Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Drug-induced liver injury

Abstract

Drug-induced liver injury (DILI) is an adverse reaction to drugs or other xenobiotics that occurs either as a predictable event when an individual is exposed to toxic doses of some compounds or as an unpredictable event with many drugs in common use. Drugs can be harmful to the liver in susceptible individuals owing to genetic and environmental risk factors. These risk factors modify hepatic metabolism and excretion of the DILI-causative agent leading to cellular stress, cell death, activation of an adaptive immune response and a failure to adapt, with progression to overt liver injury. Idiosyncratic DILI is a relative rare hepatic disorder but can be severe and, in some cases, fatal, presenting with a variety of phenotypes, which mimic other hepatic diseases. The diagnosis of DILI relies on the exclusion of other aetiologies of liver disease as specific biomarkers are still lacking. Clinical scales such as CIOMS/RUCAM can support the diagnostic process but need refinement. A number of clinical variables, validated in prospective cohorts, can be used to predict a more severe DILI outcome. Although no pharmacological therapy has been adequately tested in randomized clinical trials, corticosteroids can be useful, particularly in the emergent form of DILI related to immune-checkpoint inhibitors in patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hepatocyte transporters and cellular mechanisms of DILI.
Fig. 2: Molecular mechanisms of idiosyncratic and intrinsic DILI.
Fig. 3: Proposed algorithm to suspect, diagnose and manage idiosyncratic DILI.
Fig. 4: Traditional and investigational biomarkers of DILI.
Fig. 5: Proposed detection and management of hepatotoxicity due to ICIs in patients with cancer.

Similar content being viewed by others

References

  1. Chen, M., Suzuki, A., Borlak, J., Andrade, R. J. & Lucena, M. I. Drug-induced liver injury: interactions between drug properties and host factors. J. Hepatol. 63, 503–514 (2015). A concept paper addressing drug properties, patient factors and their interplay in DILI.

    Article  CAS  PubMed  Google Scholar 

  2. Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 4, 489–499 (2005). Key review highlighting important issues and potential mechanism underlying idiosyncratic DILI.

    Article  CAS  PubMed  Google Scholar 

  3. Reuben, A. et al. Outcomes in adults with acute liver failure between 1998 and 2013: an observational cohort study. Ann. Intern. Med. 164, 724–732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Donnelly, M. C. et al. Acute liver failure in Scotland: changes in aetiology and outcomes over time (the Scottish Look-Back Study). Aliment. Pharmacol. Ther. 45, 833–843 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Zimmerman, H. J. & Maddrey, W. C. Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure. Hepatology 22, 767–773 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Watkins, P. B. et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily. JAMA 296, 87–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, M., Borlak, J. & Tong, W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58, 388–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Stevens, J. L. & Baker, T. K. The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov. Today 14, 162–167 (2009).

    Article  PubMed  Google Scholar 

  9. Avigan, M. I. & Muñoz, M. A. Perspectives on the regulatory and clinical science of drug-induced liver injury (DILI). en Methods in Pharmacology and Toxicology (eds. Minjun Chen & Yvonne Will) 367-393 (Humana Press, 2018).

  10. National Institutes of Health. LiverTox: clinical and research information on drug-induced liver injury. Nih.gov https://livertox.nih.gov (2017).

  11. Steele, M. A., Burk, R. F. & DesPrez, R. M. Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest 99, 465–471 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Perdices, E. V. et al. Hepatotoxicity associated with statin use: analysis of the cases included in the Spanish Hepatotoxicity Registry. Rev. Esp. enfermedades Dig. 106, 246–254 (2014).

    CAS  Google Scholar 

  13. Björnsson, E. S., Bergmann, O. M., Björnsson, H. K., Kvaran, R. B. & Olafsson, S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 144, 1419–1425 (2013). A population-based study of the incidence and causes of DILI, and the first study to show the risk of DILI with the use of individual agents.

    Article  PubMed  CAS  Google Scholar 

  14. Björnsson, E., Jacobsen, E. I. & Kalaitzakis, E. Hepatotoxicity associated with statins: reports of idiosyncratic liver injury post-marketing. J. Hepatol. 56, 374–380 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Chalasani, N. et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology 148, 1340–1352 (2015).

    Article  PubMed  Google Scholar 

  16. Andrade, R. J. et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 129, 512–521 (2005). The primary large publication from the Spanish Hepatotoxicity Registry, with the first large prospective study of patients with DILI.

    Article  PubMed  Google Scholar 

  17. Navarro, V. J. et al. Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network. Hepatology 60, 1399–1408 (2014).

    Article  PubMed  Google Scholar 

  18. Andrade, R., Medina-Caliz, I., Gonzalez-Jimenez, A., Garcia-Cortes, M. & Lucena, M. I. Hepatic damage by natural remedies. Semin. Liver Dis. 38, 021–040 (2018).

    Article  Google Scholar 

  19. Suk, K. T. et al. A prospective nationwide study of drug-induced liver injury in Korea. Am. J. Gastroenterol. 107, 1380–1387 (2012).

    Article  PubMed  Google Scholar 

  20. Shen, T. et al. Incidence and etiology of drug-induced liver injury in mainland China. Gastroenterology 156, 2230–2241.e11 (2019).

    Article  PubMed  Google Scholar 

  21. World Health Organization. Traditional medicine strategy. 2014-2023. 76 Disponible en: https://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/ (Accedido: 30.a enero 2019). (2013).

  22. Aiso, M. et al. Analysis of 307 cases with drug-induced liver injury between 2010 and 2018 in Japan. Hepatol. Res. 49, 105–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, Y. et al. Epidemiology of drug-induced liver injury in China: a systematic analysis of the Chinese literature including 21,789 patients. Eur. J. Gastroenterol. Hepatol. 25, 825–829 (2013).

    Article  PubMed  Google Scholar 

  24. Wai, C.-T. et al. Drug-induced liver injury at an Asian center: a prospective study. Liver Int. 27, 465–474 (2007).

    Article  PubMed  Google Scholar 

  25. Devarbhavi, H. Ayurvedic and herbal medicine-induced liver injury: it is time to wake up and take notice. Indian J. Gastroenterol. 37, 5–7 (2018).

    Article  PubMed  Google Scholar 

  26. Wang, G.-Q., Deng, Y.-Q. & Hou, F.-Q. Overview of drug-induced liver injury in China. Clin. Liver Dis. 4, 26–29 (2014).

    Article  Google Scholar 

  27. Devarbhavi, H. et al. Single-center experience with drug-induced liver injury from India: causes, outcome, prognosis and predictors of mortality. Am. J. Gastroenterol. 105, 2396–2404 (2010).

    Article  PubMed  Google Scholar 

  28. World Health Organization. Global tuberculosis report 2017. Who.int https://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf (2017).

  29. Devarbhavi, H. et al. Drug-induced acute liver failure in children and adults: results of a single-centre study of 128 patients. Liver Int. 38, 1322–1329 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. de Abajo, F. J., Montero, D., Madurga, M. & Rodriguez, L. A. G. Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br. J. Clin. Pharmacol. 58, 71–80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Valle, M. B., Av Klinteberg, V., Alem, N., Olsson, R. & Björnsson, E. Drug-induced liver injury in a Swedish university hospital out-patient hepatology clinic. Aliment. Pharmacol. Ther. 24, 1187–1195 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. Sgro, C. et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 36, 451–455 (2002).

    Article  PubMed  Google Scholar 

  33. Björnsson, E. & Olsson, R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 42, 481–489 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Vega, M. et al. The incidence of drug- and herbal and dietary supplement-induced liver injury: preliminary findings from gastroenterologist-based surveillance in the population of the state of Delaware. Drug Saf. 40, 783–787 (2017). The first population-based study in the USA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goldberg, D. S. et al. Population-representative incidence of drug-induced acute liver failure based on an analysis of an integrated health care system. Gastroenterology 148, 1353–61.e3 (2015).

    Article  PubMed  Google Scholar 

  36. Bessone, F. et al. When the creation of a consortium provides useful answers: experience of the Latin American DILI Network (LATINDILIN). Clin. Liver Dis. 13, 51–57 (2019).

    Article  Google Scholar 

  37. Amadi, C. & Orisakwe, O. Herb-induced liver injuries in developing nations: an update. Toxics 6, 24 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  38. Yuan, L. & Kaplowitz, N. Mechanisms of drug-induced liver injury. Clin. Liver Dis. 17, 507–518 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hagenbuch, B. & Stieger, B. The SLCO (former SLC21) superfamily of transporters. Mol. Aspects Med. 34, 396–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burckhardt, G. & Burckhardt, B. C. in Drug Transporters. Handbook of Experimental Pharmacology, vol 201 (eds. Fromm, M. & Kim, R.) 29–104 (Springer, 2011).

  41. Kullak-Ublick, G. A. et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120, 525–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kovacsics, D., Patik, I. & Özvegy-Laczka, C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin. Drug Metab. Toxicol. 13, 409–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. 311, 228–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Khurana, V., Minocha, M., Pal, D. & Mitra, A. K. Inhibition of OATP-1B1 and OATP-1B3 by tyrosine kinase inhibitors. Drug Metabol. Drug Interact. 29, 249–259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ellawatty, W. E. A. et al. Organic cation transporter 1 is responsible for hepatocellular uptake of the tyrosine kinase inhibitor pazopanib. Drug Metab. Dispos. 46, 33–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Food and Drug Administration. Guidance document. In vitro metabolism- and transporter-mediated drug-drug interaction studies guidance for industry. Fda.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-metabolism-and-transporter-mediated-drug-drug-interaction-studies-guidance-industry (2017).

  47. Park, B. K. et al. Managing the challenge of chemically reactive metabolites in drug development. Nat. Rev. Drug Discov. 10, 292–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Weaver, R. J. et al. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opin. Drug Metab. Toxicol. 13, 767–782 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Daly, A. K. et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 132, 272–281 (2007). Candidate gene study highlighting the role of SNPs in genes involved in drug metabolism and excretion.

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. In vitro metabolic activation of lumiracoxib in rat and human liver preparations. Drug Metab. Dispos. 36, 469–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. He, K. et al. Metabolic activation of troglitazone: identification of a reactive metabolite and mechanisms involved. Drug Metab. Dispos. 32, 639–646 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kullak-Ublick, G. A. et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 66, 1154–1164 (2017). A state-of-the-art review highlighting recent advances in DILI diagnosis.

    Article  CAS  PubMed  Google Scholar 

  53. Stieger, B., Fattinger, K., Madon, J., Kullak-Ublick, G. A. & Meier, P. J. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (BSEP) of rat liver. Gastroenterology 118, 422–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Krähenbühl, S., Talos, C., Fischer, S. & Reichen, J. Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19, 471–479 (1994).

    PubMed  Google Scholar 

  55. Tujios, S. & Fontana, R. J. Mechanisms of drug-induced liver injury: from bedside to bench. Nat. Rev. Gastroenterol. Hepatol. 8, 202–211 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Fattinger, K. et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin. Pharmacol. Ther. 69, 223–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Morgan, R. E. et al. Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol. Sci. 118, 485–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Dawson, S., Stahl, S., Paul, N., Barber, J. & Kenna, J. G. In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab. Dispos. 40, 130–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Funk, C., Ponelle, C., Scheuermann, G. & Pantze, M. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol. Pharmacol. 59, 627–635 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Aleo, M. D. et al. Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology 60, 1015–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Keppler, D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb. Exp. Pharmacol. 201, 299–323 (2011).

    Article  CAS  Google Scholar 

  62. Choi, J. H. et al. MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenet. Genomics 17, 403–415 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ulzurrun, E. et al. Role of chemical structures and the 1331T>C bile salt export pump polymorphism in idiosyncratic drug-induced liver injury. Liver Int. 33, 1378–1385 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Miura, Y. et al. Sunitinib-induced severe toxicities in a Japanese patient with the ABCG2 421 AA genotype. BMC Cancer 14, 964 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lang, C. et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet. Genomics 17, 47–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Yoshikado, T. et al. Itraconazole-induced cholestasis: involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol. Pharmacol. 79, 241–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Win, S., Than, T. A., Min, R. W. M., Aghajan, M. & Kaplowitz, N. c-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src. Hepatology 63, 1987–2003 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Iorga, A., Dara, L. & Kaplowitz, N. Drug-induced liver injury: cascade of events leading to cell death, apoptosis or necrosis. Int. J. Mol. Sci. 18, 1018 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  69. Roth, R. A., Maiuri, A. R. & Ganey, P. E. Idiosyncratic drug-induced liver injury: is drug-cytokine interaction the linchpin? J. Pharmacol. Exp. Ther. 360, 461–470 (2017).

    Article  PubMed  CAS  Google Scholar 

  70. Jaeschke, H., Williams, C. D., Ramachandran, A. & Bajt, M. L. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 32, 8–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Jaeschke, H. Innate immunity and acetaminophen-induced liver injury: why so many controversies? Hepatology 48, 699–701 (2008).

    Article  PubMed  Google Scholar 

  72. Dara, L. et al. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology 62, 1847–1857 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Luedde, T., Kaplowitz, N. & Schwabe, R. F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147, 765–783.e4 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Yip, L. Y. et al. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 67, 282–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Gong, S. et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J. Hepatol. 69, 51–59 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Monshi, M. M. et al. Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology 57, 727–739 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Grove, J. I. & Aithal, G. P. Human leukocyte antigen genetic risk factors of drug-induced liver toxicology. Expert Opin. Drug Metab. Toxicol. 11, 395–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Kaplowitz, N. Avoiding idiosyncratic DILI: two is better than one. Hepatology 58, 15–17 (2013).

    Article  PubMed  Google Scholar 

  79. Light, D. S., Aleo, M. D. & Kenna, J. G. in Drug-Induced Liver Toxicity. Methods in Pharmacology and Toxicology (eds Chen, M. & Will, Y.) 345–364 (Humana Press, 2018).

  80. Kenna, J. G. et al. Can bile salt export pump inhibition testing in drug discovery and development reduce liver injury risk? an international transporter consortium perspective. Clin. Pharmacol. Ther. 104, 916–932 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Uetrecht, J. & Kaplowitz, N. Inhibition of immune tolerance unmasks drug-induced allergic hepatitis. Hepatology 62, 346–348 (2015).

    Article  PubMed  Google Scholar 

  82. Russmann, S., Jetter, A. & Kullak-Ublick, G. A. Pharmacogenetics of drug-induced liver injury. Hepatology 52, 748–761 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Institute of Medicine. Exploring the Biological Contributions to Human Health: Does Sex Matter? (National Academies Press, 2001).

  84. Mennecozzi, M., Landesmann, B., Palosaari, T., Harris, G. & Whelan, M. Sex differences in liver toxicity—do female and male human primary hepatocytes react differently to toxicants in vitro? PLoS One 10, e0122786 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Xie, Y. et al. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol. Appl. Pharmacol. 279, 266–274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dai, G., He, L., Chou, N. & Wan, Y.-J. Y. Acetaminophen metabolism does not contribute to gender difference in its hepatotoxicity in mouse. Toxicol. Sci. 92, 33–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Sheng, Y., Liang, Q., Deng, Z., Ji, L. & Wang, Z. Acetaminophen induced gender-dependent liver injury and the involvement of GCL and GPx. Drug Discov. Ther. 7, 78–83 (2013).

    CAS  PubMed  Google Scholar 

  88. Du, K., Williams, C. D., McGill, M. R. & Jaeschke, H. Lower susceptibility of female mice to acetaminophen hepatotoxicity: role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase. Toxicol. Appl. Pharmacol. 281, 58–66 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Leibman, D., Smolen, A. & Smolen, T. N. Strain, sex and developmental profiles of cocaine metabolizing enzymes in mice. Pharmacol. Biochem. Behav. 37, 161–165 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Visalli, T., Turkall, R. & Abdel-Rahman, M. S. Gender differences in cocaine pharmacokinetics in CF-1 mice. Toxicol. Lett. 155, 35–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. You, Q., Cheng, L., Reilly, T. P., Wegmann, D. & Ju, C. Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology 44, 1421–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Dugan, C. M., Fullerton, A. M., Roth, R. A. & Ganey, P. E. Natural killer cells mediate severe liver injury in a murine model of halothane hepatitis. Toxicol. Sci. 120, 507–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Toyoda, Y. et al. Mechanism of exacerbative effect of progesterone on drug-induced liver injury. Toxicol. Sci. 126, 16–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Toyoda, Y. et al. Estradiol and progesterone modulate halothane-induced liver injury in mice. Toxicol. Lett. 204, 17–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Cho, J. et al. Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6. PLoS One 8, e61186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. George, N., Chen, M., Yuen, N., Hunt, C. M. & Suzuki, A. Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury. Regul. Toxicol. Pharmacol. 94, 101–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Hunt, C. M., Yuen, N. A., Stirnadel-Farrant, H. A. & Suzuki, A. Age-related differences in reporting of drug-associated liver injury: data-mining of WHO Safety Report Database. Regul. Toxicol. Pharmacol. 70, 519–526 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Lucena, M. I. et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology 49, 2001–2009 (2009).

    Article  PubMed  Google Scholar 

  99. Suzuki, A. et al. Associations of gender and a proxy of female menopausal status with histological features of drug-induced liver injury. Liver Int. 37, 1723–1730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gonzalez-Jimenez, A. et al. The influence of drug properties and host factors on delayed onset of symptoms in drug-induced liver injury. Liver Int. 39, 401–410 (2019).

    CAS  PubMed  Google Scholar 

  101. Ortega-Alonso, A., Stephens, C., Lucena, M. I. & Andrade, R. J. Case characterization, clinical features and risk factors in drug-induced liver injury. Int. J. Mol. Sci. 17, 714 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  102. Kaliyaperumal, K. et al. Pharmacogenomics of drug-induced liver injury (DILI): molecular biology to clinical applications. J. Hepatol. 69, 948–957 (2018). An up-to-date review of genetic susceptibility to DILI in a clinical context.

    Article  CAS  PubMed  Google Scholar 

  103. Devarbhavi, H. & Raj, S. Drug-induced liver injury with skin reactions: drugs and host risk factors, clinical phenotypes and prognosis. Liver Int. 39, 802–811 (2019).

    Article  PubMed  Google Scholar 

  104. Devarbhavi, H., Karanth, D., Prasanna, K. S., Adarsh, C. K. & Patil, M. Drug-induced liver injury with hypersensitivity features has a better outcome: a single-center experience of 39 children and adolescents. Hepatology 54, 1344–1350 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Devarbhavi, H., Raj, S., Joseph, T., Singh, R. & Patil, M. Features and treatment of dapsone-induced hepatitis, based on analysis of 44 cases and literature review. Clin. Gastroenterol. Hepatol. 15, 1805–1807 (2017).

    Article  PubMed  Google Scholar 

  106. Kardaun, S. H. et al. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br. J. Dermatol. 156, 609–611 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Bastuji-Garin, S. et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch. Dermatol. 129, 92–96 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Czaja, A. J. Drug-induced autoimmune-like hepatitis. Dig. Dis. Sci. 56, 958–976 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Devarbhavi, H. et al. Drug-induced liver injury associated with Stevens-Johnson syndrome/toxic epidermal necrolysis: patient characteristics, causes, and outcome in 36 cases. Hepatology 63, 993–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Aithal, G. P. et al. Case definition and phenotype standardization in drug-induced liver injury. Clin. Pharmacol. Ther. 89, 806–815 (2011). This paper established international consensus on case definitions and phenotypic charecterization of DILI.

    Article  CAS  PubMed  Google Scholar 

  111. Senior, J. R. Alanine aminotransferase: a clinical and regulatory tool for detecting liver injury–past, present, and future. Clin. Pharmacol. Ther. 92, 332–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Dara, L., Liu, Z.-X. & Kaplowitz, N. Mechanisms of adaptation and progression in idiosyncratic drug induced liver injury, clinical implications. Liver Int. 36, 158–165 (2016). A description of various factors that contribute to pathogenesis of idiosyncratic DILI, highlighting the participation of genetic susceptibility due to HLA variants and the potential importance of immune tolerance.

    Article  PubMed  Google Scholar 

  113. Chalasani, N. et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 135, 1924–1934.e4 (2008).

    Article  PubMed  Google Scholar 

  114. Davern, T. J. et al. Acute hepatitis E infection accounts for some cases of suspected drug-induced liver injury. Gastroenterology 141, 1665–1672 (2011).

    Article  PubMed  Google Scholar 

  115. Sanjuan-Jimenez, R. et al. Prevalence of hepatitis E markers in Spanish patients with suspected drug-induced liver injury [abstract]. Hepatology 66, 423A (2017).

    Google Scholar 

  116. Dalton, H. R. et al. EASL Clinical Practice Guidelines on hepatitis E virus infection. J. Hepatol. 68, 1256–1271 (2018).

    Article  Google Scholar 

  117. Suzuki, A. et al. The use of liver biopsy evaluation in discrimination of idiopathic autoimmune hepatitis versus drug-induced liver injury. Hepatology 54, 931–939 (2011).

    Article  PubMed  Google Scholar 

  118. Foureau, D. M. et al. Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis. Clin. Exp. Immunol. 180, 40–51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kleiner, D. E. et al. Hepatic histological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations. Hepatology 59, 661–670 (2014).

    Article  PubMed  Google Scholar 

  120. Bonkovsky, H. L. et al. Clinical presentations and outcomes of bile duct loss caused by drugs and herbal and dietary supplements. Hepatology 65, 1267–1277 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Andrade, R. J., Robles, M. & Lucena, M. I. Rechallenge in drug-induced liver injury: the attractive hazard. Expert Opin. Drug Saf. 8, 709–714 (2009).

    Article  PubMed  Google Scholar 

  122. García-Cortés, M., Stephens, C., Lucena, M. I., Fernández-Castañer, A. & Andrade, R. J. Causality assessment methods in drug induced liver injury: strengths and weaknesses. J. Hepatol. 55, 683–691 (2011). A comprehensive review on the shortcomings of the liver-specific CIOMS/RUCAM scale.

    Article  PubMed  Google Scholar 

  123. García-Cortés, M. et al. Evaluation of Naranjo Adverse Drug Reactions Probability Scale in causality assessment of drug-induced liver injury. Aliment. Pharmacol. Ther. 27, 780–789 (2008).

    Article  PubMed  Google Scholar 

  124. Danan, G. & Benichou, C. Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J. Clin. Epidemiol. 46, 1323–1330 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Lucena, M., Camargo, R., Andrade, R. J., Perez-Sanchez, C. J. & Sanchez De La Cuesta, F. Comparison of two clinical scales for causality assessment in hepatotoxicity. Hepatology 33, 123–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: drug-induced liver injury. J Hepatol. 70, 1222-1261 (2019). A comprehensive review of DILI and recommendations for clinical practice.

  127. Rochon, J. et al. Reliability of the Roussel Uclaf Causality Assessment Method for assessing causality in drug-induced liver injury. Hepatology 48, 1175–1183 (2008).

    Article  PubMed  Google Scholar 

  128. Navarro, V. J. et al. Liver injury from herbal and dietary supplements. Hepatology 65, 363–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Suzman, D. L., Pelosof, L., Rosenberg, A. & Avigan, M. I. Hepatotoxicity of immune checkpoint inhibitors: an evolving picture of risk associated with a vital class of immunotherapy agents. Liver Int. 38, 976–987 (2018).

    Article  PubMed  Google Scholar 

  130. Rockey, D. C. et al. Causality assessment in drug-induced liver injury using a structured expert opinion process: comparison to the Roussel-Uclaf causality assessment method. Hepatology 51, 2117–2126 (2010).

    Article  PubMed  Google Scholar 

  131. Hayashi, P. H. Drug-induced liver injury network causality assessment: criteria and experience in the United States. Int. J. Mol. Sci. 17, 201 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Hayashi, P. H. et al. Reliability of causality assessment for drug, herbal and dietary supplement hepatotoxicity in the Drug-Induced Liver Injury Network (DILIN). Liver Int. 35, 1623–1632 (2015).

    Article  PubMed  Google Scholar 

  133. Takikawa, H. et al. Assessment of 287 Japanese cases of drug induced liver injury by the diagnostic scale of the International Consensus Meeting. Hepatol. Res. 27, 192–195 (2003).

    Article  PubMed  Google Scholar 

  134. Whritenour, J. et al. Development of a modified lymphocyte transformation test for diagnosing drug-induced liver injury associated with an adaptive immune response. J. Immunotoxicol. 14, 31–38 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Benesic, A. et al. Development and validation of a test to identify drugs that cause idiosyncratic drug-induced liver injury. Clin. Gastroenterol. Hepatol. 16, 1488–1494.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Danan, G. & Teschke, R. RUCAM in drug and herb induced liver injury: the update. Int. J. Mol. Sci. 17, 14 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  137. Church, R. J. & Watkins, P. B. The transformation in biomarker detection and management of drug-induced liver injury. Liver Int. 37, 1582–1590 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Food and Drug Administration. FDA letter of support for drug-induced liver injury (DILI) biomarkers. Fda.gov https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM517355.pdf (2016).

  139. Hu, J. et al. MiR-122 in hepatic function and liver diseases. Protein Cell 3, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Church, R. J. et al. Candidate biomarkers for the diagnosis and prognosis of drug-induced liver injury: an international collaborative effort. Hepatology 69, 760–763 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Rivkin, M. et al. Inflammation-induced expression and secretion of microRNA 122 leads to reduced blood levels of kidney-derived erythropoietin and anemia. Gastroenterology 151, 999–1010.e3 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Chai, C. et al. Metabolic circuit involving free fatty acids, microRNA 122, and triglyceride synthesis in liver and muscle tissues. Gastroenterology 153, 1404–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Church, R. J. & Watkins, P. B. Reply. Hepatology 67, 2481–2482 (2018).

    Article  PubMed  Google Scholar 

  144. Schmidt, E. S. & Schmidt, F. W. Glutamate dehydrogenase: biochemical and clinical aspects of an interesting enzyme. Clin. Chim. Acta. 173, 43–55 (1988).

    Article  CAS  PubMed  Google Scholar 

  145. Russo, M. W. et al. Profiles of miRNAs in serum in severe acute drug induced liver injury and their prognostic significance. Liver Int. 37, 757–764 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Steuerwald, N. M. et al. Profiles of serum cytokines in acute drug-induced liver injury and their prognostic significance. PLoS One 8, e81974 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zimmerman, H. J. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. (Lippincott Williams and Wilkins, 1999).

  148. Temple, R. Hy’s law: predicting serious hepatotoxicity. Pharmacoepidemiol. Drug Saf. 15, 241–243 (2006).

    Article  PubMed  Google Scholar 

  149. Senior, J. R. Evolution of the Food and Drug Administration approach to liver safety assessment for new drugs: current status and challenges. Drug Saf. 37 (Suppl 1), S9–S17 (2014). An important paper from the regulatory perspective of the risk of DILI with new compounds.

    Article  PubMed  CAS  Google Scholar 

  150. Robles–Diaz, M. et al. Use of Hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology 147, 109–118 (2014).

    Article  PubMed  CAS  Google Scholar 

  151. Björnsson, E., Nordlinder, H. & Olsson, R. Clinical characteristics and prognostic markers in disulfiram-induced liver injury. J. Hepatol. 44, 791–797 (2006).

    Article  PubMed  CAS  Google Scholar 

  152. Pachkoria, K. et al. Analysis of IL-10, IL-4 and TNF-alpha polymorphisms in drug-induced liver injury (DILI) and its outcome. J. Hepatol. 49, 107–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Medina-Caliz, I. et al. Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury. J. Hepatol. 65, 532–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hayashi, P. H. et al. Death and liver transplantation within 2 years of onset of drug-induced liver injury. Hepatology 66, 1275–1285 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. García-Cortés, M., Ortega-Alonso, A., Lucena, M. I. & Andrade, R. J. Drug-induced liver injury: a safety review. Expert Opin. Drug Saf. 17, 795–804 (2018).

    Article  PubMed  CAS  Google Scholar 

  156. Regev, A. Drug-induced liver injury and drug development: industry perspective. Semin. Liver Dis. 34, 227–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Food and Drug Administration. Guidance document. Drug-induced liver injury: premarketing clinical evaluation. Fda.gov https://www.fda.gov/downloads/Guidances/UCM174090.pdf (2009). A key guidance document for industry on detecting, assessing and managing liver toxicity in clinical trials.

  158. Newsome, P. N. et al. Guidelines on the management of abnormal liver blood tests. Gut 67, 6–19 (2018).

    Article  PubMed  Google Scholar 

  159. Ozer, J., Ratner, M., Shaw, M., Bailey, W. & Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology 245, 194–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Hunt, C. M., Forster, J. K., Papay, J. I. & Stirnadel, H. A. Evidence-based liver chemistry monitoring in drug development. Pharmaceut. Med. 23, 149–158 (2009). A retrospective analysis of time-to-onset, incidence, phenotype and severity of liver injury in clinical trials with recommendation on monitoring intervals by development stage.

    Google Scholar 

  161. Lee, W. M. Drug-induced hepatotoxicity. N. Engl. J. Med. 349, 474–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Devarbhavi, H. An update on drug-induced liver Injury. J. Clin. Exp. Hepatol. 2, 247–259 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kaplowitz, N. Rules and laws of drug hepatotoxicity. Pharmacoepidemiol. Drug Saf. 15, 231–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Guo, T., Senior, J., Gelperin, K. & Food and Drug Administration. How a SAS/IntrNet tool was created at the FDA for the detection of potential drug-induced liver injury using data with CDISC standard. Lexjansen.com https://www.lexjansen.com/wuss/2009/cdi/CDI-Guo.pdf (2008).

  165. Watkins, P. B. et al. Evaluation of drug-induced serious hepatotoxicity (eDISH): application of this data organization approach to phase III clinical trials of rivaroxaban after total hip or knee replacement surgery. Drug Saf. 34, 243–252 (2011).

    Article  PubMed  Google Scholar 

  166. Merz, M., Lee, K. R., Kullak-Ublick, G. A., Brueckner, A. & Watkins, P. B. Methodology to assess clinical liver safety data. Drug Saf. 37, 33–45 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  167. Graham, D. J., Green, L., Senior, J. R. & Nourjah, P. Troglitazone-induced liver failure: a case study. Am. J. Med. 114, 299–306 (2003).

    Article  PubMed  Google Scholar 

  168. Graham, D. J., Drinkard, C. R. & Shatin, D. Incidence of idiopathic acute liver failure and hospitalized liver injury in patients treated with troglitazone. Am. J. Gastroenterol. 98, 175–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Graham, D. J., Drinkard, C. R., Shatin, D., Tsong, Y. & Burgess, M. J. Liver enzyme monitoring in patients treated with troglitazone. JAMA 286, 831–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Chalasani, N. P. et al. ACG clinical guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am. J. Gastroenterol. 109, 950–966 (2014). The first guidelines for the diagnosis and management of DILI.

    Article  PubMed  Google Scholar 

  171. Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 5, 95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Abu-Sbeih, H., Styskel, B., Blechazz, B., Chalasani, N. & Miller, E. Clinically significant hepatotoxicity due to immune checkpoint inhibitors is rare but leads to treatment discontinuations in high proportion. Hepatology 68, 25A (2018).

    Google Scholar 

  173. De Martin, E. et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J. Hepatol. 68, 1181–1190 (2018).

    Article  PubMed  CAS  Google Scholar 

  174. Gauci, M.-L. et al. Immune-related hepatitis with immunotherapy: are corticosteroids always needed? J. Hepatol. 69, 548–550 (2018).

    Article  PubMed  Google Scholar 

  175. Lee, W. M. et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology 137, 856–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Butt, T. F., Cox, A. R., Oyebode, J. R. & Ferner, R. E. Internet accounts of serious adverse drug reactions: a study of experiences of Stevens-Johnson syndrome and toxic epidermal necrolysis. Drug Saf. 35, 1159–1170 (2012).

    Article  PubMed  Google Scholar 

  177. Kowski, A. B. et al. Specific adverse effects of antiepileptic drugs–a true-to-life monotherapy study. Epilepsy Behav. 54, 150–157 (2016).

    Article  PubMed  Google Scholar 

  178. Ware, J. E. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

    Article  PubMed  Google Scholar 

  179. Horne, R., Weinman, J. & Hankins, M. The beliefs about medicines questionnaire: the development and evaluation of a new method for assessing the cognitive representation of medication. Psychol. Heal. 14, 1–24 (1999).

    Article  Google Scholar 

  180. Suh, J. I. et al. Anxiety and depression propensities in patients with acute toxic liver injury. World J. Gastroenterol. 19, 9069–9076 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Fontana, R. J. et al. Persistent liver biochemistry abnormalities are more common in older patients and those with cholestatic drug induced liver injury. Am. J. Gastroenterol. 110, 1450–1459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ostapowicz, G. et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 137, 947–954 (2002).

    Article  PubMed  Google Scholar 

  183. Rangnekar, A. S. et al. Quality of life is significantly impaired in long-term survivors of acute liver failure and particularly in acetaminophen-overdose patients. Liver Transpl. 19, 991–1000 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Rzouq, F. S. et al. Hepatotoxicity fears contribute to underutilization of statin medications by primary care physicians. Am. J. Med. Sci. 340, 89–93 (2010).

    Article  PubMed  Google Scholar 

  185. Watkins, P. B. The DILI-sim initiative: insights into hepatotoxicity. mechanisms and biomarker interpretation. Clin. Transl. Sci. 12, 122–129 (2019). This is a review of a 15 year public–private partnership that has been using quantitative systems toxicology approaches to understand and predict the likelihood that a new drug candidate will cause DILI. The review focuses on specific advances in mechanistic understanding that have evolved from this consortium.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Aithal, G. P. Pharmacogenetic testing in idiosyncratic drug-induced liver injury: current role in clinical practice. Liver Int. 35, 1801–1808 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Alvarez, F. et al. International Autoimmune Hepatitis Group report: review of criteria for diagnosis of autoimmune hepatitis. J. Hepatol. 31, 929–938 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Kowalec, K. et al. Common variation near IRF6 is associated with IFN-β-induced liver injury in multiple sclerosis. Nat. Genet. 50, 1081–1085 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cirulli, E. T. et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology 156, 1707–1716.e2 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Kozyra, M., Ingelman-Sundberg, M. & Lauschke, V. M. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. 19, 20–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Metushi, I. G., Hayes, M. A. & Uetrecht, J. Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61, 1332–1342 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Fontana, R. J. et al. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology 147, 96–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Jaeschke, H. & McGill, M. R. Serum glutamate dehydrogenase—biomarker for liver cell death or mitochondrial dysfunction? Toxicol. Sci. 134, 221–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Francis, B. et al. Temporary removal: reference intervals for putative biomarkers of drug-induced liver injury and liver regeneration in healthy human volunteers. J. Hepatol. https://doi.org/10.1016/j.jhep.2018.04.024 (2018).

    Google Scholar 

  196. Suzuki, A. et al. Comedications alter drug-induced liver injury reporting frequency: data mining in the WHO VigiBaseTM. Regul. Toxicol. Pharmacol. 72, 481–490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Suzuki, A. et al. Co-medications that modulate liver injury and repair influence clinical outcome of acetaminophen-associated liver injury. Clin. Gastroenterol. Hepatol. 7, 882–888 (2009).

    Article  PubMed  Google Scholar 

  198. Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Gianesin, K. et al. Premature aging and immune senescence in HIV-infected children. AIDS 30, 1363–1373 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Nakajima, T. et al. Premature telomere shortening and impaired regenerative response in hepatocytes of individuals with NAFLD. Liver Int. 26, 23–31 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the European Cooperation in Science & Technology (COST) Action CA17112 Prospective European Drug-Induced Liver Injury Network. R.J.A., N.C., E.S.B., A.S., G.A.K.-U, H.D., M.M., M.I.L. and G.P.A. are members of COST Action CA17112.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.J.A.); Epidemiology (N.C., E.S.B. and H.D.); Mechanisms/pathophysiology (N.K., G.A.K.-U. and A.S.); Diagnosis, screening and prevention (R.J.A., G.P.A., H.D., M.I.L., P.B.W. and M.M.); Prognosis (E.S.B.); Management (N.C.); Quality of life (A.S. and M.I.L.); Outlook (N.K., G.P.A. and R.J.A.); Overview of Primer (R.J.A. and M.I.L.).

Corresponding authors

Correspondence to Raul J. Andrade or M. Isabel Lucena.

Ethics declarations

Competing interests

The authors declare no competing interests in this topic.

Additional information

Peer review information

Nature Reviews Disease Primers thanks M. Chen, H. Jaeschke, J. Lewis, T. Yokoi, and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, R.J., Chalasani, N., Björnsson, E.S. et al. Drug-induced liver injury. Nat Rev Dis Primers 5, 58 (2019). https://doi.org/10.1038/s41572-019-0105-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0105-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research