Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acromegaly

An Author Correction to this article was published on 21 October 2019

This article has been updated

Abstract

Acromegaly is characterized by increased release of growth hormone and, consequently, insulin-like growth factor I (IGF1), most often by a pituitary adenoma. Prolonged exposure to excess hormone leads to progressive somatic disfigurement and a wide range of systemic manifestations that are associated with increased mortality. Although considered a rare disease, recent studies have reported an increased incidence of acromegaly owing to better disease awareness, improved diagnostic tools and perhaps a real increase in prevalence. Acromegaly treatment approaches, which include surgery, radiotherapy and medical therapy, have changed considerably over time owing to improved surgical procedures, development of new radiotherapy techniques and availability of new medical therapies. The optimal use of these treatments will reduce mortality in patients with acromegaly to levels in the general population. Medical therapy is currently an important treatment option and can even be the first-line treatment in patients with acromegaly who will not benefit from or are not suitable for first-line neurosurgical treatment. Pharmacological treatments include somatostatin receptor ligands (such as octreotide, lanreotide and pasireotide), dopamine agonists and the growth hormone receptor antagonist pegvisomant. In this Primer, we review the main aspects of acromegaly, including scientific advances that underlie expanding knowledge of disease pathogenesis, improvements in disease management and new medical therapies that are available and in development to improve disease control.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Timeline of the major discoveries in acromegaly research.
Fig. 2: The main clinical features of acromegaly.
Fig. 3: Causes of acromegaly.
Fig. 4: Signalling pathways disrupted in pituitary tumours.
Fig. 5: Progressive changes in facial appearance in a patient with acromegaly.
Fig. 6: Pituitary MRI in a patient with acromegaly showing a pituitary macroadenoma.
Fig. 7: Pituitary MRI in a patient with acromegaly secondary to ectopic secretion of GHRH from a bronchial neuroendocrine tumour.
Fig. 8: A proposed algorithm for the treatment of acromegaly.
Fig. 9: A personalized approach to acromegaly management.
Fig. 10: Prediction of SRL response on the basis of MRI characteristics.

Change history

  • 21 October 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Marie, P. Sur Deux Cas D’acromégalie; Hypertrophie Singulière non Congénitale des Extrémités Supérieures, Inférieures et Céphalique [French] (F. Alcan, 1886).

  2. de Herder, W. W. The history of acromegaly. Neuroendocrinology 103, 7–17 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Verga, A. Caso singolare de prosopectasia [Italian]. Reale Istituto Lombardo Scienze Lett. Rendiconti Classe Scienze Matematiche Naturali 1, 111–117 (1864).

    Google Scholar 

  4. Lombroso, C. Caso singolare di macrosomia simulante [Italian]. Giornale Ital. Malattie Veneree Malattie Pelle 2, 129–135 (1868).

    Google Scholar 

  5. Wier, J. in Virgo Gygantea ex Quartana Reddita [Latin] 7–10 (Oporinus, Basel, Switzerland, 1567).

    Google Scholar 

  6. Brigidi, V. Studii anatomopatologica sopra un uomo divenuto stranamente deforme per chronica infirmita [Italian]. Soc. Med. Fis. Fiorentina (1877).

  7. Petrossians, P. et al. Acromegaly at diagnosis in 3173 patients from the Liege Acromegaly Survey (LAS) Database. Endocr. Relat. Cancer 24, 505–518 (2017). This paper describes trends in acromegaly characteristics over time, using data from the Liège Acromegaly Survey (LAS) database.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hannah-Shmouni, F., Trivellin, G. & Stratakis, C. A. Genetics of gigantism and acromegaly. Growth Horm. IGF Res. 30–31, 37–41 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Katznelson, L. et al. Acromegaly: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 99, 3933–3951 (2014). This article presents the most recent acromegaly guidelines from the Endocrine Society to address important clinical issues regarding the evaluation and management of acromegaly.

    Article  CAS  PubMed  Google Scholar 

  10. Colao, A., Ferone, D., Marzullo, P. & Lombardi, G. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr. Rev. 25, 102–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Pivonello, R. et al. Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary 20, 46–62 (2017).

    Article  PubMed  Google Scholar 

  12. Lombardi, G. et al. The cardiovascular system in growth hormone excess and growth hormone deficiency. J. Endocrinol. Invest. 35, 1021–1029 (2012).

    CAS  PubMed  Google Scholar 

  13. Ribeiro-Oliveira, A. Jr & Barkan, A. The changing face of acromegaly—advances in diagnosis and treatment. Nat. Rev. Endocrinol. 8, 605–611 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Langlois, F., McCartney, S. & Fleseriu, M. Recent progress in the medical therapy of pituitary tumors. Endocrinol. Metab. (Seoul) 32, 162–170 (2017).

    Article  CAS  Google Scholar 

  15. Melmed, S. New therapeutic agents for acromegaly. Nat. Rev. Endocrinol. 12, 90–98 (2016). This Review outlines the need for new therapeutic agents for patients with acromegaly to improve disease control and patient compliance.

    Article  CAS  PubMed  Google Scholar 

  16. Colao, A., Auriemma, R. S., Pivonello, R., Galdiero, M. & Lombardi, G. Medical consequences of acromegaly: what are the effects of biochemical control? Rev. Endocr. Metab. Disord. 9, 21–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Vierimaa, O. et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312, 1228–1230 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Daly, A. F. et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J. Clin. Endocrinol. Metab. 95, E373–E383 (2010).

    Article  PubMed  Google Scholar 

  19. Trivellin, G. et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N. Engl. J. Med. 371, 2363–2374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colao, A., Auriemma, R. S., Pivonello, R., Kasuki, L. & Gadelha, M. R. Interpreting biochemical control response rates with first-generation somatostatin analogues in acromegaly. Pituitary 19, 235–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Shlomo, A., Sheppard, M. C., Stephens, J. M., Pulgar, S. & Melmed, S. Clinical, quality of life, and economic value of acromegaly disease control. Pituitary 14, 284–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colao, A., Auriemma, R. S., Lombardi, G. & Pivonello, R. Resistance to somatostatin analogs in acromegaly. Endocr. Rev. 32, 247–271 (2011). This critical analysis of the literature on the efficacy of SRLs in the treatment of acromegaly is an effort to offer a potential definition of SRL resistance.

    Article  CAS  PubMed  Google Scholar 

  23. Alexander, L., Appleton, D., Hall, R., Ross, W. M. & Wilkinson, R. Epidemiology of acromegaly in the Newcastle region. Clin. Endocrinol. 12, 71–79 (1980).

    Article  CAS  Google Scholar 

  24. Bengtsson, B. A., Eden, S., Ernest, I., Oden, A. & Sjogren, B. Epidemiology and long-term survival in acromegaly. A study of 166 cases diagnosed between 1955 and 1984. Acta Med. Scand. 223, 327–335 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Hoskuldsdottir, G. T., Fjalldal, S. B. & Sigurjonsdottir, H. A. The incidence and prevalence of acromegaly, a nationwide study from 1955 through 2013. Pituitary 18, 803–807 (2015).

    Article  PubMed  Google Scholar 

  26. Agustsson, T. T. et al. The epidemiology of pituitary adenomas in Iceland, 1955-2012: a nationwide population-based study. Eur. J. Endocrinol. 173, 655–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Gruppetta, M., Mercieca, C. & Vassallo, J. Prevalence and incidence of pituitary adenomas: a population based study in Malta. Pituitary 16, 545–553 (2013).

    Article  PubMed  Google Scholar 

  28. Tjornstrand, A. et al. The incidence rate of pituitary adenomas in western Sweden for the period 2001–2011. Eur. J. Endocrinol. 171, 519–526 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Mestron, A. et al. Epidemiology, clinical characteristics, outcome, morbidity and mortality in acromegaly based on the Spanish Acromegaly Registry (Registro Espanol de Acromegalia. REA). Eur. J. Endocrinol. 151, 439–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Dal, J. et al. Acromegaly incidence, prevalence, complications and long-term prognosis: a nationwide cohort study. Eur. J. Endocrinol. 175, 181–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Daly, A. F. et al. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab. 91, 4769–4775 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Lavrentaki, A., Paluzzi, A., Wass, J. A. & Karavitaki, N. Epidemiology of acromegaly: review of population studies. Pituitary 20, 4–9 (2017).

    Article  PubMed  Google Scholar 

  33. Esposito, D. et al. Decreasing mortality and changes in treatment patterns in patients with acromegaly from a nationwide study. Eur. J. Endocrinol. 178, 459–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, C. J. et al. Microsurgical versus endoscopic transsphenoidal resection for acromegaly: a systematic review of outcomes and complications. Acta Neurochir. (Wien) 159, 2193–2207 (2017).

    Article  Google Scholar 

  35. Antunes, X. et al. Predictors of surgical outcome and early criteria of remission in acromegaly. Endocrine 60, 415–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Frara, S., Maffezzoni, F., Mazziotti, G. & Giustina, A. The modern criteria for medical management of acromegaly. Prog. Mol. Biol. Transl Sci. 138, 63–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez, A., Karavitaki, N. & Wass, J. A. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. 72, 377–382 (2010).

    Article  Google Scholar 

  38. Giustina, A. et al. Assessment of the awareness and management of cardiovascular complications of acromegaly in Italy. The COM.E.T.A. (COMorbidities Evaluation and Treatment in Acromegaly) Study. J. Endocrinol. Invest. 31, 731–738 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. De Menis, E. et al. Assessment of the awareness and management of sleep apnea syndrome in acromegaly. The COM.E.TA (Comorbidities Evaluation and Treatment in Acromegaly) Italian Study Group. J. Endocrinol. Invest. 34, 60–64 (2011).

    Article  PubMed  Google Scholar 

  40. Giustina, A. et al. A consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 95, 3141–3148 (2010). This consensus statement re-evaluates and updates the guidelines on criteria for cure of acromegaly.

    Article  CAS  PubMed  Google Scholar 

  41. Giustina, A. et al. Criteria for cure of acromegaly: a consensus statement. J. Clin. Endocrinol. Metab. 85, 526–529 (2000).

    CAS  PubMed  Google Scholar 

  42. Polanco-Briceno, S., Glass, D. & Plunkett, C. Communication practices and awareness of resources for acromegaly patients among endocrinologists. Patient Prefer Adherence 10, 2531–2541 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cannavo, S., Trimarchi, F. & Ferrau, F. Acromegaly, genetic variants of the aryl hydrocarbon receptor pathway and environmental burden. Mol. Cell Endocrinol. 457, 81–88 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Raappana, A., Koivukangas, J., Ebeling, T. & Pirila, T. Incidence of pituitary adenomas in Northern Finland in 1992–2007. J. Clin. Endocrinol. Metab. 95, 4268–4275 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Bex, M. et al. AcroBel—the Belgian registry on acromegaly: a survey of the ‘real-life’ outcome in 418 acromegalic subjects. Eur. J. Endocrinol. 157, 399–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Zarool-Hassan, R., Conaglen, H. M., Conaglen, J. V. & Elston, M. S. Symptoms and signs of acromegaly: an ongoing need to raise awareness among healthcare practitioners. J. Prim. Health Care 8, 157–163 (2016).

    Article  PubMed  Google Scholar 

  47. Galerneau, L. M. et al. Acromegaly in sleep apnoea patients: a large observational study of 755 patients. Eur. Respir. J. 48, 1489–1492 (2016).

    Article  PubMed  Google Scholar 

  48. Sesmilo, G. et al. Prevalence of acromegaly in patients with symptoms of sleep apnea. PLOS ONE 12, e0183539 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Heinrich, D. A. et al. IGF-1-based screening reveals a low prevalence of acromegaly in patients with obstructive sleep apnea. Endocrine 60, 317–322 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Rosario, P. W. Frequency of acromegaly in adults with diabetes or glucose intolerance and estimated prevalence in the general population. Pituitary 14, 217–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Rosario, P. W. & Calsolari, M. R. Screening for acromegaly in adult patients not reporting enlargement of the extremities, but with arterial hypertension associated with another comorbidity of the disease. Arq. Bras. Endocrinol. Metabol. 58, 807–811 (2014).

    Article  PubMed  Google Scholar 

  52. Cuevas-Ramos, D. et al. A structural and functional acromegaly classification. J. Clin. Endocrinol. Metab. 100, 122–131 (2015). This paper classifies patients with acromegaly by clinical, radiological and histopathological characteristics and identifies three types of acromegaly that have distinctive tumour structure–function characteristics and treatment responsiveness.

    Article  CAS  PubMed  Google Scholar 

  53. Melmed, S., Braunstein, G. D., Horvath, E., Ezrin, C. & Kovacs, K. Pathophysiology of acromegaly. Endocr. Rev. 4, 271–290 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Vortmeyer, A. O. et al. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune–Albright syndrome. J. Clin. Endocrinol. Metab. 97, 2404–2413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, C. et al. STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion. J. Clin. Invest. 125, 1692–1702 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Occhi, G. et al. The glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in GH3 cells. J. Neuroendocrinol. 23, 641–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Regazzo, D. et al. The GIP/GIPR axis is functionally linked to GH-secretion increase in a significant proportion of gsp - somatotropinomas. Eur. J. Endocrinol. 176, 543–553 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Melmed, S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 7, 257–266 (2011). This review describes the pathogenesis of dysregulated pituitary cell proliferation that underlies pituitary tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  59. Pei, L. & Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol. 11, 433–441 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Fuertes, M. et al. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocr. Relat. Cancer 25, 665–676 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Xiao, J. Q. et al. Correlations of pituitary tumor transforming gene expression with human pituitary adenomas: a meta-analysis. PLOS ONE 9, e90396 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chesnokova, V. et al. p21(Cip1) restrains pituitary tumor growth. Proc. Natl Acad. Sci. USA 105, 17498–17503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ye, Z. et al. Common variants at 10p12.31, 10q21.1 and 13q12.13 are associated with sporadic pituitary adenoma. Nat. Genet. 47, 793–797 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Valimaki, N. et al. Whole-genome sequencing of growth hormone (GH)-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 100, 3918–3927 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Lecoq, A. L., Kamenicky, P., Guiochon-Mantel, A. & Chanson, P. Genetic mutations in sporadic pituitary adenomas—what to screen for? Nat. Rev. Endocrinol. 11, 43–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Hage, M. et al. Genomic alterations and complex subclonal architecture in sporadic GH-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 103, 1929–1939 (2018).

    Article  PubMed  Google Scholar 

  67. Bi, W. L. et al. Clinical identification of oncogenic drivers and copy-number alterations in pituitary tumors. Endocrinology 158, 2284–2291 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Melmed, S. Medical progress: acromegaly. N. Engl. J. Med. 355, 2558–2573 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Garby, L. et al. Clinical characteristics and outcome of acromegaly induced by ectopic secretion of growth hormone-releasing hormone (GHRH): a French nationwide series of 21 cases. J. Clin. Endocrinol. Metab. 97, 2093–2104 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Melmed, S., Ezrin, C., Kovacs, K., Goodman, R. S. & Frohman, L. A. Acromegaly due to secretion of growth hormone by an ectopic pancreatic islet-cell tumor. N. Engl. J. Med. 312, 9–17 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Rostomyan, L. & Beckers, A. Screening for genetic causes of growth hormone hypersecretion. Growth Horm. IGF Res. 30–31, 52–57 (2016). This paper presents an in-depth description of genetic abnormalities in various genes, including AIP, MEN1, CDKN1B and PRKAR1A , which are potentially involved in GH hypersecretion by pituitary tumours.

    Article  PubMed  CAS  Google Scholar 

  72. Cazabat, L. et al. Germline AIP mutations in apparently sporadic pituitary adenomas: prevalence in a prospective single-center cohort of 443 patients. J. Clin. Endocrinol. Metab. 97, E663–E670 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Caimari, F. & Korbonits, M. Novel genetic causes of pituitary adenomas. Clin. Cancer Res. 22, 5030–5042 (2016). This article presents an overview of germline and somatic mutations that lead to pituitary adenomas.

    Article  CAS  PubMed  Google Scholar 

  74. Schofl, C. et al. Frequency of AIP gene mutations in young patients with acromegaly: a registry-based study. J. Clin. Endocrinol. Metab. 99, E2789–E2793 (2014).

    Article  PubMed  CAS  Google Scholar 

  75. Reid, T. J. et al. Features at diagnosis of 324 patients with acromegaly did not change from 1981 to 2006: acromegaly remains under-recognized and under-diagnosed. Clin. Endocrinol. 72, 203–208 (2010).

    Article  Google Scholar 

  76. Kreitschmann-Andermahr, I. et al. Diagnosis and management of acromegaly: the patient’s perspective. Pituitary 19, 268–276 (2016).

    Article  PubMed  Google Scholar 

  77. Grynberg, M., Salenave, S., Young, J. & Chanson, P. Female gonadal function before and after treatment of acromegaly. J. Clin. Endocrinol. Metab. 95, 4518–4525 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Chanson, P., Salenave, S. & Kamenicky, P. Acromegaly. Handb. Clin. Neurol. 124, 197–219 (2014).

    Article  PubMed  Google Scholar 

  79. Kropf, L. L., Madeira, M., Vieira Neto, L., Gadelha, M. R. & de Farias, M. L. Functional evaluation of the joints in acromegalic patients and associated factors. Clin. Rheumatol. 32, 991–998 (2013).

    Article  PubMed  Google Scholar 

  80. Scarpa, R. et al. Acromegalic axial arthropathy: a clinical case-control study. J. Clin. Endocrinol. Metab. 89, 598–603 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Mazziotti, G. et al. Prevalence of vertebral fractures in men with acromegaly. J. Clin. Endocrinol. Metab. 93, 4649–4655 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Wassenaar, M. J. et al. High prevalence of vertebral fractures despite normal bone mineral density in patients with long-term controlled acromegaly. Eur. J. Endocrinol. 164, 475–483 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Tagliafico, A. et al. Ultrasound measurement of median and ulnar nerve cross-sectional area in acromegaly. J. Clin. Endocrinol. Metab. 93, 905–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Bihan, H. et al. Long-term outcome of patients with acromegaly and congestive heart failure. J. Clin. Endocrinol. Metab. 89, 5308–5313 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Alexopoulou, O. et al. Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: a study in 148 patients. Pituitary 17, 81–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Freda, P. U. et al. Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J. Clin. Endocrinol. Metab. 93, 2334–2343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Katznelson, L. Alterations in body composition in acromegaly. Pituitary 12, 136–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Attal, P. & Chanson, P. Endocrine aspects of obstructive sleep apnea. J. Clin. Endocrinol. Metab. 95, 483–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Herrmann, B. L. et al. Effects of octreotide on sleep apnoea and tongue volume (magnetic resonance imaging) in patients with acromegaly. Eur. J. Endocrinol. 151, 309–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Delhougne, B. et al. The prevalence of colonic polyps in acromegaly: a colonoscopic and pathological study in 103 patients. J. Clin. Endocrinol. Metab. 80, 3223–3226 (1995).

    CAS  PubMed  Google Scholar 

  91. Clemmons, D. R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 57, 555–559 (2011). This consensus statement discusses how to improve the measurement of GH and IGF1 levels.

    Article  CAS  PubMed  Google Scholar 

  92. Bidlingmaier, M. et al. Reference intervals for insulin-like growth factor-1 (IGF-I) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J. Clin. Endocrinol. Metab. 99, 1712–1721 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Chanson, P. et al. Reference values for IGF-I serum concentrations: comparison of six immunoassays. J. Clin. Endocrinol. Metab. 101, 3450–3458 (2016). This study attempts to establish normative data for six IGF1 assay kits on the basis of a large, random sample of the French adult population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Freda, P. U., Reyes, C. M., Nuruzzaman, A. T., Sundeen, R. E. & Bruce, J. N. Basal and glucose-suppressed GH levels less than 1 microg/L in newly diagnosed acromegaly. Pituitary 6, 175–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Dimaraki, E. V., Jaffe, C. A., DeMott-Friberg, R., Chandler, W. F. & Barkan, A. L. Acromegaly with apparently normal GH secretion: implications for diagnosis and follow-up. J. Clin. Endocrinol. Metab. 87, 3537–3542 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Arafat, A. M. et al. Growth hormone response during oral glucose tolerance test: the impact of assay method on the estimation of reference values in patients with acromegaly and in healthy controls, and the role of gender, age, and body mass index. J. Clin. Endocrinol. Metab. 93, 1254–1262 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Ribeiro-Oliveira, A. Jr., Faje, A. T. & Barkan, A. L. Limited utility of oral glucose tolerance test in biochemically active acromegaly. Eur. J. Endocrinol. 164, 17–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Carmichael, J. D., Bonert, V. S., Mirocha, J. M. & Melmed, S. The utility of oral glucose tolerance testing for diagnosis and assessment of treatment outcomes in 166 patients with acromegaly. J. Clin. Endocrinol. Metab. 94, 523–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Beckers, A. et al. X-Linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr. Relat. Cancer 22, 353–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karimova, M. M. et al. Pachydermoperiostosis masquerading as acromegaly. J. Endocr. Soc. 1, 109–112 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Sun, Y. et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat. Genet. 44, 1375–1381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Joustra, S. D. et al. IGSF1 deficiency: lessons from an extensive case series and recommendations for clinical management. J. Clin. Endocrinol. Metab. 101, 1627–1636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Potorac, I. et al. Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr. Relat. Cancer 22, 169–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Knosp, E., Steiner, E., Kitz, K. & Matula, C. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33, 610–617; discussion 617–618 (1993).

    CAS  PubMed  Google Scholar 

  105. Micko, A. S., Wohrer, A., Wolfsberger, S. & Knosp, E. Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J. Neurosurg. 122, 803–811 (2015).

    Article  PubMed  Google Scholar 

  106. Attal, P. & Chanson, P. Screening of acromegaly in adults with obstructive sleep apnea: is it worthwhile? Endocrine 61, 4–6 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Schneider, H. J. et al. A novel approach to the detection of acromegaly: accuracy of diagnosis by automatic face classification. J. Clin. Endocrinol. Metab. 96, 2074–2080 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Kong, X., Gong, S., Su, L., Howard, N. & Kong, Y. Automatic detection of acromegaly from facial photographs using machine learning methods. EBioMedicine 27, 94–102 (2018).

    Article  PubMed  Google Scholar 

  109. Kimmell, K. T., Weil, R. J. & Marko, N. F. Multi-modal management of acromegaly: a value perspective. Pituitary 18, 658–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Colao, A. et al. Could different treatment approaches in acromegaly influence life expectancy? A comparative study between Bulgaria and Campania (Italy). Eur. J. Endocrinol. 171, 263–273 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Melmed, S. et al. Guidelines for acromegaly management: an update. J. Clin. Endocrinol. Metab. 94, 1509–1517 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Melmed, S. Pituitary medicine from discovery to patient-focused outcomes. J. Clin. Endocrinol. Metab. 101, 769–777 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lloyd, R. V., Osamura, R. Y., Kloppel, G. & Rosai, J. (eds) WHO Classification of Tumours of Endocrine Organs. 4th edn (IARC, Paris, 2017).

    Google Scholar 

  114. Raverot, G. et al. European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur. J. Endocrinol. 178, G1–G24 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Casanueva, F. F. et al. Criteria for the definition of Pituitary Tumor Centers of Excellence (PTCOE): a Pituitary Society statement. Pituitary 20, 489–498 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mercado, M. et al. Successful mortality reduction and control of comorbidities in patients with acromegaly followed at a highly specialized multidisciplinary clinic. J. Clin. Endocrinol. Metab. 99, 4438–4446 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Colao, A., Auriemma, R. S. & Pivonello, R. The effects of somatostatin analogue therapy on pituitary tumor volume in patients with acromegaly. Pituitary 19, 210–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. van der Lely, A. J. et al. Development of ACRODAT((R)), a new software medical device to assess disease activity in patients with acromegaly. Pituitary 20, 692–701 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Giustina, A. et al. SAGIT(R): clinician-reported outcome instrument for managing acromegaly in clinical practice—development and results from a pilot study. Pituitary 19, 39–49 (2016).

    Article  PubMed  Google Scholar 

  120. Melmed, S. et al. A consensus statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol. 14, 552–561 (2018). This consensus statement is an update on the medical management of acromegaly.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Colao, A. et al. First-line therapy of acromegaly: a statement of the A.L.I.C.E. (Acromegaly primary medical treatment Learning and Improvement with Continuous Medical Education) Study Group. J. Endocrinol. Invest. 29, 1017–1020 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Colao, A. et al. Effect of different dopaminergic agents in the treatment of acromegaly. J. Clin. Endocrinol. Metab. 82, 518–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Sandret, L., Maison, P. & Chanson, P. Place of cabergoline in acromegaly: a meta-analysis. J. Clin. Endocrinol. Metab. 96, 1327–1335 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Giustina, A. et al. Use of pegvisomant in acromegaly. An Italian Society of Endocrinology guideline. J. Endocrinol. Invest. 37, 1017–1030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gadelha, M. R. et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2, 875–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Colao, A. et al. Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J. Clin. Endocrinol. Metab. 99, 791–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Duarte, F. H., Jallad, R. S. & Bronstein, M. D. Estrogens and selective estrogen receptor modulators in acromegaly. Endocrine 54, 306–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Stone, J. C., Clark, J., Cuneo, R., Russell, A. W. & Doi, S. A. Estrogen and selective estrogen receptor modulators (SERMs) for the treatment of acromegaly: a meta-analysis of published observational studies. Pituitary 17, 284–295 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Fleseriu, M., Hoffman, A. R. & Katznelson, L., AACE Neuroendocrine and Pituitary Scientific Committee. American Association of Clinical Endocrinologists and American College of Endocrinology Disease State clinical review: management of acromegaly patients: what is the role of pre-operative medical therapy? Endocr. Pract. 21, 668–673 (2015).

    Article  PubMed  Google Scholar 

  130. Grasso, L. F., Pivonello, R. & Colao, A. Somatostatin analogs as a first-line treatment in acromegaly: when is it appropriate? Curr. Opin. Endocrinol. Diabetes Obes. 19, 288–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, L. et al. Preoperative somatostatin analogs treatment in acromegalic patients with macroadenomas. A meta-analysis. Brain Dev. 37, 181–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Pita-Gutierrez, F. et al. Place of preoperative treatment of acromegaly with somatostatin analog on surgical outcome: a systematic review and meta-analysis. PLOS ONE 8, e61523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tutuncu, Y. et al. Comparison of octreotide LAR and lanreotide autogel as post-operative medical treatment in acromegaly. Pituitary 15, 398–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Auriemma, R. S. et al. Octreotide-LAR versus lanreotide-SR as first-line therapy for acromegaly: a retrospective, comparative, head-to-head study. J. Endocrinol. Invest. 31, 956–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Carmichael, J. D., Bonert, V. S., Nuno, M., Ly, D. & Melmed, S. Acromegaly clinical trial methodology impact on reported biochemical efficacy rates of somatostatin receptor ligand treatments: a meta-analysis. J. Clin. Endocrinol. Metab. 99, 1825–1833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Caron, P. J. et al. Tumor shrinkage with lanreotide Autogel 120 mg as primary therapy in acromegaly: results of a prospective multicenter clinical trial. J. Clin. Endocrinol. Metab. 99, 1282–1290 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Gadelha, M. R., Wildemberg, L. E., Bronstein, M. D., Gatto, F. & Ferone, D. Somatostatin receptor ligands in the treatment of acromegaly. Pituitary 20, 100–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Brzana, J., Yedinak, C. G., Gultekin, S. H., Delashaw, J. B. & Fleseriu, M. Growth hormone granulation pattern and somatostatin receptor subtype 2A correlate with postoperative somatostatin receptor ligand response in acromegaly: a large single center experience. Pituitary 16, 490–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Puig-Domingo, M. et al. Magnetic resonance imaging as a predictor of response to somatostatin analogs in acromegaly after surgical failure. J. Clin. Endocrinol. Metab. 95, 4973–4978 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Potorac, I. et al. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr. Relat. Cancer 23, 871–881 (2016).

    Article  PubMed  Google Scholar 

  141. Shen, M. et al. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly. Neuroradiology 58, 1057–1065 (2016).

    Article  PubMed  Google Scholar 

  142. Colao, A. et al. Beneficial effect of dose escalation of octreotide-LAR as first-line therapy in patients with acromegaly. Eur. J. Endocrinol. 157, 579–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Giustina, A. et al. High-dose intramuscular octreotide in patients with acromegaly inadequately controlled on conventional somatostatin analogue therapy: a randomised controlled trial. Eur. J. Endocrinol. 161, 331–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Giustina, A. et al. High-dose and high-frequency lanreotide autogel in acromegaly: a randomized, multicenter study. J. Clin. Endocrinol. Metab. 102, 2454–2464 (2017).

    Article  PubMed  Google Scholar 

  145. Fleseriu, M., Rusch, E. & Geer, E. B., ACCESS Study Investigators. Safety and tolerability of pasireotide long-acting release in acromegaly-results from the acromegaly, open-label, multicenter, safety monitoring program for treating patients who have a need to receive medical therapy (ACCESS) study. Endocrine 55, 247–255 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Ciresi, A., Radellini, S., Guarnotta, V. & Giordano, C. Efficacy of combined treatment with pasireotide, pegvisomant and cabergoline in an acromegalic patient resistant to other treatments: a case report. BMC Endocr. Disord. 18, 2 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lovato, C. M. & Kapsner, P. L. Analgesic effect of long-acting somatostatin receptor agonist pasireotide in a patient with acromegaly and intractable headaches. BMJ Case Rep. https://doi.org/10.1136/bcr-2017-219686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shimon, I. et al. Efficacy and safety of long-acting pasireotide in patients with somatostatin-resistant acromegaly: a multicenter study. Endocrine 62, 448–455 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Schmid, H. A. et al. Effect of pasireotide on glucose- and growth hormone-related biomarkers in patients with inadequately controlled acromegaly. Endocrine 53, 210–219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Samson, S. L. Management of hyperglycemia in patients with acromegaly treated with pasireotide LAR. Drugs 76, 1235–1243 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Grasso, L. F., Auriemma, R. S., Pivonello, R. & Colao, A. Adverse events associated with somatostatin analogs in acromegaly. Expert Opin. Drug Saf. 14, 1213–1226 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Giustina, A. et al. Pegvisomant in acromegaly: an update. J. Endocrinol. Invest. 40, 577–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van der Lely, A. J. et al. Long-term safety of pegvisomant in patients with acromegaly: comprehensive review of 1288 subjects in ACROSTUDY. J. Clin. Endocrinol. Metab. 97, 1589–1597 (2012).

    Article  PubMed  CAS  Google Scholar 

  154. Freda, P. U. et al. Long-term treatment with pegvisomant as monotherapy in patients with acromegaly: experience from ACROSTUDY. Endocr. Pract. 21, 264–274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Trainer, P. J. et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N. Engl. J. Med. 342, 1171–1177 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Neggers, S. J. et al. Long-term efficacy and safety of pegvisomant in combination with long-acting somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 99, 3644–3652 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Sievers, C. et al. Prediction of therapy response in acromegalic patients under pegvisomant therapy within the German ACROSTUDY cohort. Pituitary 18, 916–923 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Abu Dabrh, A. M. et al. Radiotherapy versus radiosurgery in treating patients with acromegaly: a systematic review and meta-analysis. Endocr. Pract. 21, 943–956 (2015).

    Article  PubMed  Google Scholar 

  159. Hannon, M. J., Barkan, A. L. & Drake, W. M. The role of radiotherapy in acromegaly. Neuroendocrinology 103, 42–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Biermasz, N. R., Pereira, A. M., Smit, J. W., Romijn, J. A. & Roelfsema, F. Morbidity after long-term remission for acromegaly: persisting joint-related complaints cause reduced quality of life. J. Clin. Endocrinol. Metab. 90, 2731–2739 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Badia, X., Webb, S. M., Prieto, L. & Lara, N. Acromegaly Quality of Life Questionnaire (AcroQoL). Health Qual. Life Outcomes 2, 13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Webb, S. M., Badia, X. & Surinach, N. L., Spanish AcroQol Study Group. Validity and clinical applicability of the acromegaly quality of life questionnaire, AcroQoL: a 6-month prospective study. Eur. J. Endocrinol. 155, 269–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Schipper, H., Clinch, J. J. & Olweny, C. L. M. in Quality of Life Assessments in Clinical Trials (ed. Spilker, B.) (Raven Press, New York, 1990).

  164. Andela, C. D., Scharloo, M., Pereira, A. M., Kaptein, A. A. & Biermasz, N. R. Quality of life (QoL) impairments in patients with a pituitary adenoma: a systematic review of QoL studies. Pituitary 18, 752–776 (2015).

    Article  PubMed  Google Scholar 

  165. Andela, C. D. et al. The development and validation of the Leiden Bother and Needs Questionnaire for patients with pituitary disease: the LBNQ-Pituitary. Pituitary 19, 293–302 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Geraedts, V. J. et al. Predictors of quality of life in acromegaly: no consensus on biochemical parameters. Front. Endocrinol. (Lausanne) 8, 40 (2017).

    Article  Google Scholar 

  167. Tiemensma, J. et al. Increased psychopathology and maladaptive personality traits, but normal cognitive functioning, in patients after long-term cure of acromegaly. J. Clin. Endocrinol. Metab. 95, E392–E402 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Pantanetti, P., Sonino, N., Arnaldi, G. & Boscaro, M. Self image and quality of life in acromegaly. Pituitary 5, 17–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Webb, S. M. Quality of life in acromegaly. Neuroendocrinology 83, 224–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Roerink, S. H. et al. Persistent self-consciousness about facial appearance, measured with the Derriford appearance scale 59, in patients after long-term biochemical remission of acromegaly. Pituitary 18, 366–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Rubeck, K. Z. et al. Conventional and novel biomarkers of treatment outcome in patients with acromegaly: discordant results after somatostatin analog treatment compared with surgery. Eur. J. Endocrinol. 163, 717–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Postma, M. R. et al. Quality of life is impaired in association with the need for prolonged postoperative therapy by somatostatin analogs in patients with acromegaly. Eur. J. Endocrinol. 166, 585–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Kyriakakis, N., Lynch, J., Gilbey, S. G., Webb, S. M. & Murray, R. D. Impaired quality of life in patients with treated acromegaly despite long-term biochemically stable disease: results from a 5-years prospective study. Clin. Endocrinol. 86, 806–815 (2017). This study evaluates factors that influence QOL in patients with acromegaly with long-term biochemical remission.

    Article  Google Scholar 

  174. Liu, S. et al. Patient-centered assessment on disease burden, quality of life, and treatment satisfaction associated with acromegaly. J. Investig. Med. 66, 653–660 (2018).

    Article  PubMed  Google Scholar 

  175. Trainer, P. J. et al. A randomised, open-label, parallel group phase 2 study of antisense oligonucleotide therapy in acromegaly. Eur. J. Endocrinol. 179, 97–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Melmed, S. et al. A consensus on the diagnosis and treatment of acromegaly complications. Pituitary 16, 294–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Gadelha, M. R., Kasuki, L. & Korbonits, M. The genetic background of acromegaly. Pituitary 20, 10–21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Disease Primers thanks M. Buchfelder, S. Webb and J. Jorgensen, and other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.C. and L.F.S.G.); Epidemiology (A.G.); Mechanisms/pathophysiology (S.M.); Diagnosis, screening and prevention (P.C.); Management (L.F.S.G. and R.P.); Quality of life (A.M.P.); Outlook (A.C.); Overview of Primer (A.C.).

Corresponding author

Correspondence to Annamaria Colao.

Ethics declarations

Competing interests

P.C. has received unrestricted research and educational grants from Ipsen, Novartis and Pfizer as Head of the Department of Endocrinology and Reproductive Diseases, Hôpitaux Universitaires Paris-Sud. P.C. has served as an investigator (principal or coordinator) for clinical trials funded by Antisense, Chiasma, Ipsen,, Italfarmaco, Novartis and Pfizer. P.C. is a member of advisory boards from Ipsen and Novartis. P.C. gave lectures for Ipsen, Novartis and Pfizer. All the fees and honoraria were paid to his institution. S.M. receives investigator-initiated research grants from Ono and Pfizer to his institution. S.M. serves as a consultant for Chiasma, Ionis and Ipsen. A.C. has been a principal investigator of research studies from Ipsen, Lilly, Novartis and Pfizer; has received research grants from Ferring, Ipsen, Lilly, Merck-Serono, Novartis, Novo-Nordisk and Pfizer; has been an occasional consultant for Ipsen, Novartis and Pfizer; and has received fees and honoraria from Ipsen, Novartis and Pfizer. R.P. has been principal investigator of research studies for HRA Pharma and Novartis; has received research grants from Novartis, IBSA, Ipsen, Pfizer and ViroPharma; has been an occasional consultant for Ferring, Ipsen, Italfarmaco, Novartis, Pfizer, and ViroPharma; and received lecture fees and honoraria from Novartis, Pfizer and Shire. A.G. is a consultant for Ipsen, Novartis and Pfizer. L.F.S.G. and A.M.P. declare no competing interests.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Figure 2.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colao, A., Grasso, L.F.S., Giustina, A. et al. Acromegaly. Nat Rev Dis Primers 5, 20 (2019). https://doi.org/10.1038/s41572-019-0071-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0071-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing