Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Adult chronic rhinosinusitis

Abstract

Chronic rhinosinusitis (CRS) occurs in >10% of the adult population in Europe and the USA and can be differentiated into CRS without nasal polyps and CRS with nasal polyps (CRSwNP). Both phenotypes are characterized by a high disease burden and an overlapping spectrum of symptoms, with facial pain and loss of smell being the most differentiating. Great progress has been made in the understanding of CRS pathophysiology: from the epithelium and epithelial–mesenchymal transition to innate and adaptive immunity pathways and, finally, on the role of eosinophils and Staphylococcus aureus in the persistence of disease. Although clinical manifestations and diagnostic tools (including nasal endoscopy and imaging) have undergone major changes over the past few years, management (including pharmacotherapy, surgery and biologics) has experienced enormous progress based on the growing knowledge of key mediators in severe CRSwNP. The introduction of endotyping has led to a differentiation of ‘tailored’ surgical approaches, focusing on the mucosal concept in those with severe CRSwNP and on the identification of patients eligible for extended surgery and possibly biologics in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of the paranasal sinuses and the nasal passage.
Fig. 2: Relative proportion of allergic rhinitis, asthma and CRS across the lifespan.
Fig. 3: Overview of cellular and molecular changes in epithelium in patients with CRS.
Fig. 4: Type 2 immune response and CRS.
Fig. 5: Possible functions of SAgs in allergy.
Fig. 6: Nasal endoscopy and CT scans to differentiate CRS phenotypes.
Fig. 7: Management algorithm for CRS.
Fig. 8: Patient-specific and surgeon-specific factors impact surgical outcomes.
Fig. 9: PROMs and objective measures of disease severity.

Similar content being viewed by others

References

  1. Bachert, C. et al. ICON: chronic rhinosinusitis. World Allergy Organ. J. 7, 25 (2014).

    PubMed  Google Scholar 

  2. Bachert, C. et al. Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J. Allergy Clin. Immunol. 126, 962–968.e6 (2010).

    CAS  PubMed  Google Scholar 

  3. Fokkens, W. J. et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol. Suppl. 23, 1–298 (2012).

    Google Scholar 

  4. Tomassen, P. et al. Reliability of EP3OS symptom criteria and nasal endoscopy in the assessment of chronic rhinosinusitis - a GA2LEN study. Allergy 66, 556–561 (2010).

    PubMed  Google Scholar 

  5. Hastan, D. et al. Chronic rhinosinusitis in Europe — an underestimated disease. A GA2LEN study. Allergy 66, 1216–1223 (2011).

    CAS  PubMed  Google Scholar 

  6. Pilan, R. R. et al. Prevalence of chronic rhinosinusitis in Sao Paulo. Rhinology 50, 129–138 (2012).

    CAS  PubMed  Google Scholar 

  7. Shi, J. B. et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy 70, 533–539 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahn, J.-C., Kim, J.-W., Lee, C. H. & Rhee, C.-S. Prevalence and risk factors of chronic rhinosinusitus, allergic rhinitis, and nasal septal deviation. JAMA Otolaryngol. Head Neck Surg. 142, 162–167 (2016).

    Google Scholar 

  9. Hirsch, A. G. et al. Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy 72, 274–281 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Clarhed, U. K. E. et al. Chronic rhinosinusitis related to occupational exposure. J. Occup. Environ. Med. 60, 656–660 (2018).

    PubMed  Google Scholar 

  11. Sundaresan, A. S. et al. Longitudinal evaluation of chronic rhinosinusitis symptoms in a population-based sample. J. Allergy Clin. Immunol. Pract. 6, 1327–1335.e3 (2018).

    PubMed  Google Scholar 

  12. Johansson, L., Åkerlund, A., Melén, I., Holmberg, K. & Bende, M. Prevalence of nasal polyps in adults: the Skovde population-based study. Ann. Otol. Rhinol. Laryngol. 112, 625–629 (2003).

    PubMed  Google Scholar 

  13. Johansson, L. et al. Clinical relevance of nasal polyps in individuals recruited from a general population-based study. Acta Otolaryngol. 124, 77–81 (2004).

    CAS  PubMed  Google Scholar 

  14. Won, H.-K. et al. Age-related prevalence of chronic rhinosinusitis and nasal polyps and their relationships with asthma onset. Ann. Allergy Asthma Immunol. 120, 389–394 (2018).

    PubMed  Google Scholar 

  15. Gilani, S. & Shin, J. J. The burden and visit prevalence of pediatric chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 157, 1048–1052 (2017).

    PubMed  Google Scholar 

  16. Banerji, A. et al. Chronic rhinosinusitis patients with polyps or polypoid mucosa have a greater burden of illness. Am. J. Rhinol. 21, 19–26 (2007).

    PubMed  Google Scholar 

  17. Khan, A. et al. The Global Allergy and Asthma European Network (GALEN rhinosinusitis cohort: a large European cross-sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology 57, 32–42 (2019).

    CAS  PubMed  Google Scholar 

  18. Bhattacharyya, N. et al. Cost burden and resource utilization in patients with chronic rhinosinusitis and nasal polyps. Laryngoscope 129, 1969–1975 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Bachert, C., Zhang, L. & Gevaert, P. Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis. J. Allergy Clin. Immunol. 136, 1431–1440 (2015).

    CAS  PubMed  Google Scholar 

  20. Zhang, Y. et al. Chronic rhinosinusitis in Asia. J. Allergy Clin. Immunol. 140, 1230–1239 (2017).

    PubMed  Google Scholar 

  21. Stentzel, S. et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J. Allergy Clin. Immunol. 139, 492–500.e8 (2017).

    CAS  PubMed  Google Scholar 

  22. Hsu, J. et al. Genetics of chronic rhinosinusitis: state of the field and directions forward. J. Allergy Clin. Immunol. 131, 977–993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, R. J. et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122, 4145–4159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Settipane, G. & Chafee, F. Nasal polyps in asthma and rhinitis. A review of 6,037 patients. J. Allergy Clin. Immunol. 59, 17–21 (1977).

    CAS  PubMed  Google Scholar 

  25. Tan, B. K. et al. Incidence and associated premorbid diagnoses of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 131, 1350–1360 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Beule, A. Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities, and economic burden. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. https://doi.org/10.3205/CTO000126 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wolf, C. Urban air pollution and health: an ecological study of chronic rhinosinusitis in Cologne, Germany. Health Place 8, 129–139 (2002).

    PubMed  Google Scholar 

  28. Thilsing, T. et al. Chronic rhinosinusitis and occupational risk factors among 20- to 75-year-old Danes-A GA2LEN-based study. Am. J. Ind. Med. 55, 1037–1043 (2012).

    PubMed  Google Scholar 

  29. Gao, W.-X. et al. Occupational and environmental risk factors for chronic rhinosinusitis in China: a multicentre cross-sectional study. Respir. Res. 17, 54 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Veloso-Teles, R., Cerejeira, R., Roque-Farinha, R. & von Buchwald, C. Higher prevalence of nasal polyposis among textile workers: an endoscopic based and controlled study. Rhinology 56, 99–105 (2018).

    CAS  PubMed  Google Scholar 

  31. Putman, B. et al. Risk factors for post-9/11 chronic rhinosinusitis in Fire Department of the City of New York workers. Occup. Environ. Med. 75, 884–889 (2018).

    PubMed  Google Scholar 

  32. Beule, A. Epidemiologie der chronischen Rhinosinusitis, ausgewählter Risikofaktoren und Komorbiditäten, und ihre ökonomischen Folgen. Laryngorhinootologie 94 (Suppl. 1), S1–S23 (2015).

    PubMed  Google Scholar 

  33. Min, J.-Y. & Tan, B. K. Risk factors for chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 15, 1–13 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan, B. K. et al. Atopic profile of patients failing medical therapy for chronic rhinosinusitis. Int. Forum Allergy Rhinol. 1, 88–94 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Tint, D., Kubala, S. & Toskala, E. Risk factors and comorbidities in chronic rhinosinusitis. Curr. Allergy Asthma Rep. 16, 16 (2016).

    PubMed  Google Scholar 

  36. Huang, H.-B. et al. Longitudinal assessment of prenatal phthalate exposure on serum and cord thyroid hormones homeostasis during pregnancy – Tainan birth cohort study (TBCS). Sci. Total. Environ. 619–620, 1058–1065 (2018).

    PubMed  Google Scholar 

  37. DelGaudio, J. M., Loftus, P. A., Hamizan, A. W., Harvey, R. J. & Wise, S. K. Central compartment atopic disease. Am. J. Rhinol. Allergy 31, 228–234 (2017).

    PubMed  Google Scholar 

  38. Jarvis, D. et al. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe: asthma and chronic rhinosinusitis. Allergy 67, 91–98 (2012).

    CAS  PubMed  Google Scholar 

  39. Stevens, W. W. et al. Clinical characteristics of patients with chronic rhinosinusitis with nasal polyps, asthma, and aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. Pract. 5, 1061–1070.e3 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Avila, P. C. & Schleimer, R. P. in Allergy and Allergic Diseases 366–397 (Wiley-Blackwell, 2009).

  41. Schleimer, R. P., Kato, A., Kern, R., Kuperman, D. & Avila, P. C. Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 120, 1279–1284 (2007). Focuses on the epithelium in the initiation and maintenance of mucosal inflammation is CRS.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schleimer, R. P. & Berdnikovs, S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J. Allergy Clin. Immunol. 139, 1752–1761 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bernstein, J., Gorfien, J., Noble, B. & Yankaskas, J. Nasal polyposis: Immunohistochemistry and bioelectrical findings (a hypothesis for the development of nasal polyps). J. Allergy Clin. Immunol. 99, 165–175 (1997).

    CAS  PubMed  Google Scholar 

  44. Dejima, K., Randell, S. H., Stutts, M. J., Senior, B. A. & Boucher, R. C. Potential role of abnormal ion transport in the pathogenesis of chronic sinusitis. Arch. Otolaryngol. Head Neck Surg. 132, 1352 (2006).

    PubMed  Google Scholar 

  45. Soyka, M. B. et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J. Allergy Clin. Immunol. 130, 1087–1096.e10 (2012).

    CAS  PubMed  Google Scholar 

  46. Zhang, N., Van Crombruggen, K., Gevaert, E. & Bachert, C. Barrier function of the nasal mucosa in health and type-2 biased airway diseases. Allergy 71, 295–307 (2016).

    CAS  PubMed  Google Scholar 

  47. Schleimer, R. P. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu. Rev. Pathol. 12, 331–357 (2017).

    CAS  PubMed  Google Scholar 

  48. Brożek, J. L. et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines—2016 revision. J. Allergy Clin. Immunol. 140, 950–958 (2017).

    PubMed  Google Scholar 

  49. Jang, Y., Kim, H.-G., Koo, T. & Chung, P. Localization of ZO-1 and E-cadherin in the nasal polyp epithelium. Eur. Arch. Otorhinolaryngol. 259, 465–469 (2002).

    PubMed  Google Scholar 

  50. Rogers, G. A. et al. Epithelial tight junction alterations in nasal polyposis. Int. Forum Allergy Rhinol. 1, 50–54 (2011).

    PubMed  Google Scholar 

  51. Meng, J. et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS ONE 8, e82373 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Barmeyer, C., Schulzke, J. D. & Fromm, M. Claudin-related intestinal diseases. Semin. Cell Dev. Biol. 42, 30–38 (2015).

    CAS  PubMed  Google Scholar 

  53. Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    CAS  PubMed  Google Scholar 

  55. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 119, 1420–1428 (2009).

    CAS  PubMed  Google Scholar 

  56. Pain, M. et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur. Respir. Rev. 23, 118–130 (2014).

    PubMed  Google Scholar 

  57. Johnson, J. R., Roos, A., Berg, T., Nord, M. & Fuxe, J. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways. PLoS ONE 6, e16175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Steelant, B. et al. Impaired barrier function in patients with house dust mite–induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J. Allergy Clin. Immunol. 137, 1043–1053.e5 (2016).

    CAS  PubMed  Google Scholar 

  59. Wan, H. et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Investig. 104, 123–133 (1999).

    CAS  PubMed  Google Scholar 

  60. Richer, S. L. et al. Epithelial genes in chronic rhinosinusitis with and without nasal polyps. Am. J. Rhinol. 22, 228–234 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Tieu, D. D., Kern, R. C. & Schleimer, R. P. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis. J. Allergy Clin. Immunol. 124, 37–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin, H.-W. et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am. J. Respir. Crit. Care Med. 185, 944–954 (2012).

    CAS  PubMed  Google Scholar 

  63. Shaykhiev, R. & Crystal, R. G. Early events in the pathogenesis of chronic obstructive pulmonary disease. smoking-induced reprogramming of airway epithelial basal progenitor cells. Ann. Am. Thorac. Soc. 11 (Suppl. 5), 252–258 (2014).

    Google Scholar 

  64. Taniguchi, K. et al. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, S.-N., Lee, D.-H., Sohn, M. H. & Yoon, J.-H. Overexpressed proprotein convertase 1/3 induces an epithelial-mesenchymal transition in airway epithelium. Eur. Respir. J. 42, 1379–1390 (2013).

    CAS  PubMed  Google Scholar 

  66. Sidhu, S. S. et al. Roles of epithelial cell-derived periostin in TGF- activation, collagen production, and collagen gel elasticity in asthma. Proc. Natl Acad. Sci. USA 107, 14170–14175 (2010).

    CAS  PubMed  Google Scholar 

  67. Gevaert, P. et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J. Allergy Clin. Immunol. 131, 110–116.e1 (2013). Omalizumab treatment reduces polyp size and symptoms in CRSwNP, although nasal polyps are not related to allergy: a proof-of concept study.

    CAS  PubMed  Google Scholar 

  68. Gevaert, P. et al. Mepolizumab, a humanized anti–IL-5 mAb, as a treatment option for severe nasal polyposis. J. Allergy Clin. Immunol. 128, 989–995.e1-8 (2011).

    CAS  PubMed  Google Scholar 

  69. Bachert, C. et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis. JAMA 315, 469–479 (2016).

    CAS  PubMed  Google Scholar 

  70. LeMessurier, K. S., Tiwary, M., Morin, N. P. & Samarasinghe, A. E. Respiratory barrier as a safeguard and regulator of defense against influenza A virus and streptococcus pneumoniae. Front. Immunol. 11, 3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kountakis, S. E., Arango, P., Bradley, D., Wade, Z. K. & Borish, L. Molecular and cellular staging for the severity of chronic rhinosinusitis. Laryngoscope 114, 1895–1905 (2004).

    PubMed  Google Scholar 

  72. Shi, L.-L. et al. Features of airway remodeling in different types of chinese chronic rhinosinusitis are associated with inflammation patterns. Allergy 68, 101–109 (2013).

    CAS  PubMed  Google Scholar 

  73. Seshadri, S. et al. Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis. Allergy 67, 920–928 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, B. et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis. Am. J. Rhinol. 20, 325–329 (2006).

    PubMed  Google Scholar 

  75. Cohen, N. A. Sinonasal mucociliary clearance in health and disease. Ann. Otol. Rhinol. Laryngol. 196, 20–26 (2006).

    Google Scholar 

  76. Gudis, D., Zhao, K.-Q. & Cohen, N. A. Acquired cilia dysfunction in chronic rhinosinusitis. Am. J. Rhinol. Allergy 26, 1–6 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Li, Y. Y. et al. Impairment of cilia architecture and ciliogenesis in hyperplastic nasal epithelium from nasal polyps. J. Allergy Clin. Immunol. 134, 1282–1292 (2014).

    PubMed  Google Scholar 

  78. Wang, X. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 284, 1814–1819 (2000).

    CAS  PubMed  Google Scholar 

  79. Hamilos, D. L. Host-microbial interactions in patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 133, 640–653.e4 (2014).

    CAS  PubMed  Google Scholar 

  80. Lane, A. P., Truong-Tran, Q.-A., Myers, A., Bickel, C. & Schleimer, R. P. Serum Amyloid A, properdin, complement 3, and toll-like receptors are expressed locally in human sinonasal tissue. Am. J. Rhinol. 20, 117–123 (2006).

    PubMed  PubMed Central  Google Scholar 

  81. Lee, R. J. & Cohen, N. A. Role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 15, 14–20 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ghafouri, B., Kihlström, E., Ståhlbom, B., Tagesson, C. & Lindahl, M. PLUNC (palate, lung and nasal epithelial clone) proteins in human nasal lavage fluid. Biochem. Soc. Trans. 31, 810–814 (2003).

    CAS  PubMed  Google Scholar 

  83. Tieu, D. D. et al. Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J. Allergy Clin. Immunol. 125, 667–675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tos, M., Larsen, P., Larsen, K. & Caye-Thomasen, P. in Nasal Polyposis (Springer-Verlag, 2010).

  85. Takabayashi, T. et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am. J. Respir. Crit. Care Med. 187, 49–57 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. Takabayashi, T. et al. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 132, 584–592.e4 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Takabayashi, T. et al. Nattokinase, profibrinolytic enzyme, effectively shrinks the nasal polyp tissue and decreases viscosity of mucus. Allergol. Int. 66, 594–602 (2017).

    CAS  PubMed  Google Scholar 

  88. Chen, C.-L. et al. Common fibrin deposition and tissue plasminogen activator downregulation in nasal polyps with distinct inflammatory endotypes. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2020.02.010 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang, Y. et al. Th2 cytokines orchestrate the secretion of MUC 5 AC and MUC 5B in IL ‐5‐positive chronic rhinosinusitis with nasal polyps. Allergy 74, 131–140 (2019).

    CAS  PubMed  Google Scholar 

  90. Van Zele, T., Holtappels, G., Gevaert, P. & Bachert, C. Differences in initial immunoprofiles between recurrent and nonrecurrent chronic rhinosinusitis with nasal polyps. Am. J. Rhinol. Allergy 28, 192–198 (2014). Important paper to show how immunology impacts on the clinic of CRSwNP in terms of recurrence of disease.

    PubMed  Google Scholar 

  91. Tomassen, P. et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 137, 1449–1456.e4 (2016). A key paper showing endotypes based on cluster analysis of all forms of CRS, from uncomplicated CRSsNP to severe comorbid uncontrolled CRSwNP.

    CAS  PubMed  Google Scholar 

  92. Lan, F. et al. Forkhead box protein 3 in human nasal polyp regulatory T cells is regulated by the protein suppressor of cytokine signaling 3. J. Allergy Clin. Immunol. 132, 1314–1321.e3 (2013).

    CAS  PubMed  Google Scholar 

  93. Van Crombruggen, K., Taveirne, S., Holtappels, G., Leclercq, G. & Bachert, C. Innate lymphoid cells in the upper airways: importance of CD117 and IL-1RI expression. Eur. Respir. J. 52, 1800742 (2018).

    PubMed  Google Scholar 

  94. Miljkovic, D. et al. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis. Allergy 69, 1154–1161 (2014).

    CAS  PubMed  Google Scholar 

  95. Mjösberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    PubMed  Google Scholar 

  96. Lee, T.-J. et al. Impact of chronic rhinosinusitis on severe asthma patients. PLoS ONE 12, e0171047 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Poposki, J. A. et al. Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps. Immun. Inflamm. Dis. 5, 233–243 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Eastman, J. J. et al. Group 2 innate lymphoid cells are recruited to the nasal mucosa in patients with aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 140, 101–108.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Maric, J. et al. Cytokine-induced endogenous production of prostaglandin D2 is essential for human group 2 innate lymphoid cell activation. J. Allergy Clin. Immunol. 143, 2202–2214.e5 (2019).

    CAS  PubMed  Google Scholar 

  100. Morita, H. et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143, 2190–2201.e9 (2019).

    CAS  PubMed  Google Scholar 

  101. Simon, H. U. et al. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J. Immunol. 158, 3902–3908 (1997). This paper demonstrated that eosinophils in CRSwNP live longer than in the peripheral blood and can be killed by anti-IL-5 but not by anti-IL-3 or anti-GM-CSF; it paved the way for subsequent biologics.

    CAS  PubMed  Google Scholar 

  102. Barlow, J. L. et al. Innate IL-13–producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–198 (2012).

    CAS  PubMed  Google Scholar 

  103. Wang, M. et al. Association of periostin expression with eosinophilic inflammation in nasal polyps. J. Allergy Clin. Immunol. 136, 1700–1703.e9 (2015).

    CAS  PubMed  Google Scholar 

  104. Gevaert, P. et al. Local receptor revision and class switching to IgE in chronic rhinosinusitis with nasal polyps. Allergy 68, 55–63 (2013).

    CAS  PubMed  Google Scholar 

  105. Calus, L. et al. IL-21 is increased in nasal polyposis and after stimulation with Staphylococcus aureus enterotoxin B. Int. Arch. Allergy Immunol. 174, 161–169 (2017).

    CAS  PubMed  Google Scholar 

  106. Bachert, C. et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 394, 1638–1650 (2019). This paper summarizes the first two successful phase III study results with a biologic, dupilumab, performed in CRSwNP.

    CAS  PubMed  Google Scholar 

  107. Bachert, C. et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J. Allergy Clin. Immunol. 140, 1024–1031.e14 (2017).

    CAS  PubMed  Google Scholar 

  108. Gevaert, E. et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation. J. Allergy Clin. Immunol. 139, 1849–1860.e6 (2017).

    CAS  PubMed  Google Scholar 

  109. Ueki, S. et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121, 2074–2083 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ueki, S. et al. Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood 132, 2183–2187 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14, 949–953 (2008).

    CAS  PubMed  Google Scholar 

  112. Gevaert, E. et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J. Allergy Clin. Immunol. 145, 427–430.e4 (2020).

    PubMed  Google Scholar 

  113. Persson, E. K. et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 364, eaaw4295 (2019). Excellent publication to show why eosinophils are not innocent bystanders but rather drivers of inflammation through the formation of Charcot–Leyden crystals in CRSwNP.

    CAS  PubMed  Google Scholar 

  114. Yuan, S. et al. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci. Transl Med. 7, 276ra27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, R. et al. Allergen-induced increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma. Am. J. Respir. Crit. Care Med. 196, 700–712 (2017).

    CAS  PubMed  Google Scholar 

  116. Baba, S., Kondo, K., Suzukawa, M., Ohta, K. & Yamasoba, T. Distribution, subtype population, and IgE positivity of mast cells in chronic rhinosinusitis with nasal polyps. Ann. Allergy Asthma Immunol. 119, 120–128 (2017).

    CAS  PubMed  Google Scholar 

  117. Ryu, G. & Kim, D. W. Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 20, 1–8 (2020).

    CAS  PubMed  Google Scholar 

  118. Singh, D., Ravi, A. & Southworth, T. CRTH2 antagonists in asthma: current perspectives. Clin. Pharmacol. Adv. Appl. 9, 165–173 (2017).

    CAS  Google Scholar 

  119. Modena, B. D., Dazy, K. & White, A. A. Emerging concepts: mast cell involvement in allergic diseases. Transl Res. 174, 98–121 (2016).

    CAS  PubMed  Google Scholar 

  120. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    CAS  PubMed  Google Scholar 

  121. Bach, J.-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    PubMed  Google Scholar 

  122. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Eberl, G. Immunity by equilibrium. Nat. Rev. Immunol. 16, 524–532 (2016).

    CAS  PubMed  Google Scholar 

  124. Nordengrün, M., Michalik, S., Völker, U., Bröker, B. M. & Gómez-Gascón, L. The quest for bacterial allergens. Int. J. Med. Microbiol. 308, 738–750 (2018).

    PubMed  Google Scholar 

  125. Wu, D., Wei, Y. & Bleier, B. S. Emerging role of proteases in the pathogenesis of chronic rhinosinusitis with nasal polyps. Front. Cell. Infect. Microbiol. 7, 538 (2017).

    PubMed  Google Scholar 

  126. Wills-Karp, M. & Lewkowich, I. Fundamental Immunology (ed. Paul W. E.) 1113–1153 (Lippincott Williams & Wilkins, 2013).

  127. Goodman, R. E. & Breiteneder, H. The WHO/IUIS allergen nomenclature. Allergy 74, 429–431 (2019).

    PubMed  Google Scholar 

  128. Teufelberger, A. R., Bröker, B. M., Krysko, D. V., Bachert, C. & Krysko, O. Staphylococcus aureus orchestrates type 2 airway diseases. Trends Mol. Med. 25, 696–707 (2019).

    PubMed  Google Scholar 

  129. Johannessen, M., Sollid, J. E. & Hanssen, A.-M. Host- and microbe determinants that may influence the success of S. aureus colonization. Front. Cell. Infect. Microbiol. 2, 56 (2012).

    PubMed  PubMed Central  Google Scholar 

  130. Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5, 751–762 (2005).

    PubMed  Google Scholar 

  131. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    CAS  PubMed  Google Scholar 

  132. Thammavongsa, V., Kim, H. K., Missiakas, D. & Schneewind, O. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol. 13, 529–543 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tuffs, S., Haeryfar, S. & McCormick, J. Manipulation of innate and adaptive immunity by staphylococcal superantigens. Pathogens 7, 53 (2018).

    CAS  PubMed Central  Google Scholar 

  134. Lina, G. et al. Standard nomenclature for the superantigens expressed by Staphylococcus. J. Infect. Dis. 189, 2334–2336 (2004).

    PubMed  Google Scholar 

  135. Hu, D.-L. & Nakane, A. Mechanisms of staphylococcal enterotoxin-induced emesis. Eur. J. Pharmacol. 722, 95–107 (2014).

    CAS  PubMed  Google Scholar 

  136. Schmidt, F. et al. Characterization of human and Staphylococcus aureus proteins in respiratory mucosa by in vivo- and immunoproteomics. J. Proteom. 155, 31–39 (2017).

    CAS  Google Scholar 

  137. Nakamura, Y. et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503, 397–401 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Teufelberger, A. R. et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D. J. Allergy Clin. Immunol. 141, 549–559.e7 (2018).

    CAS  PubMed  Google Scholar 

  139. Berube, B. & Wardenburg, J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 5, 1140–1166 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Murphy, J. et al. Staphylococcus aureus V8 protease disrupts the integrity of the airway epithelial barrier and impairs IL-6 production in vitro: V8 protease and airway barrier disruption. Laryngoscope 128, E8–E15 (2018).

    CAS  PubMed  Google Scholar 

  141. Bachert, C. et al. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur. Respir. J. 55, 1901592 (2020).

    CAS  PubMed  Google Scholar 

  142. Fleischer, B. & Schrezenmeier, H. T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J. Exp. Med. 167, 1697–1707 (1988).

    CAS  PubMed  Google Scholar 

  143. Proft, T. & Fraser, J. D. Bacterial superantigens. Clin. Exp. Immunol. 133, 299–306 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Marrack, P. & Kappler, J. The Staphylococcal enterotoxins and their relatives. Science 248, 705–711 (1990).

    CAS  PubMed  Google Scholar 

  145. Lappin, E. & Ferguson, A. J. Gram-positive toxic shock syndromes. Lancet Infect. Dis. 9, 281–290 (2009).

    CAS  PubMed  Google Scholar 

  146. Holtfreter, S. et al. Staphylococcus aureus carriers neutralize superantigens by antibodies specific for their colonizing strain: a potential explanation for their improved prognosis in severe sepsis. J. Infect. Dis. 193, 1275–1278 (2006).

    CAS  PubMed  Google Scholar 

  147. Van Zele, T. et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J. Allergy Clin. Immunol. 114, 981–983 (2004).

    PubMed  Google Scholar 

  148. Bachert, C. et al. Staphylococcus aureus enterotoxins as immune stimulants in chronic rhinosinusitis. Clin. Allergy Immunol. 20, 163–175 (2007).

    CAS  PubMed  Google Scholar 

  149. Zhang, N. et al. An update on the impact of Staphylococcus aureus enterotoxins in chronic sinusitis with nasal polyposis. Rhinology 43, 162–168 (2005).

    CAS  PubMed  Google Scholar 

  150. Bachert, C. & Zhang, N. Chronic rhinosinusitis and asthma: novel understanding of the role of IgE ‘above atopy’: review: chronic rhinosinusitis and asthma. J. Intern. Med. 272, 133–143 (2012).

    CAS  PubMed  Google Scholar 

  151. Verkaik, N. J. et al. Immunogenicity of toxins during Staphylococcus aureus infection. Clin. Infect. Dis. 50, 61–68 (2010).

    CAS  PubMed  Google Scholar 

  152. Shamji, M. H. et al. Broad IgG repertoire in patients with chronic rhinosinusitis with nasal polyps regulates proinflammatory IgE responses. J. Allergy Clin. Immunol. 143, 2086–2094.e2 (2019).

    CAS  PubMed  Google Scholar 

  153. Zhang, N. et al. Mucosal tissue polyclonal IgE is functional in response to allergen and SEB. Allergy 66, 141–148 (2010).

    Google Scholar 

  154. Pryjma, J., Muñoz, J., Virella, G. & Fudenberg, H. H. Evaluation of IgM, IgG, IgA, IgD, and IgE secretion by human peripheral blood lymphocytes in cultures stimulated with pokeweed mitogen and Staphylococcus aureus Cowan I. Cell. Immunol. 50, 115–124 (1980).

    CAS  PubMed  Google Scholar 

  155. Hemady, Z., Blomberg, F., Gellis, S. & Rocklin, R. IgE production in vitro by human blood mononuclear cells: a comparison between atopic and nonatopic subjects. J. Allergy Clin. Immunol. 71, 324–330 (1983).

    CAS  PubMed  Google Scholar 

  156. Del Prete, G., Maggi, E., Romagnani, S. & Ricci, M. Human IgE biosynthesis in vitro. Clin. Rev. Allergy 7, 193–216 (1989).

    PubMed  Google Scholar 

  157. Aman, M. J. Superantigens of a superbug: major culprits of Staphylococcus aureus disease? Virulence 8, 607–610 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Chen, W. H. et al. Safety and immunogenicity of a parenterally administered, structure-based rationally modified recombinant staphylococcal enterotoxin B protein vaccine, STEBVax. Clin. Vaccine Immunol. 23, 918–925 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Schwameis, M. et al. Safety, tolerability, and immunogenicity of a recombinant toxic shock syndrome toxin (rTSST)-1 variant vaccine: a randomised, double-blind, adjuvant-controlled, dose escalation first-in-man trial. Lancet Infect. Dis. 16, 1036–1044 (2016).

    CAS  PubMed  Google Scholar 

  160. Mahdavinia, M., Keshavarzian, A., Tobin, M. C., Landay, A. L. & Schleimer, R. P. A comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clin. Exp. Allergy 46, 21–41 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Meltzer, E. O. et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J. Allergy Clin. Immunol. 114, 155–212 (2004).

    PubMed  PubMed Central  Google Scholar 

  162. Benninger, M. S. et al. Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol. Head Neck Surg. 129, S1–S32 (2003).

    PubMed  Google Scholar 

  163. Lanza, D. C. & Kennedy, D. W. Adult rhinosinusitis defined. Otolaryngol. Head Neck Surg. 117, S1–S7 (1997).

    CAS  PubMed  Google Scholar 

  164. Falco, J. J. et al. Lack of correlation between patient reported location and severity of facial pain and radiographic burden of disease in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 6, 1173–1181 (2016).

    PubMed  Google Scholar 

  165. Fokkens, W. J. et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 50, 1–12 (2012).

    PubMed  Google Scholar 

  166. Akdis, C. A. et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European academy of allergy and clinical immunology and the American academy of allergy, asthma & immunology. J. Allergy Clin. Immunol. 131, 1479–1490 (2013).

    PubMed  PubMed Central  Google Scholar 

  167. Beale, T. J., Madani, G. & Morley, S. J. Imaging of the paranasal sinuses and nasal cavity: normal anatomy and clinically relevant anatomical variants. Semin. Ultrasound CT MRI 30, 2–16 (2009).

    Google Scholar 

  168. Gurrola, J. & Borish, L. Chronic rhinosinusitis: endotypes, biomarkers, and treatment response. J. Allergy Clin. Immunol. 140, 1499–1508 (2017).

    CAS  PubMed  Google Scholar 

  169. Bachert, C. & Akdis, C. A. Phenotypes and emerging endotypes of chronic rhinosinusitis. J. Allergy Clin. Immunol. Pract. 4, 621–628 (2016).

    PubMed  Google Scholar 

  170. DeConde, A. S. & Smith, T. L. Classification of chronic rhinosinusitis — working toward personalized diagnosis. Otolaryngol. Clin. North. Am. 50, 1–12 (2017).

    PubMed  Google Scholar 

  171. DeConde, A. S. et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis. Laryngoscope 127, 550–555 (2017). This paper describes the results of surgery (recurrence of nasal polyps over 18 months) performed in university level clinics.

    PubMed  Google Scholar 

  172. Vlaminck, S. et al. The importance of local eosinophilia in the surgical outcome of chronic rhinosinusitis: a 3-year prospective observational study. Am. J. Rhinol. Allergy 28, 260–264 (2014).

    PubMed  Google Scholar 

  173. Bachert, C. et al. Endotypes of chronic rhinosinusitis with nasal polyps: pathology and possible therapeutic implications. J. Allergy Clin. Immunol. Pract. 8, 1514–1519 (2020).

    PubMed  Google Scholar 

  174. Delemarre, T. et al. Type 2 inflammation in chronic rhinosinusitis without nasal polyps: another relevant endotype. J. Allergy Clin. Immunol. 146, 337–343.e6 (2020).

    CAS  PubMed  Google Scholar 

  175. Kim, J. H. et al. Prevalence and risk factors of chronic rhinosinusitis in South Korea according to diagnostic criteria. Rhinology 54, 329–335 (2016).

    CAS  PubMed  Google Scholar 

  176. Bhattacharyya, N. Incremental health care utilization and expenditures for chronic rhinosinusitis in the United States. Ann. Otol. Rhinol. Laryngol. 120, 423–427 (2011).

    PubMed  Google Scholar 

  177. Bhattacharyya, N., Orlandi, R. R., Grebner, J. & Martinson, M. Cost burden of chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 144, 440–445 (2011).

    PubMed  Google Scholar 

  178. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Choi, E.-B. et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy 69, 517–526 (2014).

    CAS  PubMed  Google Scholar 

  180. Liu, C. M. et al. Medical therapy reduces microbiota diversity and evenness in surgically recalcitrant chronic rhinosinusitis. Int. Forum Allergy Rhinol. 3, 775–781 (2013).

    PubMed  PubMed Central  Google Scholar 

  181. Maxfield, A. Z. et al. General antibiotic exposure is associated with increased risk of developing chronic rhinosinusitis: antibiotics promote the development of CRS. Laryngoscope 127, 296–302 (2017).

    PubMed  Google Scholar 

  182. Orlandi, R. R. et al. International consensus statement on allergy and rhinology: rhinosinusitis. Int. Forum Allergy Rhinol. 6 (Suppl. 1), 22–209 (2016).

    Google Scholar 

  183. Chong, L. Y. et al. Different types of intranasal steroids for chronic rhinosinusitis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011993.pub2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Chong, L. Y. et al. Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011996.pub2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Lund, V. J., Black, J. H., Szabó, L. Z., Schrewelius, C. & Akerlund, A. Efficacy and tolerability of budesonide aqueous nasal spray in chronic rhinosinusitis patients. Rhinology 42, 57–62 (2004).

    PubMed  Google Scholar 

  186. Rudmik, L. et al. Utilization patterns of topical intranasal steroid therapy for chronic rhinosinusitis. JAMA Otolaryngol. Head Neck Surg. 142, 1056–1062 (2016).

    PubMed  Google Scholar 

  187. Sastre, J. & Mosges, R. Local and systemic safety of intranasal corticosteroids. J. Investig. Allergol. Clin. Immunol. 22, 1–12 (2012).

    CAS  PubMed  Google Scholar 

  188. Harvey, R. J., Snidvongs, K., Kalish, L. H., Oakley, G. M. & Sacks, R. Corticosteroid nasal irrigations are more effective than simple sprays in a randomized double-blinded placebo-controlled trial for chronic rhinosinusitis after sinus surgery. Int. Forum Allergy Rhinol. 8, 461–470 (2018).

    PubMed  Google Scholar 

  189. Kalish, L., Snidvongs, K., Sivasubramaniam, R., Cope, D. & Harvey, R. J. Topical steroids for nasal polyps. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD006549.pub2 (2012).

    Article  Google Scholar 

  190. Leopold, D. A. et al. NAVIGATE II: randomized, double-blind trial of the exhalation delivery system with fluticasone for nasal polyposis. J. Allergy Clin. Immunol. 143, 126–134.e5 (2019).

    CAS  PubMed  Google Scholar 

  191. Han, J. K. & Kern, R. C. Topical therapies for management of chronic rhinosinusitis: steroid implants. Int. Forum Allergy Rhinol. 9 (S1), 22–26 (2019).

    Google Scholar 

  192. Kern, R. C. et al. A phase 3 trial of mometasone furoate sinus implants for chronic sinusitis with recurrent nasal polyps. Int. Forum Allergy Rhinol. 8, 471–481 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Chong, L. Y. et al. Saline irrigation for chronic rhinosinusitis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011995.pub2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Head, K. et al. Short-course oral steroids alone for chronic rhinosinusitis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011991.pub2 (2016).

    Article  PubMed  Google Scholar 

  195. Won, T.-B., Jang, E., Min, S. K. & Kim, S. W. Treatment outcomes and predictors for systemic steroids in nasal polyposis. Acta Otolaryngol. 132 (Suppl. 1), S82–S87 (2012).

    CAS  PubMed  Google Scholar 

  196. Kowalski, M. L. Oral and nasal steroids for nasal polyps. Curr. Allergy Asthma Rep. 11, 187–188 (2011).

    PubMed  PubMed Central  Google Scholar 

  197. Zhang, Y., Wang, C., Huang, Y., Lou, H. & Zhang, L. Efficacy of short-term systemic corticosteroid therapy in chronic rhinosinusitis with nasal polyps: a meta-analysis of randomized controlled trials and systematic review. Am. J. Rhinol. Allergy 33, 567–576 (2019).

    PubMed  Google Scholar 

  198. Leung, R. M., Dinnie, K. & Smith, T. L. When do the risks of repeated courses of corticosteroids exceed the risks of surgery? Int. Forum Allergy Rhinol. 4, 871–876 (2014).

    PubMed  Google Scholar 

  199. Fokkens, W. J. et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58, 1–464 (2020).

    PubMed  Google Scholar 

  200. Wallwork, B., Coman, W., Mackay-Sim, A., Greiff, L. & Cervin, A. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope 116, 189–193 (2006).

    CAS  PubMed  Google Scholar 

  201. Zeng, M., Long, X.-B., Cui, Y.-H. & Liu, Z. Comparison of efficacy of mometasone furoate versus clarithromycin in the treatment of chronic rhinosinusitis without nasal polyps in Chinese adults. Am. J. Rhinol. Allergy 25, e203–e207 (2011).

    PubMed  Google Scholar 

  202. Videler, W. J. et al. Lack of efficacy of long-term, low-dose azithromycin in chronic rhinosinusitis: a randomized controlled trial: no efficacy of macrolides in chronic rhinosinusitis. Allergy 66, 1457–1468 (2011).

    CAS  PubMed  Google Scholar 

  203. Van Zele, T. et al. Oral steroids and doxycycline: two different approaches to treat nasal polyps. J. Allergy Clin. Immunol. 125, 1069–1076.e4 (2010).

    PubMed  Google Scholar 

  204. Varvyanskaya, A. & Lopatin, A. Efficacy of long-term low-dose macrolide therapy in preventing early recurrence of nasal polyps after endoscopic sinus surgery. Int. Forum Allergy Rhinol. 4, 533–541 (2014).

    PubMed  Google Scholar 

  205. Smith, T. L. & Sautter, N. B. Is montelukast indicated for treatment of chronic rhinosinusitis with polyposis? Laryngoscope 124, 1735–1736 (2013).

    PubMed  Google Scholar 

  206. Sacks, P.-L., Harvey, R. J., Rimmer, J., Gallagher, R. M. & Sacks, R. Topical and systemic antifungal therapy for the symptomatic treatment of chronic rhinosinusitis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD008263.pub2 (2011).

    Article  PubMed  Google Scholar 

  207. Hellings, P. W. et al. Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis - A EUFOREA-ARIA-EPOS-AIRWAYS ICP statement. Allergy 72, 1297–1305 (2017).

    CAS  PubMed  Google Scholar 

  208. Rudmik, L. et al. Defining appropriateness criteria for endoscopic sinus surgery during management of uncomplicated adult chronic rhinosinusitis: a RAND/UCLA appropriateness study. Rhinology 54, 117–128 (2016).

    PubMed  Google Scholar 

  209. Alsharif, S. et al. Endoscopic sinus surgery for type‐2 CRS wNP: an endotype‐based retrospective study. Laryngoscope 129, 1286–1292 (2019). First description of the reboot technique, from rationale to technique, for severe CRSwNP.

    PubMed  Google Scholar 

  210. Jankowski, R. & Bodino, C. Evolution of symptoms associated to nasal polyposis following oral steroid treatment and nasalization of the ethmoid–radical ethmoidectomy is functional surgery for NPS. Rhinology 41, 211–219 (2003).

    CAS  PubMed  Google Scholar 

  211. Loftus, C. A. et al. Revision surgery rates in chronic rhinosinusitis with nasal polyps: meta‐analysis of risk factors. Int. Forum Allergy Rhinol. 10, 199–207 (2020).

    PubMed  Google Scholar 

  212. Rudmik, L. et al. Evaluating surgeon-specific performance for endoscopic sinus surgery. JAMA Otolaryngol. Head Neck Surg. 143, 891-898 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Bassiouni, A. & Wormald, P.-J. Role of frontal sinus surgery in nasal polyp recurrence. Laryngoscope 123, 36–41 (2013).

    PubMed  Google Scholar 

  214. Bachert, C., Zhang, N., Hellings, P. W. & Bousquet, J. Endotype-driven care pathways in patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 141, 1543–1551 (2018).

    PubMed  Google Scholar 

  215. Bachert, C. & Zhang, N. Medical algorithm: diagnosis and treatment of chronic rhinosinusitis. Allergy 75, 240–242 (2020). A short paper to describe care pathways for severe CRSwNP in the new age of treatment possibilities, implementing the mucosal concept for surgery and the type 2 biologics for pharmacotherapy beyond corticosteroids.

    PubMed  Google Scholar 

  216. Soler, Z. M. & Smith, T. L. Quality of life outcomes after functional endoscopic sinus surgery. Otolaryngol. Clin. North. Am. 43, 605–612 (2010).

    PubMed  PubMed Central  Google Scholar 

  217. Rudmik, L. et al. Productivity costs in patients with refractory chronic rhinosinusitis. Laryngoscope 124, 2007–2012 (2014).

    PubMed  PubMed Central  Google Scholar 

  218. DeConde, A. S., Bodner, T. E., Mace, J. C. & Smith, T. L. Response shift in quality of life after endoscopic sinus surgery for chronic rhinosinusitis. JAMA Otolaryngol. Head Neck Surg. 140, 712 (2014).

    PubMed  PubMed Central  Google Scholar 

  219. Alt, J. A., Smith, T. L., Mace, J. C. & Soler, Z. M. Sleep quality and disease severity in patients with chronic rhinosinusitis. Laryngoscope 123, 2364–2370 (2013).

    PubMed  PubMed Central  Google Scholar 

  220. Soler, Z. M., Eckert, M. A., Storck, K. & Schlosser, R. J. Cognitive function in chronic rhinosinusitis: a controlled clinical study. Int. Forum Allergy Rhinol. 5, 1010–1017 (2015).

    PubMed  Google Scholar 

  221. Tomoum, M. O., Klattcromwell, C., DelSignore, A., Ebert, C. & Senior, B. A. Depression and anxiety in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 5, 674–681 (2015).

    PubMed  Google Scholar 

  222. Stewart, M. G. & Smith, T. L. Objective versus subjective outcomes assessment in rhinology. Am. J. Rhinol. 19, 529–535 (2005).

    PubMed  Google Scholar 

  223. Bhattacharyya, N. A comparison of symptom scores and radiographic staging systems in chronic rhinosinusitis. Am. J. Rhinol. 19, 175–179 (2005).

    PubMed  Google Scholar 

  224. Psaltis, A. J., Li, G., Vaezeafshar, R., Cho, K. & Hwang, P. H. Modification of the lund‐kennedy endoscopic scoring system improves its reliability and correlation with patient‐reported outcome measures. Laryngoscope 124, 2216–2223 (2014).

    PubMed  Google Scholar 

  225. Soler, Z. M., Hyer, J. M., Karnezis, T. T. & Schlosser, R. J. The olfactory cleft endoscopy scale correlates with olfactory metrics in patients with chronic rhinosinusitis. Int. Forum Allergy Rhinol. 6, 293–298 (2016).

    PubMed  Google Scholar 

  226. Soler, Z. M. et al. Volumetric computed tomography analysis of the olfactory cleft in patients with chronic rhinosinusitis. Int. Forum Allergy Rhinol. 5, 846–854 (2015).

    PubMed  PubMed Central  Google Scholar 

  227. Ranford, D. et al. Co-morbid anxiety and depression impacts on the correlation between symptom and radiological severity in patients with chronic rhinosinusitis*. Rhinology https://doi.org/10.4193/Rhin20.075 (2020).

  228. Smith, T. L. et al. Medical therapy vs surgery for chronic rhinosinusitis: a prospective, multi-institutional study. Int. Forum Allergy Rhinol. 1, 235–241 (2011).

    PubMed  Google Scholar 

  229. Soler, Z. M. et al. Sino-Nasal outcome test-22 outcomes after sinus surgery: a systematic review and meta-analysis. Laryngoscope 128, 581–592 (2018).

    PubMed  Google Scholar 

  230. DeConde, A. S., Suh, J. D., Mace, J. C., Alt, J. A. & Smith, T. L. Outcomes of complete vs targeted approaches to endoscopic sinus surgery. Int. Forum Allergy Rhinol. 5, 691–700 (2015).

    PubMed  PubMed Central  Google Scholar 

  231. Smith, T. L. et al. Comparing surgeon outcomes in endoscopic sinus surgery for chronic rhinosinusitis. Laryngoscope 127, 14–21 (2016).

    PubMed  PubMed Central  Google Scholar 

  232. Smith, T. L. et al. Determinants of outcomes of sinus surgery: a multi-institutional prospective cohort study. Otolaryngol. Head Neck Surg. 142, 55–63 (2010).

    PubMed  PubMed Central  Google Scholar 

  233. Gevaert, P. et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J. Allergy Clin. Immunol. 146, 595–605 (2020).

    CAS  PubMed  Google Scholar 

  234. Krug, N. et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N. Engl. J. Med. 372, 1987–1995 (2015).

    PubMed  Google Scholar 

  235. Hosemann, W. & Draf, C. Danger points, complications and medico-legal aspects in endoscopic sinus surgery. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 12, Doc06 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Van Zele, T. et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 61, 1280–1289 (2006).

    PubMed  Google Scholar 

  237. Abdurrahman, G., Schmiedeke, F., Bachert, C., Bröker, B. M. & Holtfreter, S. Allergy — a new role for T cell superantigens of Staphylococcus aureus? Toxins 12, 176 (2020).

    CAS  PubMed Central  Google Scholar 

  238. Bader, J. P. & Ray, D. A. MC29 virus-coded protein occurs as monomers and dimers in transformed cells. J. Virol. 53, 509–514 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Szczeklik, A., Niżankowska, E. & Duplaga, M. Natural history of aspirin-induced asthma. AIANE Investigators. European Network on Aspirin-Induced Asthma. Eur. Respir. J. 16, 432-436 (2000).

    Google Scholar 

  240. Cahill, K. N., Bensko, J. C., Boyce, J. A. & Laidlaw, T. M. Prostaglandin D2: a dominant mediator of aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 135, 245–252 (2015).

    CAS  PubMed  Google Scholar 

  241. Samter, M. & Beers, R. F. Jr Intolerance to Aspirin. Clinical studies and consideration of its pathogenesis. Ann. Intern. Med. 68, 975-983 (1968).

    Google Scholar 

  242. Rajan, J. P., Wineinger, N. E., Stevenson, D. D. & White, A. A. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: a meta-analysis of the literature. J. Allergy Clin. Immunol. 135, 676–681.e1 (2015).

    CAS  PubMed  Google Scholar 

  243. DeGregorio, G., Singer, J., Cahill, K. N. & Laidlaw, T. M. A 1-day, 90-minute aspirin challenge and desensitization protocol in aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 143, 1174–1180 (2019).

    Google Scholar 

  244. Pelletier, T. et al. Comparable safety of 2 aspirin desensitization protocols for aspirin exacerbated respiratory disease. J. Allergy Clin. Immunol. Pract. 7, 1319–1321 (2019).

    PubMed  Google Scholar 

  245. Hope, A. P., Woessner, K. A., Simon, R. A. & Stevenson, D. D. Rational approach to aspirin dosing during oral challenges and desensitization of patients with aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 123, 406–410 (2009).

    CAS  PubMed  Google Scholar 

  246. Berges-Gimeno, M. P., Simon, R. A. & Stevenson, D. D. Long-term treatment with aspirin desensitization in asthmatic patients with aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 111, 180–186 (2003).

    CAS  PubMed  Google Scholar 

  247. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  248. Annunziato, F., Romagnani, C. & Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 135, 626–635 (2015).

    CAS  PubMed  Google Scholar 

  249. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.B.); Epidemiology (W.-J.S.); Mechanisms/pathophysiology (R.P.S., B.N.L. and B.M.B.); Diagnosis, screening and prevention (B.M., C.B., C.H. and T.L.); Management (C.H. and R.J.S.); Quality of life (R.J.S.); Outlook (C.B.); Overview of Primer (C.B.).

Corresponding author

Correspondence to Claus Bachert.

Ethics declarations

Competing interests

C.B. serves in advisory boards for AstraZeneca, GlaxoSmithKline, Mylan, Novartis and Sanofi-Aventis. R.J.S. has served as a consultant for GlaxoSmithKline, Healthy Humming, Optinose, Sanofi, and Stryker and has received grant support from AstraZeneca, Optinose and Stryker. C.H. has served on advisory boards for AstraZeneca, Olympus, Sanofi and Smith & Nephew. R.P.S. is a consultant for Actobio Therapeutics, Allakos, Aqualung Therapeutics Corp., Astellas Pharm. Inc., AstraZeneca/Medimmune, Aurasense, BioMarck, Celgene Corp., Exicure, Genentech, Genzyme/Sanofi Corp., GlaxoSmithKline, Intersect ENT, Lyra Therapeutics, Merck, Otsuka, and Sanofi and he owns stocks or stock options for Allakos, Aqualung Therapeutics Corp., Aurasense, BioMarck, and Exicure. Furthermore, he owns Allakos Siglec-8 and Siglec-8 ligand related patents; as a result of the Allakos licensing agreement, per Johns Hopkins University policy, he may be entitled to a share of future royalties regarding the sale of Siglec-8 related products, although no such royalties exist at the time of writing. T.L. has served on scientific advisory boards for GlaxoSmithKline, Optinose, Regeneron and Sanofi-Genzyme. B.N.L. serves in advisory boards for GlaxoSmithKline, Novartis, OncoArendi and Argenx. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks N. Cohen, A. Lane, V. Ramakrishnan, P. Wormald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hyposmia

Reduced ability to smell.

Anosmia

Loss of smell.

Mucosal concept

The role of prominent immune responses/endotypes in the sinus mucosa, which lead to different phenotypes of chronic rhinosinusitis and related clinical characteristics (asthma comorbidity and disease recurrence).

Acanthosis

Epithelial hyperplasia.

Acantholysis

Epithelial shedding.

Allergens

Proteins with a propensity to induce an adaptive type 2 immune response characterized by specific IgE and type 2 T helper cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachert, C., Marple, B., Schlosser, R.J. et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers 6, 86 (2020). https://doi.org/10.1038/s41572-020-00218-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-00218-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing