 394–400 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Enrico, D., Paci, A., Chaput, N., Karamouza, E. & Besse, B. Anti-drug antibodies against immune checkpoint blockers: impairment of drug efficacy or indication of immune activation? Clin Cancer Res. 26, 787–792 (2020).

    Article  PubMed  Google Scholar 

  21. Langer, C. J. et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 17, 1497–1508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Cappelli, L. C. et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin. Arthritis Rheum. 48, 553–557 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Le Burel, S. et al. Prevalence of immune-related systemic adverse events in patients treated with anti-programmed cell death 1/anti-programmed cell death-ligand 1 agents: a single-centre pharmacovigilance database analysis. Eur. J. Cancer 82, 34–44 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Lidar, M. et al. Rheumatic manifestations among cancer patients treated with immune checkpoint inhibitors. Autoimmun. Rev. 17, 284–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Stamatouli, A. M. et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 67, 1471–1480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cappelli, L. C., Gutierrez, A. K., Bingham, C. O. III & Shah, A. A. Rheumatic and musculoskeletal immune-related adverse events due to immune checkpoint inhibitors: a systematic review of the literature. Arthritis Care Res. 69, 1751–1763 (2017).

    Article  Google Scholar 

  28. Pizarro, C. et al. PD-L1 gene polymorphisms and low serum level of PD-L1 protein are associated to type 1 diabetes in Chile. Diabetes Metab. Res. Rev. 30, 761–766 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Vaidya, B. et al. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology 41, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kartolo, A., Sattar, J., Sahai, V., Baetz, T. & Lakoff, J. M. Predictors of immunotherapy-induced immune-related adverse events. Curr. Oncol. 25, e403–e410 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eun, Y. et al. Risk factors for immune-related adverse events associated with anti-PD-1 pembrolizumab. Sci. Rep. 9, 14039 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kichenadasse, G. et al. Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung cancer. JAMA Oncol. 6, 512–518 (2020).

    Article  Google Scholar 

  33. Richtig, G. et al. Body mass index may predict the response to ipilimumab in metastatic melanoma: an observational multi-centre study. PLoS One 13, e0204729 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Daste, A. et al. Immune checkpoint inhibitors and elderly people: a review. Eur. J. Cancer 82, 155–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Chiarion Sileni, V. et al. Efficacy and safety of ipilimumab in elderly patients with pretreated advanced melanoma treated at Italian centres through the expanded access programme. J. Exp. Clin. Cancer Res. 33, 30 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sury, K., Perazella, M. A. & Shirali, A. C. Cardiorenal complications of immune checkpoint inhibitors. Nat. Rev. Nephrol. 14, 571–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Klocke, K., Sakaguchi, S., Holmdahl, R. & Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl Acad. Sci. USA 113, E2383–E2392 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lo, B. et al. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood 128, 1037–1042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Pico de Coana, Y. et al. Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their arginase1 production. Cancer Immunol. Res. 1, 158–162 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 25, 1233–1238 (2019).

    Article  PubMed  Google Scholar 

  43. Knochelmann, H. M. et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol. 15, 458–469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noack, M. & Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 13, 668–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. von Euw, E. et al. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J. Transl. Med. 7, 35 (2009).

    Article  CAS  Google Scholar 

  46. Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-beta1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Latchman, Y. E. et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl Acad. Sci. USA 101, 10691–10696 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gianchecchi, E. & Fierabracci, A. Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression. Front. Immunol. 9, 2374 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Okazaki, T. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 9, 1477–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Okazaki, T. et al. Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b−/−Pdcd1−/− mice. J. Exp. Med. 202, 1643–1648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gambichler, T. et al. Decline of programmed death-1-positive circulating T regulatory cells predicts more favourable clinical outcome of patients with melanoma under immune checkpoint blockade. Br. J. Dermatol. https://doi.org/10.1111/bjd.18379 (2019).

  54. Laurent, S. et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. J. Transl. Med. 11, 108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murakami, N., Borges, T. J., Yamashita, M. & Riella, L. V. Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clin. Kidney J. 9, 411–417 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim, S. T. et al. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: a case series. Ann. Rheum. Dis. 76, 2061–2064 (2017).

    Article  PubMed  Google Scholar 

  57. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Byrne, E. H. & Fisher, D. E. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer 123, 2143–2153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cheng, F. & Loscalzo, J. Autoimmune cardiotoxicity of cancer immunotherapy. Trends Immunol. 38, 77–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Petersone, L. et al. T cell/B cell collaboration and autoimmunity: an intimate relationship. Front. Immunol. 9, 1941 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230ra45 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Moel, E. C. et al. Autoantibody development under treatment with immune-checkpoint inhibitors. Cancer Immunol. Res. 7, 6–11 (2019).

    Article  PubMed  Google Scholar 

  65. Delyon, J., Mateus, C. & Lambert, T. Hemophilia A induced by ipilimumab. N. Engl. J. Med. 365, 1747–1748 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Min, L., Vaidya, A. & Becker, C. Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy. Eur. J. Endocrinol. 164, 303–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Kanameishi, S. et al. Idiopathic thrombocytopenic purpura induced by nivolumab in a metastatic melanoma patient with elevated PD-1 expression on B cells. Ann. Oncol. 27, 546–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Kong, Y.-C. M. & Flynn, J. C. Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front. Immunol. 5, 206 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Sadik, C. D., Langan, E. A., Gratz, V., Zillikens, D. & Terheyden, P. Checkpoint inhibition may trigger the rare variant of anti-LAD-1 IgG-positive, anti-BP180 NC16A IgG-negative bullous pemphigoid. Front. Immunol. 10, 1934 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramos-Casals, M. et al. Sicca/Sjogren’s syndrome triggered by PD-1/PD-L1 checkpoint inhibitors. Data from the International Immunocancer Registry (ICIR). Clin. Exp. Rheumatol. 37, 114–122 (2019).

    PubMed  Google Scholar 

  71. Warner, B. M. et al. Sicca syndrome associated with immune checkpoint inhibitor therapy. Oncologist 24, 1259–1269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cappelli, L. C. et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann. Rheum. Dis. 76, 43–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Makarious, D., Horwood, K. & Coward, J. I. G. Myasthenia gravis: an emerging toxicity of immune checkpoint inhibitors. Eur. J. Cancer 82, 128–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki, S. et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89, 1127–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Grabie, N. et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation 116, 2062–2071 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, L. et al. Cardiotoxicity of immune checkpoint inhibitors. Curr. Treat. Options Cardiovasc. Med. 21, 32 (2019).

    Article  PubMed  Google Scholar 

  77. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heinzerling, L. et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zimmer, L. et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur. J. Cancer 60, 210–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Belum, V. R. et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur. J. Cancer 60, 12–25 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Voskens, C. J. et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One 8, e53745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goldinger, S. M. et al. Cytotoxic cutaneous adverse drug reactions during anti-PD-1 therapy. Clin. Cancer Res. 22, 4023–4029 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Sibaud, V. Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy. Am. J. Clin. Dermatol. 19, 345–361 (2018).

    Article  PubMed  Google Scholar 

  84. Weber, J. S., Kahler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Sosa, A., Lopez Cadena, E., Simon Olive, C., Karachaliou, N. & Rosell, R. Clinical assessment of immune-related adverse events. Ther. Adv. Med. Oncol. 10, 1758835918764628 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Minkis, K., Garden, B. C., Wu, S., Pulitzer, M. P. & Lacouture, M. E. The risk of rash associated with ipilimumab in patients with cancer: a systematic review of the literature and meta-analysis. J. Am. Acad. Dermatol. 69, e121–e128 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, X. & Qin, S. Immune checkpoint inhibitors in hepatocellular carcinoma: opportunities and challenges. Oncologist 24, S3–S10 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 5, 95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thompson, J. A. et al. Management of immunotherapy-related toxicities, version 1.2019. J. Natl. Compr. Cancer Netw. 17, 255–289 (2019).

    Article  Google Scholar 

  90. Brahmer, J. R. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 36, 1714–1768 (2018). A practical, central position document convened by a multi-disciplinary, multi-organizational panel of experts (from medical oncology, dermatology, gastroenterology, rheumatology, pulmonology, endocrinology, urology, neurology, haematology, emergency medicine, nursing, trialist and advocacy) offering guidance on the recommended management of irAEs in patients treated with ICIs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Girotra, M. et al. The current understanding of the endocrine effects from immune checkpoint inhibitors and recommendations for management. JNCI Cancer Spectr. 2, pky021 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ryder, M., Callahan, M., Postow, M. A., Wolchok, J. & Fagin, J. A. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr. Relat. Cancer 21, 371–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Corsello, S. M. et al. Endocrine side effects induced by immune checkpoint inhibitors. J. Clin. Endocrinol. Metab. 98, 1361–1375 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Sznol, M. et al. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat. Rev. 58, 70–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Lu, J., Li, L., Lan, Y., Liang, Y. & Meng, H. Immune checkpoint inhibitor-associated pituitary-adrenal dysfunction: a systematic review and meta-analysis. Cancer Med. 8, 7503–7515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Barroso-Sousa, R. et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 4, 173–182 (2018). A systematic review and meta-analysis analysing the incidence of all-grade hypothyroidism, hyperthyroidism, hypophysitis, primary adrenal insufficiency and insulin-deficient diabetes mellitus associated with ICIs.

    Article  PubMed  Google Scholar 

  97. Dillard, T., Yedinak, C. G., Alumkal, J. & Fleseriu, M. Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes. Pituitary 13, 29–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Faje, A. T. et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J. Clin. Endocrinol. Metab. 99, 4078–4085 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Byun, D. J., Wolchok, J. D., Rosenberg, L. M. & Girotra, M. Cancer immunotherapy — immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 13, 195–207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chang, L.-S. et al. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr. Rev. 40, 17–65 (2019).

    PubMed  Google Scholar 

  101. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Naidoo, J. et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J. Clin. Oncol. 35, 709–717 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Hassel, J. C. et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): evaluation and management of adverse drug reactions. Cancer Treat. Rev. 57, 36–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Delivanis, D. A. et al. Pembrolizumab-induced thyroiditis. Comprehensive clinical review and insights into underlying involved mechanisms. J. Clin. Endocrinol. Metab. 102, 2770–2780 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Geukes Foppen, M. H. et al. Immune checkpoint inhibition-related colitis: symptoms, endoscopic features, histology and response to management. ESMO Open 3, e000278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hughes, M. S. et al. Colitis after checkpoint blockade: a retrospective cohort study of melanoma patients requiring admission for symptom control. Cancer Med. 8, 4986–4999 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abu-Sbeih, H. et al. Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis. J. Immunother. Cancer 6, 95 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Verschuren, E. C. et al. Clinical, endoscopic, and histologic characteristics of ipilimumab-associated colitis. Clin. Gastroenterol. Hepatol. 14, 836–842 (2016).

    Article  PubMed  Google Scholar 

  111. Karamchandani, D. M. & Chetty, R. Immune checkpoint inhibitor-induced gastrointestinal and hepatic injury: pathologists’ perspective. J. Clin. Pathol. 71, 665–671 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet. Oncol. 15, 700–712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eggermont, A. M. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kleiner, D. E. & Berman, D. Pathologic changes in ipilimumab-related hepatitis in patients with metastatic melanoma. Dig. Dis. Sci. 57, 2233–2240 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Delanoy, N. et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L1 immunotherapy: a descriptive observational study. Lancet Haematol. 6, e48–e57 (2019). A descriptive observational study describing patients presenting with haematological irAEs induced by PD-1 or PD-L1 inhibitor immunotherapy registered in three French pharmacovigilance databases (REISAMIC, ImmunoTOX and CeReCAI).

    Article  PubMed  Google Scholar 

  120. Perrinjaquet, C., Desbaillets, N. & Hottinger, A. F. Neurotoxicity associated with cancer immunotherapy: immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy. Curr. Opin. Neurol. 32, 500–510 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Cuzzubbo, S. et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur. J. Cancer 73, 1–8 (2017). A systematic search of literature including 59 clinical trials centred on analysing the incidence and characteristics of neurological irAEs.

    Article  CAS  PubMed  Google Scholar 

  122. Sato, K., Mano, T., Iwata, A. & Toda, T. Neurological and related adverse events in immune checkpoint inhibitors: a pharmacovigilance study from the Japanese Adverse Drug Event Report database. J. Neurooncol. 145, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Dubey, D. et al. Varied phenotypes and management of immune checkpoint inhibitor-associated neuropathies. Neurology 93, e1093–e1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Bitton, K. et al. Prevalence and clinical patterns of ocular complications associated with anti-PD-1/PD-L1 anticancer immunotherapy. Am. J. Ophthalmol. 202, 109–117 (2019).

    Article  PubMed  Google Scholar 

  125. Beck, K. E. et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 24, 2283–2289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Postow, M. A. Managing immune checkpoint-blocking antibody side effects. Am. Soc. Clin. Oncol. Educ. Book 35, 76–83 (2015).

    Article  Google Scholar 

  127. Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Nishino, M., Giobbie-Hurder, A., Hatabu, H., Ramaiya, N. H. & Hodi, F. S. Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol. 2, 1607–1616 (2016).

    Article  PubMed  Google Scholar 

  129. Ma, K. et al. The relative risk and incidence of immune checkpoint inhibitors related pneumonitis in patients with advanced cancer: a meta-analysis. Front. Pharmacol. 9, 1430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nishino, M. et al. PD-1 inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course. Clin. Cancer Res. 22, 6051–6060 (2016). This paper provides a clear description of the main clinical characteristics, radiographic patterns and treatment course of PD-1 inhibitor-related pneumonitis in patients with advanced cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cortazar, F. B. et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 90, 638–647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wanchoo, R. et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am. J. Nephrol. 45, 160–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Perazella, M. A. & Shirali, A. C. Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? Kidney Int. 97, 62–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Ramos-Casals, M. et al. THU0649 phenotypic clusters of rheumatic/systemic immune-related adverse events induced by cancer immunotherapies (Immunocancer International Registry). Ann. Rheum. Dis. 78, 620–621 (2019).

    Google Scholar 

  137. Manolios, N. & Schrieber, L. Checkpoint inhibitors and arthritis. Ann. Rheum. Dis. 78, e58 (2019).

    Article  PubMed  Google Scholar 

  138. Richter, M. D. et al. Rheumatic syndromes associated with immune checkpoint inhibitors: a single-center cohort of sixty-one patients. Arthritis Rheumatol. 71, 468–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Kostine, M. et al. Rheumatic disorders associated with immune checkpoint inhibitors in patients with cancer — clinical aspects and relationship with tumour response: a single-centre prospective cohort study. Ann. Rheum. Dis. 77, 393–398 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Buder-Bakhaya, K. et al. Characterization of arthralgia induced by PD-1 antibody treatment in patients with metastasized cutaneous malignancies. Cancer Immunol. Immunother. 67, 175–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Anquetil, C. et al. Immune checkpoint inhibitor-associated myositis. Circulation 138, 743–745 (2018).

    Article  PubMed  Google Scholar 

  142. Touat, M. et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 91, e985–e994 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Cornejo, C. M., Haun, P., English, J. III & Rosenbach, M. Immune checkpoint inhibitors and the development of granulomatous reactions. J. Am. Acad. Dermatol. 81, 1165–1175 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Gkiozos, I. et al. Sarcoidosis-like reactions induced by checkpoint inhibitors. J. Thorac. Oncol. 13, 1076–1082 (2018).

    Article  PubMed  Google Scholar 

  145. Salem, J.-E. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 19, 1579–1589 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Daxini, A., Cronin, K. & Sreih, A. G. Vasculitis associated with immune checkpoint inhibitors — a systematic review. Clin. Rheumatol. 37, 2579–2584 (2018).

    Article  PubMed  Google Scholar 

  147. Ramos-Casals, M. et al. Sicca/Sjögren syndrome triggered by PD-1/PD-L1 checkpoint inhibitors: data from the International Immunocancer Registry (ICIR). Clin. Exp. Rheumatol. 37, 114–122 (2019).

    PubMed  Google Scholar 

  148. Hodi, F. S. et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1480–1492 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Fadel, F., El Karoui, K. & Knebelmann, B. Anti-CTLA4 antibody-induced lupus nephritis. N. Engl. J. Med. 361, 211–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Abdel-Wahab, N., Shah, M., Lopez-Olivo, M. A. & Suarez-Almazor, M. E. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann. Intern. Med. 168, 121–130 (2018). A complete summary of the evidence on irAEs associated with ICIs in patients with cancer and pre-existing autoimmune disease.

    Article  PubMed  Google Scholar 

  151. Danlos, F.-X. et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur. J. Cancer 91, 21–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Kostine, M. et al. OP0165 EULAR recommendations for the diagnosis and the management of rheumatic immune-related adverse events due to cancer immunotherapy. Ann. Rheum. Dis. 78, 158 (2019).

    Article  Google Scholar 

  153. Kaur, A. et al. Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors: a single-center experience. Medicine 98, e17348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kahler, K. C. et al. Ipilimumab in metastatic melanoma patients with pre-existing autoimmune disorders. Cancer Immunol. Immunother. 67, 825–834 (2018).

    Article  PubMed  CAS  Google Scholar 

  155. Tison, A. et al. Safety and efficacy of immune checkpoint inhibitors in patients with cancer and preexisting autoimmune disease: a nationwide, multicenter cohort study. Arthritis Rheumatol. 71, 2100–2111 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    Article  PubMed  Google Scholar 

  157. Leonardi, G. C. et al. Safety of programmed death-1 pathway inhibitors among patients with non-small-cell lung cancer and preexisting autoimmune disorders. J. Clin. Oncol. 36, 1905–1912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gutzmer, R. et al. Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur. J. Cancer 75, 24–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Menzies, A. M. et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 28, 368–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Mammen, A. L. et al. Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann. Rheum. Dis. 78, 150–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Kobayashi, T. et al. Patients with antithyroid antibodies are prone to develop destructive thyroiditis by nivolumab: a prospective study. J. Endocr. Soc. 2, 241–251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ali, O. H. et al. BP180-specific IgG is associated with skin adverse events, therapy response and overall survival in non-small cell lung cancer patients treated with checkpoint inhibitors. J. Am. Acad. Dermatol. 82, 854–861 (2020).

    Article  CAS  Google Scholar 

  164. Sakakida, T. et al. Safety and efficacy of PD-1/PD-L1 blockade in patients with preexisting antinuclear antibodies. Clin. Transl. Oncol. https://doi.org/10.1007/s12094-019-02214-8 (2019).

    Article  PubMed  Google Scholar 

  165. Tahir, S. A. et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc. Natl Acad. Sci. USA 116, 22246–22251 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Young, A., Quandt, Z. & Bluestone, J. A. The balancing act between cancer immunity and autoimmunity in response to immunotherapy. Cancer Immunol. Res. 6, 1445–1452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Haanen, J. B. A. G. et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv264–iv266 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Min, L. et al. Systemic high-dose corticosteroid treatment does not improve the outcome of ipilimumab-related hypophysitis: a retrospective cohort study. Clin. Cancer Res. 21, 749–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Weber, J. et al. A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin. Cancer Res. 15, 5591–5598 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Torino, F., Corsello, S. M. & Salvatori, R. Endocrinological side-effects of immune checkpoint inhibitors. Curr. Opin. Oncol. 28, 278–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Roberts, J. et al. Hydroxychloroquine is a safe and effective steroid-sparing agent for immune checkpoint inhibitor-induced inflammatory arthritis. Clin. Rheumatol. 38, 1513–1519 (2019).

    Article  PubMed  Google Scholar 

  172. Schwab, I. & Nimmerjahn, F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat. Rev. Immunol. 13, 176–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Touat, M., Talmasov, D., Ricard, D. & Psimaras, D. Neurological toxicities associated with immune-checkpoint inhibitors. Curr. Opin. Neurol. 30, 659–668 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Baddley, J. W. et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (soluble immune effector molecules [I]: anti-tumor necrosis factor-α agents). Clin. Microbiol. Infect. 24, S10–S20 (2018).

  175. Martins, F. et al. New therapeutic perspectives to manage refractory immune checkpoint-related toxicities. Lancet Oncol. 20, e54–e64 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Johnson, D. H. et al. Infliximab associated with faster symptom resolution compared with corticosteroids alone for the management of immune-related enterocolitis. J. Immunother. Cancer 6, 103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Bergqvist, V. et al. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol. Immunother. 66, 581–592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Abu-Sbeih, H. et al. Outcomes of vedolizumab therapy in patients with immune checkpoint inhibitor-induced colitis: a multi-center study. J. Immunother. Cancer 6, 142 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Siakavellas, S. I. & Bamias, G. Checkpoint inhibitor colitis: a new model of inflammatory bowel disease? Curr. Opin. Gastroenterol. 34, 377–383 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Stroud, C. R. et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J. Oncol. Pharm. Pract. 25, 551–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Williams, T. J. et al. Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer. JAMA Neurol. 73, 928–933 (2016).

    Article  PubMed  Google Scholar 

  183. Khan, U., Ali, F., Khurram, M. S., Zaka, A. & Hadid, T. Immunotherapy-associated autoimmune hemolytic anemia. J. Immunother. Cancer 5, 15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Sowerby, L., Dewan, A. K., Granter, S., Gandhi, L. & LeBoeuf, N. R. Rituximab treatment of nivolumab-induced bullous pemphigoid. JAMA Dermatol. 153, 603–605 (2017).

    Article  PubMed  Google Scholar 

  185. Salem, J.-E. et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).

    Article  PubMed  Google Scholar 

  186. Esfahani, K. et al. Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N. Engl. J. Med. 380, 2375–2376 (2019).

    Article  PubMed  Google Scholar 

  187. Akiyama, M., Kaneko, Y., Yamaoka, K., Kondo, H. & Takeuchi, T. Association of disease activity with acute exacerbation of interstitial lung disease during tocilizumab treatment in patients with rheumatoid arthritis: a retrospective, case-control study. Rheumatol. Int. 36, 881–889 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Korzenik, J., Larsen, M. D., Nielsen, J., Kjeldsen, J. & Norgard, B. M. Increased risk of developing Crohn’s disease or ulcerative colitis in 17018 patients while under treatment with anti-TNFα agents, particularly etanercept, for autoimmune diseases other than inflammatory bowel disease. Aliment. Pharmacol. Ther. 50, 289–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Danese, S. & Fiorino, G. Anti-TNF biosimilars in inflammatory bowel disease: searching the proper patient’s profile. Curr. Med. Chem. 26, 280–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Strangfeld, A. et al. Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Ann. Rheum. Dis. 76, 504–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Redelman-Sidi, G. et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (immune checkpoint inhibitors, cell adhesion inhibitors, sphingosine-1-phosphate receptor modulators and proteasome inhibitors). Clin. Microbiol. Infect. 24, S95–S107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Andrews, S. & Holden, R. Characteristics and management of immune-related adverse effects associated with ipilimumab, a new immunotherapy for metastatic melanoma. Cancer Manag. Res. 4, 299–307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Del Castillo, M. et al. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 63, 1490–1493 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Franklin, C. et al. Cytomegalovirus reactivation in patients with refractory checkpoint inhibitor-induced colitis. Eur. J. Cancer 86, 248–256 (2017).

    Article  PubMed  Google Scholar 

  195. Kuo, J. R. et al. Severe diarrhea in the setting of immune checkpoint inhibitors. Case Rep. Gastroenterol. 12, 704–708 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Schwarz, M. et al. Immunosuppression for immune checkpoint-related toxicity can cause Pneumocystis jirovecii pneumonia (PJP) in non-small-cell lung cancer (NSCLC): a report of 2 cases. Clin. Lung Cancer 20, e247–e250 (2019).

    Article  PubMed  Google Scholar 

  197. Picchi, H. et al. Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment. Clin. Microbiol. Infect. 24, 216–218 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Koksal, A. S. et al. HBV-related acute hepatitis due to immune checkpoint inhibitors in a patient with malignant melanoma. Ann. Oncol. 28, 3103–3104 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Pandey, A., Ezemenari, S., Liaukovich, M., Richard, I. & Boris, A. A rare case of pembrolizumab-induced reactivation of hepatitis B. Case Rep. Oncol. Med. 2018, 5985131 (2018).

    PubMed  PubMed Central  Google Scholar 

  200. Uslu, U. et al. Autoimmune colitis and subsequent CMV-induced hepatitis after treatment with ipilimumab. J. Immunother. 38, 212–215 (2015).

    Article  PubMed  Google Scholar 

  201. Johnson, D. B., Sullivan, R. J. & Menzies, A. M. Immune checkpoint inhibitors in challenging populations. Cancer 123, 1904–1911 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  CAS  Google Scholar 

  203. Pollack, M. H. et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann. Oncol. 29, 250–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Santini, F. C. et al. Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol. Res. 6, 1093–1099 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Simonaggio, A. et al. Evaluation of readministration of immune checkpoint inhibitors after immune-related adverse events in patients with cancer. JAMA Oncol. 5, 1310–1317 (2019).

    Article  Google Scholar 

  206. Abu-Sbeih, H. et al. Resumption of immune checkpoint inhibitor therapy after immune-mediated colitis. J. Clin. Oncol. 37, 2738–2745 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. van Holstein, Y. et al. Efficacy and adverse events of immunotherapy with checkpoint inhibitors in older patients with cancer. Drugs Aging 36, 927–938 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Hall, E. T. et al. Patient-reported outcomes for cancer patients receiving checkpoint inhibitors: opportunities for palliative care — a systematic review. J. Pain Symptom Manage. 58, 137–156.e1 (2019).

    Article  PubMed  Google Scholar 

  209. Long, G. V. et al. Effect of nivolumab on health-related quality of life in patients with treatment-naive advanced melanoma: results from the phase III CheckMate 066 study. Ann. Oncol. 27, 1940–1946 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lebbe, C. et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 trial. J. Clin. Oncol. 37, 867–875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schadendorf, D. et al. Health-related quality of life results from the phase III CheckMate 067 study. Eur. J. Cancer 82, 80–91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. O’Reilly, A. et al. An immunotherapy survivor population: health-related quality of life and toxicity in patients with metastatic melanoma treated with immune checkpoint inhibitors. Support. Care Cancer 28, 561–570 (2020).

    Article  PubMed  Google Scholar 

  213. Rogiers, A. et al. Long-term survival, quality of life, and psychosocial outcomes in advanced melanoma patients treated with immune checkpoint inhibitors. J. Oncol. 2019, 5269062 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Lai-Kwon, J. et al. The survivorship experience for patients with metastatic melanoma on immune checkpoint and BRAF-MEK inhibitors. J. Cancer Surviv. 13, 503–511 (2019).

    Article  PubMed  Google Scholar 

  215. Joly, F., Castel, H., Tron, L., Lange, M. & Vardy, J. Potential effect of immunotherapy agents on cognitive function in cancer patients. J. Natl Cancer Inst. 112, 123–127 (2020).

    Article  PubMed  Google Scholar 

  216. Das, S. & Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 7, 306 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Freeman-Keller, M. et al. Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin. Cancer Res. 22, 886–894 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. Teulings, H.-E. et al. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J. Clin. Oncol. 33, 773–781 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Khunger, M. et al. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest 152, 271–281 (2017).

    Article  PubMed  Google Scholar 

  220. Hamamoto, Y., Shin, N., Hoshino, T. & Kanai, T. Management of challenging immune-related gastrointestinal adverse events associated with immune checkpoint inhibitors. Future Oncol. 14, 3187–3198 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Hofmann, L. et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur. J. Cancer 60, 190–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018). One of the largest evaluations of fatal ICI-associated toxic effects performed after a retrospective evaluation of the WHO pharmacovigilance database Vigilyze.

    Article  PubMed  PubMed Central  Google Scholar 

  223. De Velasco, G. et al. Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol. Res. 5, 312–318 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Al-Kindi, S. G. & Oliveira, G. H. Reporting of immune checkpoint inhibitor-associated myocarditis. Lancet 392, 382–383 (2018).

    Article  PubMed  Google Scholar 

  225. Moslehi, J. J., Salem, J.-E., Sosman, J. A., Lebrun-Vignes, B. & Johnson, D. B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391, 933 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Moreira, A. et al. Myositis and neuromuscular side-effects induced by immune checkpoint inhibitors. Eur. J. Cancer 106, 12–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Liewluck, T., Kao, J. C. & Mauermann, M. L. PD-1 inhibitor-associated myopathies: emerging immune-mediated myopathies. J. Immunother. 41, 208–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Lisberg, A. et al. Treatment-related adverse events predict improved clinical outcome in NSCLC patients on KEYNOTE-001 at a single center. Cancer Immunol. Res. 6, 288–294 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Powles, T. et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 3, e172411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Sharma, P. et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 17, 1590–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Davis, E. J. et al. Hematologic complications of immune checkpoint inhibitors. Oncologist 24, 584–588 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Davar, D., Wilson, M., Pruckner, C. & Kirkwood, J. M. PD-1 blockade in advanced melanoma in patients with hepatitis C and/or HIV. Case Rep. Oncol. Med. 2015, 737389 (2015).

    PubMed  PubMed Central  Google Scholar 

  233. Cook, M. R. & Kim, C. Safety and efficacy of immune checkpoint inhibitor therapy in patients with HIV infection and advanced-stage cancer: a systematic review. JAMA Oncol. 5, 1049–1054 (2019).

    Article  PubMed  Google Scholar 

  234. Tio, M. et al. Anti-PD-1/PD-L1 immunotherapy in patients with solid organ transplant, HIV or hepatitis B/C infection. Eur. J. Cancer 104, 137–144 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Simons, K. H. et al. T cell co-stimulation and co-inhibition in cardiovascular disease: a double-edged sword. Nat. Rev. Cardiol. 16, 325–343 (2019).

    Article  PubMed  Google Scholar 

  236. Ward, E. M., Flowers, C. R., Gansler, T., Omer, S. B. & Bednarczyk, R. A. The importance of immunization in cancer prevention, treatment, and survivorship. CA Cancer J. Clin. 67, 398–410 (2017).

    Article  PubMed  Google Scholar 

  237. Wijn, D. H. et al. Influenza vaccination in patients with lung cancer receiving anti-programmed death receptor 1 immunotherapy does not induce immune-related adverse events. Eur. J. Cancer 104, 182–187 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Naidoo, J. et al. A multidisciplinary toxicity team for cancer immunotherapy-related adverse events. J. Natl Compr. Canc. Netw. 17, 712–720 (2019).

    Article  PubMed  Google Scholar 

  239. Scotte, F., Ratta, R. & Beuzeboc, P. Side effects of immunotherapy: a constant challenge for oncologists. Curr. Opin. Oncol. 31, 280–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Kostine, M. et al. Addressing immune-related adverse events of cancer immunotherapy: how prepared are rheumatologists? Ann. Rheum. Dis. 78, 860–862 (2019).

    Article  PubMed  Google Scholar 

  241. Evens, A. et al. A pictorial assay of immunotherapy: complications that internists will see, whether they like it or not. Am. J. Med. 132, 808–815 (2019).

    Article  PubMed  Google Scholar 

  242. Kantarjian, H. & Yu, P. P. Artificial intelligence, big data, and cancer. JAMA Oncol. 1, 573–574 (2015).

    Article  PubMed  Google Scholar 

  243. Mekki, A. et al. Machine learning defined diagnostic criteria for differentiating pituitary metastasis from autoimmune hypophysitis in patients undergoing immune checkpoint blockade therapy. Eur. J. Cancer 119, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Hsiehchen, D., Watters, M. K., Lu, R., Xie, Y. & Gerber, D. E. Variation in the assessment of immune-related adverse event occurrence, grade, and timing in patients receiving immune checkpoint inhibitors. JAMA Netw. Open 2, e1911519 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Pitt, J. M. et al. Fine-tuning cancer immunotherapy: optimizing the gut microbiome. Cancer Res. 76, 4602–4607 (2016).

    Article  CAS  PubMed  Google Scholar 

  246. Wang, Y. et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 24, 1804–1808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wang, W. et al. Assessing the viability of transplanted gut microbiota by sequential tagging with D-amino acid-based metabolic probes. Nat. Commun. 10, 1317 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  249. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Simon, N. et al. Tofacitinib enhances delivery of antibody-based therapeutics to tumor cells through modulation of inflammatory cells. JCI Insight 4, 123281 (2019).

  251. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Francisco, L. M., Sage, P. T. & Sharpe, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Fife, B. T. & Pauken, K. E. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann. N. Y. Acad. Sci. 1217, 45–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  255. Wang, X., Teng, F., Kong, L. & Yu, J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco. Targets Ther. 9, 5023–5039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Gandini, S., Massi, D. & Mandala, M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 100, 88–98 (2016).

    Article  PubMed  Google Scholar 

  257. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    Article  CAS  PubMed  Google Scholar 

  260. Maher, V. E. et al. Analysis of the association between adverse events and outcome in patients receiving a programmed death protein 1 or programmed death ligand 1 antibody. J. Clin. Oncol. 37, 2730–2737 (2019).

    Article  PubMed  Google Scholar 

  261. Obradovic, M. M. S. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540–544 (2019).

    Article  CAS  PubMed  Google Scholar 

  262. Draghi, A. et al. Differential effects of corticosteroids and anti-TNF on tumor-specific immune responses: implications for the management of irAEs. Int. J. Cancer 145, 1408–1413 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Memorial Sloan Kettering Cancer Center (MSKCC) NCI core grant P30 CA008748 and the University of Texas NCI core grant P30 CA016672. The authors thank F. Schettini from IDIBAPS/Hospital Clinic (Barcelona, Spain) for his assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.F.-C.); Epidemiology (A.P.); Mechanisms/pathophysiology (M.E.S.-A.); Diagnosis, screening and prevention (M.K.C., N.K., M.A.K. and X.M.); Management (J.R.B. and O.L.); Outlook (M.R.-C.); Overview of Primer (M.R.-C.).

Corresponding author

Correspondence to Manuel Ramos-Casals.

Ethics declarations

Competing interests

M.R.-C. has received compensation for consulting services and/or speaking activities from Bristol-Myers Squibb and Gilead. J.R.B. has received compensation for consulting services and/or speaking activities from Amgen, AstraZeneca, Bristol-Myers Squibb, Genentech and Merck. M.K.C. declares institutional research support and employment of a family member by Bristol-Myers Squibb and consulting, advisory or speaking compensation from AstraZeneca/MedImmune, Incyte, Moderna and Merck. O.L. has received compensation for consulting services and/or speaking activities from AstraZeneca, Bristol-Myers Squibb France, Incyte, Janssen and MSD, and received research support from Gilead. X.M. has received compensation for consulting services and/or speaking activities from Bristol-Myers Squibb. A.P. has received compensation for consulting services and/or speaking activities from Amgen, Bristol-Myers Squibb, Daiichi Sankyo, Novartis, Oncolytics Biotech, Pfizer, Puma and Roche, and received research support from Boehringer Ingelheim, Nanostring, Novartis and Roche. M.E.S.-A. has received funding for consulting services from AbbVie, Agile Pharmaceuticals, Amag Pharmaceuticals, Eli Lilly and Pfizer unrelated to this topic. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Casals, M., Brahmer, J.R., Callahan, M.K. et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers 6, 38 (2020). https://doi.org/10.1038/s41572-020-0160-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0160-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer