Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Myopia

Abstract

Myopia, also known as short-sightedness or near-sightedness, is a very common condition that typically starts in childhood. Severe forms of myopia (pathologic myopia) are associated with a risk of other associated ophthalmic problems. This disorder affects all populations and is reaching epidemic proportions in East Asia, although there are differences in prevalence between countries. Myopia is caused by both environmental and genetic risk factors. A range of myopia management and control strategies are available that can treat this condition, but it is clear that understanding the factors involved in delaying myopia onset and slowing its progression will be key to reducing the rapid rise in its global prevalence. To achieve this goal, improved data collection using wearable technology, in combination with collection and assessment of data on demographic, genetic and environmental risk factors and with artificial intelligence are needed. Improved public health strategies focusing on early detection or prevention combined with additional effective therapeutic interventions to limit myopia progression are also needed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ocular shape changes in myopia.
Fig. 2: Prevalence of high myopia in young adults.
Fig. 3: Gene–environment interactions in myopia.
Fig. 4: Magnetic resonance image of a primate eye comparing vision-induced myopia to fellow control eye growth.
Fig. 5: Retinal changes in pathologic myopia.
Fig. 6: Optical intervention strategies for vision correction or myopia control.

References

  1. 1.

    Modjtahedi, B. S., Ferris, F. L., Hunter, D. G. & Fong, D. S. Public health burden and potential interventions for myopia. Ophthalmology 125, 628–630 (2018).

    Google Scholar 

  2. 2.

    Morgan, I. G. et al. The epidemics of myopia: aetiology and prevention. Prog. Retin. Eye Res. 62, 134–149 (2018). This study summarized the increasing trend of myopia prevalence and further discussed the implication and possible aetiology of the ‘epidemics’ of myopia.

    Google Scholar 

  3. 3.

    Resnikoff, S. et al. Myopia - a 21st century public health issue. Invest. Ophthalmol. Vis. Sci. 60, Mi–Mii (2019).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Young, T. L., Metlapally, R. & Shay, A. E. Complex trait genetics of refractive error. Arch. Ophthalmol. 125, 38–48 (2007).

    CAS  Google Scholar 

  5. 5.

    Hashemi, H. et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea 39, 263–270 (2020).

    Google Scholar 

  6. 6.

    Bullimore, M. A. & Brennan, N. A. Myopia control: why each diopter matters. Optom. Vis. Sci. 96, 463–465 (2019).

    Google Scholar 

  7. 7.

    Holden, B. A. et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123, 1036–1042 (2016). This study showed the temporal trend of myopia and high myopia prevalence supporting the notion that there will be a very high prevalence of myopia in 2050.

    Google Scholar 

  8. 8.

    Mutti, D. O., Mitchell, G. L., Moeschberger, M. L., Jones, L. A. & Zadnik, K. Parental myopia, near work, school achievement, and children’s refractive error. Invest. Ophthalmol. Vis. Sci. 43, 3633–3640 (2002).

    Google Scholar 

  9. 9.

    Huang, H.-M., Chang, D. S.-T. & Wu, P.-C. The association between near work activities and myopia in children-a systematic review and meta-analysis. PLoS ONE 10, e0140419 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Jin, J.-X. et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun eye care study. BMC Ophthalmol. 15, 73 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Saxena, R. et al. Prevalence of myopia and its risk factors in urban school children in Delhi: the North India myopia study (NIM study). PLoS ONE 10, e0117349 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    He, M. et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 314, 1142–1148 (2015). This study is a large RCT and confirmed that outdoor activity significantly prevented myopia onset.

    CAS  Google Scholar 

  13. 13.

    Wu, P. C. et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 125, 1239–1250 (2018). This study was the first RCT that confirmed outdoor activity significantly prevented myopia onset and myopia progression even in moderate light intensity.

    Google Scholar 

  14. 14.

    Saw, S.-M., Carkeet, A. D., Chia, K.-S., Stone, R. A. & Tan, D. T. H. Component dependent risk factors for ocular parameters in Singapore Chinese children. Ophthalmology 109, 2065–2071 (2002).

    Google Scholar 

  15. 15.

    He, M. et al. Refractive error and visual impairment in urban children in southern China. Invest. Ophthalmol. Vis. Sci. 45, 793–799 (2004).

    Google Scholar 

  16. 16.

    Yam, J. C. et al. High prevalence of myopia in children and their parents in Hong Kong Chinese population: the Hong Kong children eye study. Acta Ophthalmol. https://doi.org/10.1111/aos.14350 (2020).

    Article  Google Scholar 

  17. 17.

    Hsu, C.-C. et al. Prevalence and risk factors for myopia in second-grade primary school children in Taipei: a population-based study. J. Chin. Med. Assoc. 79, 625–632 (2016).

    Google Scholar 

  18. 18.

    Lin, L. L. K., Shih, Y. F., Hsiao, C. K. & Chen, C. J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann. Acad. Med. Singap. 33, 27–33 (2004).

    CAS  Google Scholar 

  19. 19.

    Yotsukura, E. et al. Current prevalence of myopia and association of myopia with environmental factors among schoolchildren in Japan. JAMA Ophthalmol. 137, 1233–1239 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lim, D. H., Han, J., Chung, T., Kang, S. & Yim, H. W. Correction: the high prevalence of myopia in Korean children with influence of parental refractive errors: the 2008–2012 Korean national health and nutrition examination survey. PLoS ONE 13, e0209876 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Anera, R. G., Soler, M., de la Cruz Cardona, J., Salas, C. & Ortiz, C. Prevalence of refractive errors in school-age children in Morocco. Clin. Exp. Ophthalmol. 37, 191–196 (2009).

    Google Scholar 

  22. 22.

    Casson, R. J. et al. Exceptionally low prevalence of refractive error and visual impairment in schoolchildren from Lao People’s Democratic Republic. Ophthalmology 119, 2021–2027 (2012).

    Google Scholar 

  23. 23.

    Dandona, R. et al. Population-based assessment of refractive error in India: the Andhra Pradesh eye disease study. Clin. Exp. Ophthalmol. 30, 84–93 (2002).

    Google Scholar 

  24. 24.

    Xiang, F. et al. Increases in the prevalence of reduced visual acuity and myopia in chinese children in Guangzhou over the past 20 years. Eye 27, 1353–1358 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ding, B.-Y., Shih, Y.-F., Lin, L. L. K., Hsiao, C. K. & Wang, I. J. Myopia among schoolchildren in East Asia and Singapore. Surv. Ophthalmol. 62, 677–697 (2017).

    Google Scholar 

  26. 26.

    Fan, D. S. et al. Prevalence, incidence, and progression of myopia of school children in Hong Kong. Invest. Ophthalmol. Vis. Sci. 45, 1071–1075 (2004).

    Google Scholar 

  27. 27.

    Zadnik, K. Myopia development in childhood. Optom. Vis. Sci. 74, 603–608 (1997).

    CAS  Google Scholar 

  28. 28.

    Ip, J. M. et al. Ethnic differences in refraction and ocular biometry in a population-based sample of 11–15-year-old Australian children. Eye 22, 649–656 (2008).

    CAS  Google Scholar 

  29. 29.

    Alrahili, N. H. R. et al. Prevalence of uncorrected refractive errors among children aged 3-10 years in western Saudi Arabia. Saudi Med. J. 38, 804–810 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Carter, M. J. et al. Visual acuity and refraction by age for children of three different ethnic groups in Paraguay. Arq. Bras. Oftalmol. 76, 94–97 (2013).

    Google Scholar 

  31. 31.

    Gao, Z. et al. Refractive error in school children in an urban and rural setting in Cambodia. Ophthalmic Epidemiol. 19, 16–22 (2012).

    Google Scholar 

  32. 32.

    Murthy, G. V. S. et al. Refractive error in children in an urban population in New Delhi. Investig. Ophthalmol. Vis. Sci. 43, 623–631 (2002).

    CAS  Google Scholar 

  33. 33.

    Sapkota, Y. D., Adhikari, B. N., Pokharel, G. P., Poudyal, B. K. & Ellwein, L. B. The prevalence of visual impairment in school children of upper-middle socioeconomic status in Kathmandu. Ophthalmic Epidemiol. 15, 17–23 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Jung, S. K., Lee, J. H., Kakizaki, H. & Jee, D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Invest. Ophthalmol. Vis. Sci. 53, 5579–5583 (2012).

    Google Scholar 

  35. 35.

    Lee, Y. Y., Lo, C. T., Sheu, S. J. & Lin, J. L. What factors are associated with myopia in young adults? A survey study in Taiwan military conscripts. Invest. Ophthalmol. Vis. Sci. 54, 1026–1033 (2013).

    Google Scholar 

  36. 36.

    Cheng, C. Y., Hsu, W. M., Liu, J. H., Tsai, S. Y. & Chou, P. Refractive errors in an elderly chinese population in Taiwan: the Shihpai eye study. Invest. Ophthalmol. Vis. Sci. 44, 4630–4638 (2003).

    Google Scholar 

  37. 37.

    Xu, L. et al. Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology 112, 1676–1683 (2005).

    Google Scholar 

  38. 38.

    Vitale, S., Ellwein, L., Cotch, M. F., Ferris, F. L. 3rd & Sperduto, R. Prevalence of refractive error in the United States, 1999–2004. Arch. Ophthalmol. 126, 1111–1119 (2008).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Midelfart, A., Kinge, B., Midelfart, S. & Lydersen, S. Prevalence of refractive errors in young and middle-aged adults in Norway. Acta Ophthalmol. Scand. 80, 501–505 (2002).

    Google Scholar 

  40. 40.

    Bar Dayan, Y. et al. The changing prevalence of myopia in young adults: a 13-year series of population-based prevalence surveys. Invest. Ophthalmol. Vis. Sci. 46, 2760–2765 (2005).

    Google Scholar 

  41. 41.

    Williams, K. M. et al. Increasing prevalence of myopia in Europe and the impact of education. Ophthalmology 122, 1489–1497 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chen, M. et al. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol. 18, 159 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sun, J. et al. High prevalence of myopia and high myopia in 5060 chinese university students in Shanghai. Investig. Ophthalmol. Vis. Sci. 53, 7504–7509 (2012).

    Google Scholar 

  44. 44.

    Wu, J. F. et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong children eye study. PLoS ONE 8, e82763 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Williams, K. M. et al. Prevalence of refractive error in Europe: the European eye epidemiology (E(3)) consortium. Eur. J. Epidemiol. 30, 305–315 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Jacobsen, N., Jensen, H. & Goldschmidt, E. Prevalence of myopia in Danish conscripts. Acta Ophthalmol. Scand. 85, 165–170 (2007).

    Google Scholar 

  47. 47.

    French, A. N., Morgan, I. G., Burlutsky, G., Mitchell, P. & Rose, K. A. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. Ophthalmology 120, 1482–1491 (2013).

    Google Scholar 

  48. 48.

    Willis, J. R. et al. The prevalence of myopic choroidal neovascularization in the United States: analysis of the IRIS(®) data registry and NHANES. Ophthalmology 123, 1771–1782 (2016).

    Google Scholar 

  49. 49.

    Asakuma, T. et al. Prevalence and risk factors for myopic retinopathy in a Japanese population: the Hisayama study. Ophthalmology 119, 1760–1765 (2012).

    Google Scholar 

  50. 50.

    Chen, S. J. et al. Prevalence and associated risk factors of myopic maculopathy in elderly Chinese: the Shihpai eye study. Invest. Ophthalmol. Vis. Sci. 53, 4868–4873 (2012).

    Google Scholar 

  51. 51.

    Vongphanit, J., Mitchell, P. & Wang, J. J. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology 109, 704–711 (2002).

    Google Scholar 

  52. 52.

    Myrowitz, E. H. Juvenile myopia progression, risk factors and interventions. Saudi J. Ophthalmol. 26, 293–297 (2012).

    Google Scholar 

  53. 53.

    Fan, D. S., Lai, C., Lau, H. H., Cheung, E. Y. & Lam, D. S. Change in vision disorders among Hong Kong preschoolers in 10 years. Clin. Exp. Ophthalmol. 39, 398–403 (2011).

    Google Scholar 

  54. 54.

    Lai, Y.-H., Hsu, H.-T., Wang, H.-Z., Chang, S.-J. & Wu, W.-C. The visual status of children ages 3 to 6 years in the vision screening program in Taiwan. J. AAPOS 13, 58–62 (2009).

    Google Scholar 

  55. 55.

    Choudhury, F. et al. Prevalence and characteristics of myopic degeneration in an adult Chinese American population: the Chinese American eye study. Am. J. Ophthalmol. 187, 34–42 (2018).

    Google Scholar 

  56. 56.

    Iwase, A. et al. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi study. Ophthalmology 113, 1354–1362 (2006).

    Google Scholar 

  57. 57.

    Naidoo, K. S. et al. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology 126, 338–346 (2019).

    Google Scholar 

  58. 58.

    Seet, B. et al. Myopia in Singapore: taking a public health approach. Br. J. Ophthalmol. 85, 521–526 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wong, Y.-L. et al. Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore. Investig. Ophthalmol. Vis. Sci. 59, 4603–4613 (2018).

    Google Scholar 

  60. 60.

    Liu, H. H. et al. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing eye study. Ophthalmology 117, 1763–1768 (2010).

    Google Scholar 

  61. 61.

    Gao, L. Q. et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan eye study. Arch. Ophthalmol. 129, 1199–1204 (2011).

    Google Scholar 

  62. 62.

    Ohno-Matsui, K. et al. International photographic classification and grading system for myopic maculopathy. Am. J. Ophthalmol. 159, 877–883.e7 (2015).

    Google Scholar 

  63. 63.

    Bez, D. et al. Association between type of educational system and prevalence and severity of myopia among male adolescents in Israel. JAMA Ophthalmol. 137, 1–7 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Morgan, R. W., Speakman, J. S. & Grimshaw, S. E. Inuit myopia: an environmentally induced “epidemic”? Can. Med. Assoc. J. 112, 575–577 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    He, M., Zheng, Y. & Xiang, F. Prevalence of myopia in urban and rural children in mainland China. Optom. Vis. Sci. 86, 40–44 (2009).

    Google Scholar 

  66. 66.

    Wong, T. Y., Foster, P. J., Johnson, G. J. & Seah, S. K. Education, socioeconomic status, and ocular dimensions in Chinese adults: the Tanjong Pagar Survey. Br. J. Ophthalmol. 86, 963–968 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    de Jong, P. T. V. M. Myopia: its historical contexts. Br. J. Ophthalmol. 102, 1021–1027 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Mountjoy, E. et al. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ 361, k2022 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rose, K. A. et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115, 1279–1285 (2008).

    Google Scholar 

  70. 70.

    Guggenheim, J. A. et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest. Ophthalmol. Vis. Sci. 53, 2856–2865 (2012).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Guo, Y. et al. Outdoor activity and myopia among primary students in rural and urban regions of Beijing. Ophthalmology 120, 277–283 (2013).

    Google Scholar 

  72. 72.

    Jones-Jordan, L. A. et al. Time outdoors, visual activity, and myopia progression in juvenile-onset myopes. Invest. Ophthalmol. Vis. Sci. 53, 7169–7175 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wu, P. C. et al. Increased time outdoors is followed by reversal of the long-term trend to reduced visual acuity in Taiwan primary school students. Ophthalmology 127, 1462–1469 (2020). This was the first large, long-term real-world population study that showed that outdoor policy reduced the prevalence of reduced visual acuity.

    Google Scholar 

  74. 74.

    Fulk, G. W., Cyert, L. A. & Parker, D. A. Seasonal variation in myopia progression and ocular elongation. Optom. Vis. Sci. 79, 46–51 (2002).

    Google Scholar 

  75. 75.

    Ashby, R. S. & Schaeffel, F. The effect of bright light on lens compensation in chicks. Invest. Ophthalmol. Vis. Sci. 51, 5247–5253 (2010).

    Google Scholar 

  76. 76.

    Feldkaemper, M. & Schaeffel, F. An updated view on the role of dopamine in myopia. Exp. Eye Res. 114, 106–119 (2013).

    CAS  Google Scholar 

  77. 77.

    Guggenheim, J. A. et al. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Invest. Ophthalmol. Vis. Sci. 55, 8550–8558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Jacobsen, N., Jensen, H. & Goldschmidt, E. Does the level of physical activity in university students influence development and progression of myopia? – a 2-year prospective cohort study. Invest. Ophthalmol. Vis. Sci. 49, 1322–1327 (2008).

    Google Scholar 

  79. 79.

    Torii, H. et al. Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine 15, 210–219 (2017).

    Google Scholar 

  80. 80.

    Moderiano, D. et al. Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes. Exp. Eye Res. 182, 125–136 (2019).

    CAS  Google Scholar 

  81. 81.

    Wang, Y. et al. Exposure to sunlight reduces the risk of myopia in rhesus monkeys. PLoS ONE 10, e0127863 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Smith, E. L. III, Kee, C.-S., Ramamirtham, R., Qiao-Grider, Y. & Hung, L.-F. Peripheral vision can influence eye growth and refractive development in infant monkeys. Investig. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005). The first in a series of studies that demonstrated that, contrary to popular belief, visual signals from the fovea (that is, central retina) were not essential for the regulation of ocular growth and that signals from the peripheral retina, probably as a consequence of areal summation, can dominate refractive development.

    Google Scholar 

  83. 83.

    Sorsby, A. & Fraser, G. R. Statistical note on the components of ocular refraction in twins. J. Med. Genet. 1, 47–49 (1964). The first approach to quantify the coefficient of correlation of different ocular measures in identical and non-identical twins and that suggested that a number of genes with additive effect were inherited in myopia.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Chen, C. Y. et al. Heritability and shared environment estimates for myopia and associated ocular biometric traits: the genes in myopia (GEM) family study. Hum. Genet. 121, 511–520 (2007).

    Google Scholar 

  85. 85.

    Hammond, C. J., Snieder, H., Gilbert, C. E. & Spector, T. D. Genes and environment in refractive error: the twin eye study. Invest. Ophthalmol. Vis. Sci. 42, 1232–1236 (2001).

    CAS  Google Scholar 

  86. 86.

    Lyhne, N., Sjolie, A. K., Kyvik, K. O. & Green, A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. Br. J. Ophthalmol. 85, 1470–1476 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Dirani, M. et al. Heritability of refractive error and ocular biometrics: the genes in myopia (GEM) twin study. Invest. Ophthalmol. Vis. Sci. 47, 4756–4761 (2006).

    Google Scholar 

  88. 88.

    Baird, P. N., Schache, M. & Dirani, M. The genes in myopia (GEM) study in understanding the aetiology of refractive errors. Prog. Retin. Eye Res. 29, 520–542 (2010).

    Google Scholar 

  89. 89.

    Tedja, M. S. et al. IMI - myopia genetics report. Invest. Ophthalmol. Vis. Sci. 60, M89–M105 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Verhoeven, V. J. et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat. Genet. 45, 314–318 (2013). The first large international GWAS conducted by the CREAM, based on over 37,000 individuals from 32 European and Asian studies, identified 16 new genetic loci, of which some were shared across ethnicities.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Kiefer, A. K. et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 9, e1003299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Wojciechowski, R. & Hysi, P. G. Focusing in on the complex genetics of myopia. PLoS Genet. 9, e1003442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Tedja, M. S. et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat. Genet. 50, 834–848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Hysi, P. G. et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat. Genet. 52, 401–407 (2020). The largest GWAS study to date in refractive error and myopia identifying 336 novel genetic loci.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Guggenheim, J. A. et al. Assumption-free estimation of the genetic contribution to refractive error across childhood. Mol. Vis. 21, 621–632 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Ghorbani Mojarrad, N. et al. Association between polygenic risk score and risk of myopia. JAMA Ophthalmol. 138, 7–13 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Tideman, J. W. L. et al. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genet. Epidemiol. 40, 756–766 (2016). This study demonstrated that different genes can impact on myopia at different ages.

    Google Scholar 

  98. 98.

    Cheng, C. Y. et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am. J. Hum. Genet. 93, 264–277 (2013). This study identified a number of genetic loci for axial length, including some that were shared with refractive error, using a large study cohort of the CREAM.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Hysi, P. G., Wojciechowski, R., Rahi, J. S. & Hammond, C. J. Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future. Investig. Ophthalmol. Vis. Sci. 55, 3344–3351 (2014).

    Google Scholar 

  100. 100.

    Fan, Q. et al. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: the CREAM consortium. Sci. Rep. 6, 25853 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Chen, C.-J., Cohen, B. H. & Diamond, E. L. Genetic and environmental effects on the development of myopia in Chinese twin children. Ophthalmic Paediatr. Genet. 6, 113–119 (1985).

    Google Scholar 

  102. 102.

    Saw, S.-M., Hong, C.-Y., Chia, K.-S., Stone, R. A. & Tan, D. Nearwork and myopia in young children. Lancet 357, 390 (2001).

    CAS  Google Scholar 

  103. 103.

    Dudbridge, F. & Fletcher, O. Gene-environment dependence creates spurious gene-environment interaction. Am. J. Hum. Genet. 95, 301–307 (2014). An account of the conditions under which gene–environment dependence can arise, using as an example the potential interaction between a CYP3A variant and age at menarche on the risk of breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Fan, Q. et al. Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies. Hum. Mol. Genet. 23, 546–554 (2014). A pioneering study reporting interactions between variants in SHISA6, GJD2 and ZMAT4 and level of education in determining susceptibility to myopia.

    CAS  Google Scholar 

  105. 105.

    Wojciechowski, R., Yee, S. S., Simpson, C. L., Bailey-Wilson, J. E. & Stambolian, D. Matrix metalloproteinases and educational attainment in refractive error: evidence of gene–environment interactions in the age-related eye disease study. Ophthalmology 120, 298–305 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Tkatchenko, A. V. et al. APLP2 regulates refractive error and myopia development in mice and humans. PLoS Genet. 11, e1005432 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Chen, Y. P. et al. Selective breeding for susceptibility to myopia reveals a gene-environment interaction. Investig. Ophthalmol. Vis. Sci. 52, 4003–4011 (2011).

    Google Scholar 

  108. 108.

    Pozarickij, A. et al. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Commun. Biol. 2, 167 (2019). A study suggesting that 88% of known GWAS loci for refractive error exhibit evidence of variance heterogeneity, which is a characteristic feature of involvement in a G×E interaction.

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Huang, Y. et al. A genome-wide association study for susceptibility to visual experience-induced myopia. Invest. Ophthalmol. Vis. Sci. 60, 559–569 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Mutti, D. O. et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Invest. Ophthalmol. Vis. Sci. 46, 3074–3080 (2005).

    Google Scholar 

  111. 111.

    Ehrlich, D. L. et al. Infant emmetropization: longitudinal changes in refraction components from nine to twenty months of age. Optom. Vis. Sci. 74, 822–843 (1997).

    CAS  Google Scholar 

  112. 112.

    Inagaki, Y. The rapid change of corneal curvature in the neonatal period and infancy. Arch. Ophthalmol. 104, 1026–1027 (1986).

    CAS  Google Scholar 

  113. 113.

    Gordon, R. A. & Donzis, P. B. Refractive development of the human eye. Arch. Ophthalmol. 103, 785–789 (1985).

    CAS  Google Scholar 

  114. 114.

    Fledelius, H. C. & Christensen, A. C. Reappraisal of the human ocular growth curve in fetal life, infancy, and early childhood. Br. J. Ophthalmol. 80, 918–921 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Saw, S. M. et al. Incidence and progression of myopia in Singaporean school children. Invest. Ophthalmol. Vis. Sci. 46, 51–57 (2005).

    Google Scholar 

  116. 116.

    Mutti, D. O. et al. Corneal and crystalline lens dimensions before and after myopia onset. Optom. Vis. Sci. 89, 251–262 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Han, X., Guo, X., Lee, P. Y., Morgan, I. G. & He, M. Six-year changes in refraction and related ocular biometric factors in an adult Chinese population. PLoS ONE 12, e0183364 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Troilo, D. et al. IMI - report on experimental models of emmetropization and myopia. Invest. Ophthalmol. Vis. Sci. 60, M31–M88 (2019). This is the most recent and most comprehensive summary to date of the results obtained from studies of laboratory animals on the role of vision in the regulation of refractive development.

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Schaeffel, F., Glasser, A. & Howland, H. C. Accommodation, refractive error and eye growth in chickens. Vis. Res. 28, 639–657 (1988).

    CAS  Google Scholar 

  120. 120.

    Wallman, J. & Winawer, J. Homeostasis of eye growth and the question of myopia. Neuron 43, 447–468 (2004). This is the first comprehensive review of animal research on refractive development; it provides a unique perspective on how vision regulates ocular growth and refractive development.

    CAS  Google Scholar 

  121. 121.

    Schaeffel, F. & Feldkaemper, M. P. Animal models in myopia research. Clin. Exp. Optom. 98, 507–517 (2015).

    Google Scholar 

  122. 122.

    Arumugam, B., Hung, L.-F., To, C.-H., Holden, B. A. & Smith, E. L. 3rd The effects of simultaneous dual focus lenses on refractive development in infant monkeys. Investig. Ophthalmol. Vis. Sci. 55, 7423–7432 (2014).

    Google Scholar 

  123. 123.

    Zhu, X. Temporal integration of visual signals in lens compensation (a review). Exp. Eye Res. 114, 69–76 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Tse, D. Y. & To, C.-H. Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chicks. Investig. Ophthalmol. Vis. Sci. 52, 8056–8062 (2011).

    Google Scholar 

  125. 125.

    McBrien, N. A. & Adams, D. W. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings. Invest. Ophthalmol. Vis. Sci. 38, 321–333 (1997).

    CAS  Google Scholar 

  126. 126.

    Wallman, J., Gottlieb, M. D., Rajaram, V. & Fugate-Wentzek, L. Local retinal regions control local eye growth and myopia. Science 237, 73–77 (1987). This investigation demonstrated that ocular growth and refractive development are regulated by independent, local retinal mechanisms that operate in a regionally selective fashion, one of the most interesting and critical operational properties of the mechanisms that regulate refractive development.

    CAS  Google Scholar 

  127. 127.

    Tkatchenko, T. V., Troilo, D., Benavente-Perez, A. & Tkatchenko, A. V. Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth. PLoS Biol. 16, e2006021 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Fischer, A. J., McGuire, J. J., Schaeffel, F. & Stell, W. K. Light- and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat. Neurosci. 2, 706–712 (1999).

    CAS  Google Scholar 

  129. 129.

    Rucker, F. J. & Wallman, J. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths. Vis. Res. 48, 1980–1991 (2008).

    Google Scholar 

  130. 130.

    Foulds, W. S., Barathi, V. A. & Luu, C. D. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Invest. Ophthalmol. Vis. Sci. 54, 8004–8012 (2013).

    Google Scholar 

  131. 131.

    Hung, L. F., Arumugam, B., She, Z., Ostrin, L. & Smith, E. L. 3rd Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys. Exp. Eye Res. 176, 147–160 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Hagen, L. A. et al. The association between L:M cone ratio, cone opsin genes and myopia susceptibility. Vis. Res. 162, 20–28 (2019).

    Google Scholar 

  133. 133.

    Crewther, D. P. & Crewther, S. G. Refractive compensation to optical defocus depends on the temporal profile of luminance modulation of the environment. Neuroreport 13, 1029–1032 (2002).

    CAS  Google Scholar 

  134. 134.

    Aleman, A. C., Wang, M. & Schaeffel, F. Reading and myopia: contrast polarity matters. Sci. Rep. 8, 10840 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Crewther, S. G. & Crewther, D. P. Inhibition of retinal ON/OFF systems differentially affects refractive compensation to defocus. Neuroreport 14, 1233–1237 (2003).

    CAS  Google Scholar 

  136. 136.

    Chakraborty, R. et al. ON pathway mutations increase susceptibility to form-deprivation myopia. Exp. Eye Res. 137, 79–83 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Chakraborty, R. et al. Comparison of refractive development and retinal dopamine in OFF pathway mutant and C57BL/6J wild-type mice. Mol. Vis. 20, 1318–1327 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Wang, M., Aleman, A. C. & Schaeffel, F. Probing the potency of artificial dynamic ON or OFF stimuli to inhibit myopia development. Invest. Ophthalmol. Vis. Sci. 60, 2599–2611 (2019).

    CAS  Google Scholar 

  139. 139.

    Chen, S. et al. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. Invest. Ophthalmol. Vis. Sci. 58, 2306–2316 (2017).

    CAS  Google Scholar 

  140. 140.

    Zhang, Y. & Wildsoet, C. F. RPE and choroid mechanisms underlying ocular growth and myopia. Prog. Mol. Biol. Transl. Sci. 134, 221–240 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Rymer, J. & Wildsoet, C. F. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review. Vis. Neurosci. 22, 251–261 (2005). It is likely that the retinal pigment epithelium plays a critical role in the signal cascade that regulates refractive development. This review provides a comprehensive summary of what is known about the pigment epithelium and vision-dependent refractive development.

    Google Scholar 

  142. 142.

    Wallman, J. et al. Moving the retina: choroidal modulation of refractive state. Vis. Res. 35, 37–50 (1995).

    CAS  Google Scholar 

  143. 143.

    Mertz, J. R. & Wallman, J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp. Eye Res. 70, 519–527 (2000).

    CAS  Google Scholar 

  144. 144.

    Wildsoet, C. & Wallman, J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vis. Res. 35, 1175–1194 (1995). This comprehensive study conclusively demonstrated that choroidal thickness was regulated by visual feedback and that changes in choroidal thickness could have a significant effect on the eye’s refractive state.

    CAS  Google Scholar 

  145. 145.

    Siegwart, J. T. Jr & Norton, T. T. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vis. Res. 39, 387–407 (1999).

    Google Scholar 

  146. 146.

    Rada, J. A., Nickla, D. L. & Troilo, D. Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes. Invest. Ophthalmol. Vis. Sci. 41, 2050–2058 (2000).

    CAS  Google Scholar 

  147. 147.

    Siegwart, J. T. Jr & Norton, T. T. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest. Ophthalmol. Vis. Sci. 46, 3484–3492 (2005).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    McBrien, N. A. & Gentle, A. Role of the sclera in the development and pathological complications of myopia. Prog. Retin. Eye Res. 22, 307–338 (2003).

    CAS  Google Scholar 

  149. 149.

    Rada, J. A., Shelton, S. & Norton, T. T. The sclera and myopia. Exp. Eye Res. 82, 185–200 (2006). This paper reviewed the myopia-associated scleral extracellular matrix remodelling events during myopia progression in both experimental models and humans.

    Google Scholar 

  150. 150.

    Wu, H. et al. Scleral hypoxia is a target for myopia control. Proc. Natl Acad. Sci. USA 115, e7091–e7100 (2018).

    CAS  Google Scholar 

  151. 151.

    Zhang, S. et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia. Invest. Ophthalmol. Vis. Sci. 60, 3074–3083 (2019). Scleral hypoxia can develop as a result of a decline in blood perfusion in the choroid. This paper documented that choroidal blood perfusion was significantly decreased in three models of guinea pig myopia.

    CAS  Google Scholar 

  152. 152.

    Yang, Y. S. & Koh, J. W. Choroidal blood flow change in eyes with high myopia. Korean J. Ophthalmol. 29, 309–314 (2015). This paper reported a significant decrease of choroidal blood perfusion in highly myopic human eyes.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Shih, Y. F. et al. Ocular pulse amplitude in myopia. J. Ocul. Pharmacol. 7, 83–87 (1991).

    CAS  Google Scholar 

  154. 154.

    Kniestedt, C. & Stamper, R. L. Visual acuity and its measurement. Ophthalmol. Clin. North Am. 16, 155–170 (2003).

    Google Scholar 

  155. 155.

    Guo, X. et al. Normative distribution of visual acuity in 3- to 6-year-old Chinese preschoolers: the Shenzhen kindergarten eye study. Invest. Ophthalmol. Vis. Sci. 56, 1985–1992 (2015).

    Google Scholar 

  156. 156.

    Anstice, N. S. & Thompson, B. The measurement of visual acuity in children: an evidence-based update. Clin. Exp. Optom. 97, 3–11 (2014).

    Google Scholar 

  157. 157.

    Morgan, I. G., Iribarren, R., Fotouhi, A. & Grzybowski, A. Cycloplegic refraction is the gold standard for epidemiological studies. Acta Ophthalmol. 93, 581–585 (2015).

    Google Scholar 

  158. 158.

    WHO. The impact of myopia and high myopia: report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia, University of New South Wales, Sydney, Australia, 16–18 March 2015 (World Health Organization, 2017).

  159. 159.

    Negrel, A. D., Maul, E., Pokharel, G. P., Zhao, J. & Ellwein, L. B. Refractive error study in children: sampling and measurement methods for a multi-country survey. Am. J. Ophthalmol. 129, 421–426 (2000).

    CAS  Google Scholar 

  160. 160.

    Wen, G. et al. Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. Ophthalmology 120, 2109–2116 (2013).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Lee, J. H., Jee, D., Kwon, J. W. & Lee, W. K. Prevalence and risk factors for myopia in a rural Korean population. Invest. Ophthalmol. Vis. Sci. 54, 5466–5471 (2013).

    Google Scholar 

  162. 162.

    Parssinen, O. The increased prevalence of myopia in Finland. Acta Ophthalmol. 90, 497–502 (2012).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Pan, C. W. et al. Variation in prevalence of myopia between generations of migrant indians living in Singapore. Am. J. Ophthalmol. 154, 376–381.e1 (2012).

    Google Scholar 

  164. 164.

    Santodomingo-Rubido, J., Mallen, E. A. H., Gilmartin, B. & Wolffsohn, J. S. A new non-contact optical device for ocular biometry. Br. J. Ophthalmol. 86, 458–462 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Hussin, H. M., Spry, P. G., Majid, M. A. & Gouws, P. Reliability and validity of the partial coherence interferometry for measurement of ocular axial length in children. Eye 20, 1021–1024 (2006).

    CAS  Google Scholar 

  166. 166.

    Curtin, B. J. & Karlin, D. B. Axial length measurements and fundus changes of the myopic eye. Am. J. Ophthalmol. 71, 42–53 (1971).

    CAS  Google Scholar 

  167. 167.

    Miller, D. G. & Singerman, L. J. Natural history of choroidal neovascularization in high myopia. Curr. Opin. Ophthalmol. 12, 222–224 (2001).

    CAS  Google Scholar 

  168. 168.

    Moriyama, M. et al. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 118, 1626–1637 (2011). This study has established a novel technique — 3D MRI of the eye — to visualize the shape of the entire globe; an entire extent of posterior staphyloma becomes visible.

    Google Scholar 

  169. 169.

    Guo, X. et al. Three-dimensional eye shape, myopic maculopathy, and visual acuity: the Zhongshan ophthalmic center-Brien Holden vision institute high myopia cohort study. Ophthalmology 124, 679–687 (2017).

    Google Scholar 

  170. 170.

    Ohno-Matsui, K. & Jonas, J. B. Posterior staphyloma in pathologic myopia. Prog. Retin. Eye Res. 70, 99–109 (2019).

    Google Scholar 

  171. 171.

    Ohno-Matsui, K. Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging. Ophthalmology 121, 1798–1809 (2014). Through the use of new techniques, 3D MRI and ultra-wide-field OCT, a novel classification has been established for posterior staphylomas.

    Google Scholar 

  172. 172.

    Morgan, I. G., He, M. & Rose, K. A. Epidemic of pathologic myopia: what can laboratory studies and epidemiology tell us? Retina 37, 989–997 (2016).

    Google Scholar 

  173. 173.

    Ohno-Matsui, K., Lai, T. Y. Y., Cheung, C. M. G. & Lai, C. C. Updates of pathologic myopia. Prog. Retin. Eye Res. 52, 156–187 (2016).

    Google Scholar 

  174. 174.

    Ohno-Matsui, K. What is the fundamental nature of pathologic myopia? Retina 37, 1043–1048 (2016).

    Google Scholar 

  175. 175.

    Yokoi, T. et al. Peripapillary diffuse chorioretinal atrophy in children as a sign of eventual pathologic myopia in adults. Ophthalmology 123, 1783–1787 (2016).

    Google Scholar 

  176. 176.

    Ohno-Matsui, K. in Pathologic Myopia (eds Spaide, R. F., Ohno-Matsui, K., & Yannuzzi, L. A.) 187–210 (Springer, 2014).

  177. 177.

    Tong, L. et al. Screening for myopia and refractive errors using LogMAR visual acuity by optometrists and a simplified visual acuity chart by nurses. Optom. Vis. Sci. 81, 684–691 (2004).

    Google Scholar 

  178. 178.

    Priya, A. et al. Vision screening by teachers in southern Indian schools: testing a new “all class teacher” model. Ophthalmic Epidemiol. 22, 60–65 (2015).

    Google Scholar 

  179. 179.

    Sharma, A. et al. Strategies to improve the accuracy of vision measurement by teachers in rural Chinese secondary schoolchildren: Xichang Pediatric Refractive Error Study (X-PRES) report no. 6. Arch. Ophthalmol. 126, 1434–1440 (2008).

    Google Scholar 

  180. 180.

    Pattison, B. & Plymat, K. Vision screening of school children: should it be continued? Contemp. Nurse 10, 163–171 (2001).

    CAS  Google Scholar 

  181. 181.

    Ma, Y. et al. Myopia screening: combining visual acuity and noncycloplegic autorefraction. Optom. Vis. Sci. 90, 1479–1485 (2013).

    Google Scholar 

  182. 182.

    Leone, J. F., Mitchell, P., Morgan, I. G., Kifley, A. & Rose, K. A. Use of visual acuity to screen for significant refractive errors in adolescents: is it reliable? Arch. Ophthalmol. 128, 894–899 (2010).

    Google Scholar 

  183. 183.

    Tong, L. et al. Sensitivity and specificity of visual acuity screening for refractive errors in school children. Optom. Vis. Sci. 79, 650–657 (2002).

    Google Scholar 

  184. 184.

    O’Donoghue, L., Rudnicka, A. R., McClelland, J. F., Logan, N. S. & Saunders, K. J. Visual acuity measures do not reliably detect childhood refractive error – an epidemiological study. PLoS ONE 7, e34441 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Lai, Y. H., Tseng, H. Y., Hsu, H. T., Chang, S. J. & Wang, H. Z. Uncorrected visual acuity and noncycloplegic autorefraction predict significant refractive errors in Taiwanese preschool children. Ophthalmology 120, 271–276 (2013).

    Google Scholar 

  186. 186.

    Sherwin, J. C. et al. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology 119, 2141–2151 (2012).

    Google Scholar 

  187. 187.

    Wu, P. C., Tsai, C. L., Wu, H. L., Yang, Y. H. & Kuo, H. K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 120, 1080–1085 (2013).

    Google Scholar 

  188. 188.

    Ngo, C. S. et al. A cluster randomised controlled trial evaluating an incentive-based outdoor physical activity programme to increase outdoor time and prevent myopia in children. Ophthalmic Physiol. Opt. 34, 362–368 (2014).

    Google Scholar 

  189. 189.

    Jan, C. et al. Prevention of myopia, China. Bull. World Health Organ. 98, 435–437 (2020).

    PubMed  PubMed Central  Google Scholar 

  190. 190.

    Chung, K., Mohidin, N. & O’Leary, D. J. Undercorrection of myopia enhances rather than inhibits myopia progression. Vis. Res. 42, 2555–2559 (2002). Undercorrection is widely practised in myopia management but this article showed that undercorrection worsened the progression of myopia.

    Google Scholar 

  191. 191.

    Li, S. Y. et al. Effect of undercorrection on myopia progression in 12-year-old children. Graefes Arch. Clin. Exp. Ophthalmol. 253, 1363–1368 (2015).

    Google Scholar 

  192. 192.

    Koomson, N. Y. et al. Relationship between reduced accommodative lag and myopia progression. Optom. Vis. Sci. 93, 683–691 (2016).

    Google Scholar 

  193. 193.

    Walline, J. J., Greiner, K. L., McVey, M. E. & Jones-Jordan, L. A. Multifocal contact lens myopia control. Optom. Vis. Sci. 90, 1207–1214 (2013).

    Google Scholar 

  194. 194.

    Cheng, D., Woo, G. C., Drobe, B. & Schmid, K. L. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial. JAMA Ophthalmol. 132, 258–264 (2014).

    Google Scholar 

  195. 195.

    Cho, P. & Cheung, S. W. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest. Ophthalmol. Vis. Sci. 53, 7077–7085 (2012).

    Google Scholar 

  196. 196.

    Edwards, M. H., Li, R. W.-H., Lam, C. S.-Y., Lew, J. K.-F. & Yu, B. S.-Y. The Hong Kong progressive lens myopia control study: study design and main findings. Invest. Ophthalmol. Vis. Sci. 43, 2852–2858 (2002).

    Google Scholar 

  197. 197.

    Gwiazda, J. et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest. Ophthalmol. Vis. Sci. 44, 1492–1500 (2003).

    Google Scholar 

  198. 198.

    Leung, J. T. & Brown, B. Progression of myopia in Hong Kong chinese schoolchildren is slowed by wearing progressive lenses. Optom. Vis. Sci. 76, 346–354 (1999).

    CAS  Google Scholar 

  199. 199.

    Sankaridurg, P. et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom. Vis. Sci. 87, 631–641 (2010).

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Anstice, N. S. & Phillips, J. R. Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118, 1152–1161 (2011). The study demonstrated the feasibility of slowing myopia with multifocal-type soft contact lenses.

    Google Scholar 

  201. 201.

    Lam, C. S. Y., Tang, W. C., Tse, D. Y.-Y., Tang, Y. Y. & To, C. H. Defocus incorporated soft contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br. J. Ophthalmol. 98, 40–45 (2014).

    Google Scholar 

  202. 202.

    Walline, J. J., Jones, L. A. & Sinnott, L. T. Corneal reshaping and myopia progression. Br. J. Ophthalmol. 93, 1181–1185 (2009).

    CAS  Google Scholar 

  203. 203.

    Cheng, X., Xu, J., Chehab, K., Exford, J. & Brennan, N. Soft contact lenses with positive spherical aberration for myopia control. Optom. Vis. Sci. 93, 353–366 (2016).

    Google Scholar 

  204. 204.

    Sankaridurg, P. et al. Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic Physiol. Opt. 39, 294–307 (2019).

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Sankaridurg, P. et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011). The study demonstrated the feasibility of slowing myopia with multifocal-type soft contact lenses.

    Google Scholar 

  206. 206.

    Chamberlain, P. et al. A 3-year randomized clinical trial of MiSight lenses for myopia control. Optom. Vis. Sci. 96, 556–567 (2019).

    Google Scholar 

  207. 207.

    Lam, C. S. Y. et al. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br. J. Ophthalmol. 104, 363–368 (2020).

    Google Scholar 

  208. 208.

    Kanda, H. et al. Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial. Jpn. J. Ophthalmol. 62, 537–543 (2018).

    CAS  Google Scholar 

  209. 209.

    Walline, J. J. et al. Effect of high add power, medium add power, or single-vision contact lenses on myopia progression in children: the BLINK randomized clinical trial. JAMA 324, 571–580 (2020).

    Google Scholar 

  210. 210.

    Walline, J. J. et al. Contact lenses in pediatrics (CLIP) study: chair time and ocular health. Optom. Vis. Sci. 84, 896–902 (2007).

    Google Scholar 

  211. 211.

    Walline, J. J. et al. A randomized trial of the effect of soft contact lenses on myopia progression in children. Invest. Ophthalmol. Vis. Sci. 49, 4702–4706 (2008).

    Google Scholar 

  212. 212.

    Gifford, K. L. et al. IMI - clinical management guidelines report. Invest. Ophthalmol. Vis. Sci. 60, M184–M203 (2019).

    Google Scholar 

  213. 213.

    Berntsen, D. A., Sinnott, L. T., Mutti, D. O. & Zadnik, K. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Invest. Ophthalmol. Vis. Sci. 53, 640–649 (2012).

    PubMed  PubMed Central  Google Scholar 

  214. 214.

    Stapleton, F. et al. The incidence of contact lens-related microbial keratitis in Australia. Ophthalmology 115, 1655–1662 (2008).

    Google Scholar 

  215. 215.

    Ganesan, P. & Wildsoet, C. F. Pharmaceutical intervention for myopia control. Expert. Rev. Ophthalmol. 5, 759–787 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Pineles, S. L. et al. Atropine for the prevention of myopia progression in children: a report by the American Academy of Ophthalmology. Ophthalmology 124, 1857–1866 (2017).

    Google Scholar 

  217. 217.

    Huang, J. et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology 123, 697–708 (2016). This meta-analysis compared 16 different interventions for myopia control and indicated that, while a range of interventions could significantly reduce myopia progression, the most effective interventions were pharmacological such as atropine and pirenzepine.

    Google Scholar 

  218. 218.

    Li, S. M. et al. Atropine slows myopia progression more in Asian than white children by meta-analysis. Optom. Vis. Sci. 91, 342–350 (2014). This meta-analysis of RCT results showed that atropine could significantly slow myopia progression in children with a greater effect in Asian children than in white children.

    Google Scholar 

  219. 219.

    Gong, Q. et al. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. JAMA Ophthalmol. 135, 624–630 (2017).

    PubMed  PubMed Central  Google Scholar 

  220. 220.

    Chia, A. et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%. Am. J. Ophthalmol. 157, 451–457.e1 (2014).

    CAS  Google Scholar 

  221. 221.

    Chia, A., Lu, Q. S. & Tan, D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology 123, 391–399 (2016).

    Google Scholar 

  222. 222.

    Fang, P. C., Chung, M. Y., Yu, H. J. & Wu, P. C. Prevention of myopia onset with 0.025% atropine in premyopic children. J. Ocul. Pharmacol. Ther. 26, 341–345 (2010).

    CAS  Google Scholar 

  223. 223.

    Tong, L. et al. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology 116, 572–579 (2009).

    Google Scholar 

  224. 224.

    Yam, J. C. et al. Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology 126, 113–124 (2019). This study showed that the use of very low concentrations of atropine eye drops could reduce myopia progression along a concentration-dependent response, with 0.05% atropine being the most effective in controlling SE progression and AL elongation over a period of 1 year.

    Google Scholar 

  225. 225.

    Yam, J. C. et al. Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study: phase 2 report. Ophthalmology 127, 910–919 (2019). Results of this 2-year randomized trial indicated that the effect of 0.05% atropine was double that observed with 0.01% atropine in slowing myopia progression.

    Google Scholar 

  226. 226.

    Bedrossian, R. H. The effect of atropine on myopia. Ophthalmology 86, 713–719 (1979).

    CAS  Google Scholar 

  227. 227.

    Yi, S. et al. Therapeutic effect of atropine 1% in children with low myopia. J. AAPOS 19, 426–429 (2015).

    Google Scholar 

  228. 228.

    Chua, W. H. et al. Atropine for the treatment of childhood myopia. Ophthalmology 113, 2285–2291 (2006).

    Google Scholar 

  229. 229.

    Shih, Y. F. et al. Effects of different concentrations of atropine on controlling myopia in myopic children. J. Ocul. Pharmacol. Ther. 15, 85–90 (1999). This study suggested that low concentrations of atropine at 0.1%, 0.25% and 0.5% showed significant effects on controlling myopia, with 0.5% atropine treatment being the most effective.

    CAS  Google Scholar 

  230. 230.

    Lee, C. Y., Sun, C. C., Lin, Y. F. & Lin, K. K. Effects of topical atropine on intraocular pressure and myopia progression: a prospective comparative study. BMC Ophthalmol. 16, 114 (2016).

    PubMed  PubMed Central  Google Scholar 

  231. 231.

    Wu, T. E., Yang, C. C. & Chen, H. S. Does atropine use increase intraocular pressure in myopic children? Optom. Vis. Sci. 89, E161–E167 (2012).

    Google Scholar 

  232. 232.

    Chia, A., Li, W., Tan, D. & Luu, C. D. Full-field electroretinogram findings in children in the atropine treatment for myopia (ATOM2) study. Doc. Ophthalmol. 126, 177–186 (2013).

    Google Scholar 

  233. 233.

    Luu, C. D., Lau, A. M., Koh, A. H. & Tan, D. Multifocal electroretinogram in children on atropine treatment for myopia. Br. J. Ophthalmol. 89, 151–153 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. 234.

    McBrien, N. A., Stell, W. K. & Carr, B. How does atropine exert its anti-myopia effects? Ophthalmic Physiol. Opt. 33, 373–378 (2013).

    Google Scholar 

  235. 235.

    Kinoshita, N. et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results. Jpn. J. Ophthalmol. 62, 544–553 (2018).

    CAS  Google Scholar 

  236. 236.

    Wan, L. et al. The synergistic effects of orthokeratology and atropine in slowing the progression of myopia. J. Clin. Med. 7, 259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    Kinoshita, N. et al. Efficacy of combined orthokeratology and 0.01% atropine solution for slowing axial elongation in children with myopia: a 2-year randomised trial. Sci. Rep. 10, 12750 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Clark, T. Y. & Clark, R. A. Atropine 0.01% eyedrops significantly reduce the progression of childhood myopia. J. Ocul. Pharmacol. Ther. 31, 541–545 (2015). This study showed that atropine at 0.01% could significantly reduce the rate of myopic progression over 1 year in children with minimal side effects.

    CAS  Google Scholar 

  239. 239.

    Anderle, R. & Ventruba, J. The current state of refractive surgery. Coll. Antropol. 37 (Suppl. 1), 237–241 (2013). This article provides an overall view of refractive surgery.

    Google Scholar 

  240. 240.

    Wen, D. et al. Postoperative efficacy, predictability, safety, and visual quality of laser corneal refractive surgery: a network meta-analysis. Am. J. Ophthalmol. 178, 65–78 (2017).

    Google Scholar 

  241. 241.

    Kamiya, K. et al. A multicenter retrospective survey of refractive surgery in 78,248 eyes. J. Refract. Surg. 33, 598–602 (2017).

    Google Scholar 

  242. 242.

    Yuen, L. H. et al. A 10-year prospective audit of LASIK outcomes for myopia in 37,932 eyes at a single institution in Asia. Ophthalmology 117, 1236–1244 e1231 (2010). This study demonstrates the efficacy, safety and predictability of LASIK.

    Google Scholar 

  243. 243.

    Kezirian, G. M. & Stonecipher, K. G. Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis. J. Cataract Refract. Surg. 30, 804–811 (2004).

    Google Scholar 

  244. 244.

    Rosman, M. et al. Comparison of efficacy and safety of laser in situ keratomileusis using 2 femtosecond laser platforms in contralateral eyes. J. Cataract Refract. Surg. 39, 1066–1073 (2013).

    Google Scholar 

  245. 245.

    Zalentein, W. N., Tervo, T. M. & Holopainen, J. M. Seven-year follow-up of LASIK for myopia. J. Refract. Surg. 25, 312–318 (2009).

    Google Scholar 

  246. 246.

    Giri, P. & Azar, D. T. Risk profiles of ectasia after keratorefractive surgery. Curr. Opin. Ophthalmol. 28, 337–342 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. 247.

    Wolle, M. A., Randleman, J. B. & Woodward, M. A. Complications of refractive surgery: ectasia after refractive surgery. Int. Ophthalmol. Clin. 56, 127–139 (2016).

    Google Scholar 

  248. 248.

    Shortt, A. J. & Allan, B. D. Photorefractive keratectomy (PRK) versus laser-assisted in-situ keratomileusis (LASIK) for myopia. Cochrane Database Syst. Rev. 2, CD005135 (2006).

    Google Scholar 

  249. 249.

    Matsumoto, J. C. & Chu, Y. S. Epi-LASIK update: overview of techniques and patient management. Int. Ophthalmol. Clin. 46, 105–115 (2006).

    Google Scholar 

  250. 250.

    Sia, R. K., Coe, C. D., Edwards, J. D., Ryan, D. S. & Bower, K. S. Visual outcomes after Epi-LASIK and PRK for low and moderate myopia. J. Refract. Surg. 28, 65–71 (2012).

    Google Scholar 

  251. 251.

    Kuryan, J., Cheema, A. & Chuck, R. S. Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-situ keratomileusis (LASIK) for correcting myopia. Cochrane Database Syst. Rev. 2, CD011080 (2017).

    Google Scholar 

  252. 252.

    Naderi, M., Jadidi, K., Mosavi, S. A. & Daneshi, S. A. Transepithelial photorefractive keratectomy for low to moderate myopia in comparison with conventional photorefractive keratectomy. J. Ophthalmic Vis. Res. 11, 358–362 (2016).

    PubMed  PubMed Central  Google Scholar 

  253. 253.

    Shortt, A. J., Allan, B. D. S. & Evans, J. R. Laser-assisted in-situ keratomileusis (LASIK) versus photorefractive keratectomy (PRK) for myopia. Cochrane Database Syst. Rev. 1, CD005135 (2013).

    Google Scholar 

  254. 254.

    Santhiago, M. R., Netto, M. V. & Wilson, S. E. Mitomycin C: biological effects and use in refractive surgery. Cornea 31, 311–321 (2012).

    Google Scholar 

  255. 255.

    Wallau, A. D. & Campos, M. Photorefractive keratectomy with mitomycin C versus LASIK in custom surgeries for myopia: a bilateral prospective randomized clinical trial. J. Refract. Surg. 24, 326–336 (2008).

    Google Scholar 

  256. 256.

    Agca, A. et al. Refractive lenticule extraction (ReLEx) through a small incision (SMILE) for correction of myopia and myopic astigmatism: current perspectives. Clin. Ophthalmol. 10, 1905–1912 (2016). This article provides an overall view of SMILE.

    PubMed  PubMed Central  Google Scholar 

  257. 257.

    Chan, C., Lawless, M., Sutton, G., Versace, P. & Hodge, C. Small incision lenticule extraction (SMILE) in 2015. Clin. Exp. Optom. 99, 204–212 (2016).

    Google Scholar 

  258. 258.

    Cai, W. T. et al. Dry eye and corneal sensitivity after small incision lenticule extraction and femtosecond laser-assisted in situ keratomileusis: a Meta-analysis. Int. J. Ophthalmol. 10, 632–638 (2017).

    PubMed  PubMed Central  Google Scholar 

  259. 259.

    Fernandez, J., Valero, A., Martinez, J., Pinero, D. P. & Rodriguez-Vallejo, M. Short-term outcomes of small-incision lenticule extraction (SMILE) for low, medium, and high myopia. Eur. J. Ophthalmol. 27, 153–159 (2017).

    Google Scholar 

  260. 260.

    Kim, J. R., Kim, B. K., Mun, S. J., Chung, Y. T. & Kim, H. S. One-year outcomes of small-incision lenticule extraction (SMILE): mild to moderate myopia vs. high myopia. BMC Ophthalmol. 15, 59 (2015).

    PubMed  PubMed Central  Google Scholar 

  261. 261.

    Osman, I. M., Helaly, H. A., Abdalla, M. & Shousha, M. A. Corneal biomechanical changes in eyes with small incision lenticule extraction and laser assisted in situ keratomileusis. BMC Ophthalmol. 16, 123 (2016).

    PubMed  PubMed Central  Google Scholar 

  262. 262.

    Guell, J. L., Morral, M., Kook, D. & Kohnen, T. Phakic intraocular lenses part 1: historical overview, current models, selection criteria, and surgical techniques. J. Cataract Refract. Surg. 36, 1976–1993 (2010). This article provides an overall view of PIOL.

    Google Scholar 

  263. 263.

    Lackner, B. et al. Long-term results of implantation of phakic posterior chamber intraocular lenses. J. Cataract Refract. Surg. 30, 2269–2276 (2004).

    Google Scholar 

  264. 264.

    Perez-Cambrodi, R. J., Piñero, D. P., Ferrer-Blasco, T., Cerviño, A. & Brautaset, R. The posterior chamber phakic refractive lens (PRL): a review. Eye 27, 14–21 (2013).

    CAS  Google Scholar 

  265. 265.

    Lee, J. et al. Long-term clinical results of posterior chamber phakic intraocular lens implantation to correct myopia. Clin. Exp. Ophthalmol. 44, 481–487 (2016).

    Google Scholar 

  266. 266.

    Guerra, M. G. et al. Phakic intraocular lens implantation: refractive outcome and safety in patients with anterior chamber depth between 2.8 and 3.0 versus >/=3.0 mm. Ophthalmic Res. 57, 239–246 (2017).

    Google Scholar 

  267. 267.

    AlSabaani, N. A. et al. Causes of phakic implantable collamer lens explantation/exchange at king khaled eye specialist hospital. Middle East Afr. J. Ophthalmol. 23, 293–295 (2016).

    PubMed  PubMed Central  Google Scholar 

  268. 268.

    Fernandes, P. et al. Implantable collamer posterior chamber intraocular lenses: a review of potential complications. J. Refract. Surg. 27, 765–776 (2011).

    Google Scholar 

  269. 269.

    Arne, J. L. Phakic intraocular lens implantation versus clear lens extraction in highly myopic eyes of 30- to 50-year-old patients. J. Cataract Refract. Surg. 30, 2092–2096 (2004).

    Google Scholar 

  270. 270.

    Nanavaty, M. A. & Daya, S. M. Refractive lens exchange versus phakic intraocular lenses. Curr. Opin. Ophthalmol. 23, 54–61 (2012).

    Google Scholar 

  271. 271.

    Basch, E. Patient-reported outcomes - harnessing patients’ voices to improve clinical care. N. Engl. J. Med. 376, 105–108 (2017).

    Google Scholar 

  272. 272.

    Sensaki, S. et al. An ecologic study of trends in the prevalence of myopia in Chinese adults in Singapore born from the 1920s to 1980s. Ann. Acad. Med. Singap. 46, 229–236 (2017).

    Google Scholar 

  273. 273.

    Coletta, N. J. & Watson, T. Effect of myopia on visual acuity measured with laser interference fringes. Vis. Res. 46, 636–651 (2006).

    Google Scholar 

  274. 274.

    Mitchell, P., Hourihan, F., Sandbach, J. & Wang, J. J. The relationship between glaucoma and myopia: the Blue Mountains eye study. Ophthalmology 106, 2010–2015 (1999).

    CAS  Google Scholar 

  275. 275.

    Polkinghorne, P. J. & Craig, J. P. Northern New Zealand rhegmatogenous retinal detachment study: epidemiology and risk factors. Clin. Exp. Ophthalmol. 32, 159–163 (2004).

    Google Scholar 

  276. 276.

    Praveen, M. R., Vasavada, A. R., Jani, U. D., Trivedi, R. H. & Choudhary, P. K. Prevalence of cataract type in relation to axial length in subjects with high myopia and emmetropia in an Indian population. Am. J. Ophthalmol. 145, 176–181 (2008).

    Google Scholar 

  277. 277.

    Tan, D., Tay, S. A., Loh, K. L. & Chia, A. Topical atropine in the control of myopia. Asia Pac. J. Ophthalmol. 5, 424–428 (2016).

    CAS  Google Scholar 

  278. 278.

    Lamoureux, E. L. et al. The impact of corrected and uncorrected refractive error on visual functioning: the Singapore Malay eye study. Invest. Ophthalmol. Vis. Sci. 50, 2614–2620 (2009).

    Google Scholar 

  279. 279.

    Kandel, H. et al. Uncorrected and corrected refractive error experiences of Nepalese adults: a qualitative study. Ophthalmic Epidemiol. 25, 147–161 (2018).

    Google Scholar 

  280. 280.

    Ayaki, M., Torii, H., Tsubota, K. & Negishi, K. Decreased sleep quality in high myopia children. Sci. Rep. 6, 33902 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. 281.

    Rose, K. et al. Quality of life in myopia. Br. J. Ophthalmol. 84, 1031–1034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. 282.

    Gwiazda, J. Treatment options for myopia. Optom. Vis. Sci. 86, 624–628 (2009).

    PubMed  PubMed Central  Google Scholar 

  283. 283.

    Sutton, G., Lawless, M. & Hodge, C. Laser in situ keratomileusis in 2012: a review. Clin. Exp. Optom. 97, 18–29 (2014).

    Google Scholar 

  284. 284.

    Uusitalo, R. J., Aine, E., Sen, N. H. & Laatikainen, L. Implantable contact lens for high myopia. J. Cataract Refract. Surg. 28, 29–36 (2002).

    Google Scholar 

  285. 285.

    Markoulli, M. & Kolanu, S. Contact lens wear and dry eyes: challenges and solutions. Clin. Optom. 9, 41–48 (2017).

    Google Scholar 

  286. 286.

    Shtein, R. M. Post-LASIK dry eye. Expert Rev. Ophthalmol. 6, 575–582 (2011).

    PubMed  PubMed Central  Google Scholar 

  287. 287.

    Kandel, H., Khadka, J., Goggin, M. & Pesudovs, K. Impact of refractive error on quality of life: a qualitative study. Clin. Exp. Ophthalmol. 45, 677–688 (2017).

    Google Scholar 

  288. 288.

    Van Der Wees, P. J. et al. Integrating the use of patient-reported outcomes for both clinical practice and performance measurement: views of experts from 3 countries. Milbank Q. 92, 754–775 (2014).

    Google Scholar 

  289. 289.

    Pesudovs, K., Garamendi, E. & Elliott, D. B. The quality of life impact of refractive correction (QIRC) questionnaire: development and validation. Optom. Vis. Sci. 81, 769–777 (2004).

    Google Scholar 

  290. 290.

    Berry, S., Mangione, C. M., Lindblad, A. S. & McDonnell, P. J. Development of the national eye institute refractive error correction quality of life questionnaire: focus groups. Ophthalmology 110, 2285–2291 (2003).

    Google Scholar 

  291. 291.

    Vitale, S., Schein, O. D., Meinert, C. L. & Steinberg, E. P. The refractive status and vision profile: a questionnaire to measure vision-related quality of life in persons with refractive error. Ophthalmology 107, 1529–1539 (2000).

    CAS  Google Scholar 

  292. 292.

    Kandel, H., Khadka, J., Goggin, M. & Pesudovs, K. Patient-reported outcomes for assessment of quality of life in refractive error: a systematic review. Optom. Vis. Sci. 94, 1102–1119 (2017). Comprehensive overview of current myopia-specific instruments and the shortcomings of each instrument, highlighting the current gap in myopia PROM assessment.

    Google Scholar 

  293. 293.

    Cella, D., Gershon, R., Lai, J. S. & Choi, S. The future of outcomes measurement: item banking, tailored short-forms, and computerized adaptive assessment. Qual. Life Res. 16 (Suppl. 1), 133–141 (2007).

    Google Scholar 

  294. 294.

    Gershon, R. C. Computer adaptive testing. J. Appl. Meas. 6, 109–127 (2005).

    Google Scholar 

  295. 295.

    Baumhauer, J. F. & Bozic, K. J. Value-based healthcare: patient-reported outcomes in clinical decision making. Clin. Orthop. Relat. Res. 474, 1375–1378 (2016). This is a detailed look at how PROMs are becoming increasingly important in this era of value-based and personalized health care.

    PubMed  PubMed Central  Google Scholar 

  296. 296.

    Hu, Y. et al. Association of age at myopia onset with risk of high myopia in adulthood in a 12-year follow-up of a Chinese cohort. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2020.3451 (2020).

    Article  Google Scholar 

  297. 297.

    Chia, A. et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology 119, 347–354 (2012).

    Google Scholar 

  298. 298.

    Hyman, L. et al. Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial. Arch. Ophthalmol. 123, 977–987 (2005).

    Google Scholar 

  299. 299.

    Zhao, J. et al. The progression of refractive error in school-age children: Shunyi district, China. Am. J. Ophthalmol. 134, 735–743 (2002).

    Google Scholar 

  300. 300.

    Chen, Y. et al. Contribution of genome-wide significant single nucleotide polymorphisms in myopia prediction: findings from a 10-year cohort of Chinese twin children. Ophthalmology 126, 1607–1614 (2019).

    Google Scholar 

  301. 301.

    Lin, H. et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study. PLoS Med. 15, e1002674 (2018).

    PubMed  PubMed Central  Google Scholar 

  302. 302.

    Chen, Y., Zhang, J., Morgan, I. G. & He, M. Identifying children at risk of high myopia using population centile curves of refraction. PLoS ONE 11, e0167642 (2016).

    PubMed  PubMed Central  Google Scholar 

  303. 303.

    Chua, S. Y. et al. Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthalmic Physiol. Opt. 36, 388–394 (2016).

    Google Scholar 

  304. 304.

    Zadnik, K. et al. Prediction of juvenile-onset myopia. JAMA Ophthalmol. 133, 683–689 (2015).

    PubMed  PubMed Central  Google Scholar 

  305. 305.

    Tideman, J. W. L. et al. Axial length growth and the risk of developing myopia in european children. Acta Ophthalmol. 96, 301–309 (2018).

    Google Scholar 

  306. 306.

    Verkicharla, P. K. et al. Development of the fitsight fitness tracker to increase time outdoors to prevent myopia. Transl. Vis. Sci. Technol. 6, 20 (2017).

    PubMed  PubMed Central  Google Scholar 

  307. 307.

    Wen, L. et al. An objective comparison of light intensity and near-visual tasks between rural and urban school children in China by a wearable device Clouclip. Transl. Vis. Sci. Technol. 8, 15 (2019).

    PubMed  PubMed Central  Google Scholar 

  308. 308.

    Lanca, C. & Saw, S. M. The association between digital screen time and myopia: a systematic review. Ophthalmic Physiol. Opt. 40, 216–229 (2020).

    Google Scholar 

  309. 309.

    Smith, E. L. III Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia. Optometry Vis. Sci. 88, 1029–1044 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors thank Ian Morgan (Australian National University) for his tremendous help on preparing this manuscript. This study was supported by the Australian National Health and Medical Research Council (NHMRC) through project grant 1034329 and a Senior Research Fellowship (1138585 to P.N.B.); the National Medical Research Council (NRMC) Grant NMRC/CIRG/1446/2017 and A*STAR World Without Disease (Grant JRBMRR 151701) (S.-M.S. and C.L.); Clinician Scientist Award (Senior; NMRC/CSA-SI/0009/2016) (E.L.L.) and Transition Award (MOH-TA19may-0002) (R.M.); National Institutes of Health Grant EY-03611 and funds from the Brien Holden Vision Institute (E.L.S.); grants 81800860, 81422007 and 81371047 from the National Natural Science Foundation of China (X.Z.); Fight for Sight and Welsh Government Project Grant (Ref: 24WG201) (J.A.G.); and Fundamental Research Funds of the State Key Laboratory of Ophthalmology, the Research Accelerator Program at the University of Melbourne and the CERA Foundation in Australia (M.H.).

Author information

Affiliations

Authors

Contributions

Introduction (M.H., P.N.B. and J.A.G.); Epidemiology (S.-M.S., C.L., M.H., J.A.G. and P.N.B.); Mechanisms/Pathophysiology (M.H., P.N.B., J.A.G., E.L.S. and X.Z.); Diagnosis, screening and prevention (M.H. and K.-O.M.); Management (P.-C.W., P.S., A.C. and M.R.); Quality of life (E.L.L. and R.M.); Outlook (P.N.B., M.H. and J.A.G.); Overview of Primer (P.N.B. and M.H.).

Corresponding authors

Correspondence to Paul N. Baird or Mingguang He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks C. Leung, F. Schaeffel, K. Tsubota, T. Young and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Form deprivation myopia

Placing a diffusing filter in front of the eye.

Myopic defocus

Image formed in front of retinal plane.

Axial length

The distance from the anterior surface of the cornea to the retina.

Hyperopic

Ability to focus on distant objects.

Emmetropization

The development of the eye towards emmetropia, wherein the focus of distant objects is on the retina when the lens is in a relaxed state.

Accommodation

The ability of the eye to change its focus from near to far.

Hyperopic defocus

Blur resulting from the image formed behind the retinal plane.

Choroid

A highly vascularized layer between the sclera and the retina.

Cycloplegia

Paralysis of the ciliary muscles of the eye.

Fundus

The interior surface of the back of the eye, comprising the retina, choroid and sclera.

Indirect ophthalmoscopy

Examination to provide a wide view of the back of the eye using a beam of light and a hand-held lens.

Staphyloma

Protrusion of a limited area of the posterior sclera.

Choroidal neovascularization

The formation of new blood vessels in the choroid of the eye.

Orthokeratology lenses

Rigid, gas-permeable lenses to flatten corneal curvature during overnight wear.

Photophobia

Sensitivity to light.

Excimer or femtosecond laser

A laser emitting concentrated light in the ultraviolet region of the spectrum.

Phakic intraocular lens

(PIOL). Silicon or plastic lenses inserted into a person’s eye to restore vision but leaves the eye’s natural lens intact.

Corneal ectasia

Abnormal change in shape of the cornea.

Haze

A granular scarring of the corneal stroma due to inflammation.

Corneal lenticule tissue

A small piece of corneal or synthetic material with a precise shape and thickness implanted into the cornea in order to change the corneal curvature.

Infective endophthalmitis

Infection of the interior of the eye.

Ocular biometry

Measurement of specific features that are common to the eye.

Rasch analysis

A psychometric model for analysing categorical data, typically in the form of a questionnaire.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baird, P.N., Saw, SM., Lanca, C. et al. Myopia. Nat Rev Dis Primers 6, 99 (2020). https://doi.org/10.1038/s41572-020-00231-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing