Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Rhabdomyosarcoma

Abstract

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and represents a high-grade neoplasm of skeletal myoblast-like cells. Decades of clinical and basic research have gradually improved our understanding of the pathophysiology of RMS and helped to optimize clinical care. The two major subtypes of RMS, originally characterized on the basis of light microscopic features, are driven by fundamentally different molecular mechanisms and pose distinct clinical challenges. Curative therapy depends on control of the primary tumour, which can arise at many distinct anatomical sites, as well as controlling disseminated disease that is known or assumed to be present in every case. Sophisticated risk stratification for children with RMS incorporates various clinical, pathological and molecular features, and that information is used to guide the application of multifaceted therapy. Such therapy has historically included cytotoxic chemotherapy as well as surgery, ionizing radiation or both. This Primer describes our current understanding of RMS epidemiology, disease susceptibility factors, disease mechanisms and elements of clinical care, including diagnostics, risk-based care of newly diagnosed and relapsed disease and the prevention and management of late effects in survivors. We also outline potential opportunities to further translate new biological insights into improved clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RMS incidence varies with age and subtype.
Fig. 2: PAXFOXO1 fusion gene drives RMS formation.
Fig. 3: Key functional pathways are perturbed in RMS.
Fig. 4: ERMS and ARMS can be distinguished on the basis of histopathology features.
Fig. 5: PAX–FOXO1 translocation can be detected by FISH.
Fig. 6: Survival in children with RMS.

Similar content being viewed by others

References

  1. Hawkins, D. S., Spunt, S. L. & Skapek, S. X. Children’s Oncology Group’s 2013 blueprint for research: soft tissue sarcomas. Pediatr. Blood Cancer 60, 1001–1008 (2013).

    Article  PubMed  Google Scholar 

  2. Crist, W. M. et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J. Clin. Oncol. 19, 3091–3102 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Crist, W. et al. The third intergroup rhabdomyosarcoma study. J. Clin. Oncol. 13, 610–630 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Raney, R. B. et al. The intergroup rhabdomyosarcoma study group (IRSG): major lessons from the IRS-I through IRS-IV studies as background for the current IRS-V treatment protocols. Sarcoma 5, 9–15 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arndt, C. A. et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk rhabdomyosarcoma: children’s oncology group study D9803. J. Clin. Oncol. 27, 5182–5188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stevens, M. C. et al. Treatment of nonmetastatic rhabdomyosarcoma in childhood and adolescence: third study of the International Society of Paediatric Oncology—SIOP Malignant Mesenchymal Tumor 89. J. Clin. Oncol. 23, 2618–2628 (2005).

    Article  PubMed  Google Scholar 

  7. Oberlin, O. et al. Randomized comparison of intensified six-drug versus standard three-drug chemotherapy for high-risk nonmetastatic rhabdomyosarcoma and other chemotherapy-sensitive childhood soft tissue sarcomas: long-term results from the International Society of Pediatric Oncology MMT95 study. J. Clin. Oncol. 30, 2457–2465 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Enterline, H. T. & Horn, R. C. Jr. Alveolar rhabdomyosarcoma; a distinctive tumor type. Am. J. Clin. Pathol. 29, 356–366 (1958).

    Article  CAS  PubMed  Google Scholar 

  9. Patton, R. B. & Horn, R. C. Jr. Rhabdomyosarcoma: clinical and pathological features and comparison with human fetal and embryonal skeletal muscle. Surgery 52, 572–584 (1962).

    CAS  PubMed  Google Scholar 

  10. Turc-Carel, C. et al. Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet. Cytogenet. 19, 361–362 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Douglass, E. C. et al. Variant translocations of chromosome 13 in alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 3, 480–482 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Douglass, E. C. et al. A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet. Cell Genet. 45, 148–155 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Rudzinski, E. R. et al. The World Health Organization classification of skeletal muscle tumors in pediatric rhabdomyosarcoma: a report from the Children’s Oncology Group. Arch. Pathol. Lab. Med. 139, 1281–1287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barr, F. G. et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat. Genet. 3, 113–117 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Davis, R. J., D’Cruz, C. M., Lovell, M. A., Biegel, J. A. & Barr, F. G. Fusion of PAX7 to FKHR by the variant t(1;13)(p36; q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54, 2869–2872 (1994).

    CAS  PubMed  Google Scholar 

  16. Parham, D. M. & Barr, F. G. Classification of rhabdomyosarcoma and its molecular basis. Adv. Anat. Pathol. 20, 387–397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ries, L. A. G. et al. (eds) Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1999 [pub no. 99-4649] (National Cancer Institute, 1999).

  18. Perez, E. A. et al. Rhabdomyosarcoma in children: a SEER population based study. J. Surg. Res. 170, e243–e251 (2011).

    Article  PubMed  Google Scholar 

  19. Lychou, S. E., Gustafsson, G. G. & Ljungman, G. E. Higher rates of metastatic disease may explain the declining trend in Swedish paediatric rhabdomyosarcoma survival rates. Acta Paediatr. 105, 74–81 (2016).

    Article  PubMed  Google Scholar 

  20. Stiller, C. A. & Parkin, D. M. International variations in the incidence of childhood soft-tissue sarcomas. Paediatr. Perinat. Epidemiol. 8, 107–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Ognjanovic, S., Linabery, A. M., Charbonneau, B. & Ross, J. A. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer 115, 4218–4226 (2009). This paper demonstrates increasing incidence of RMS in the United States.

    Article  PubMed  Google Scholar 

  22. Kelly, K. M., Womer, R. B., Sorensen, P. H., Xiong, Q. B. & Barr, F. G. Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J. Clin. Oncol. 15, 1831–1836 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Furlong, M. A., Mentzel, T. & Fanburg-Smith, J. C. Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod. Pathol. 14, 595–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Chow, E. J. et al. Childhood cancer in relation to parental race and ethnicity: a 5-state pooled analysis. Cancer 116, 3045–3053 (2010).

    Article  PubMed  Google Scholar 

  25. Grufferman, S., Ruymann, F., Ognjanovic, S., Erhardt, E. B. & Maurer, H. M. Prenatal X-ray exposure and rhabdomyosarcoma in children: a report from the children’s oncology group. Cancer Epidemiol. Biomarkers Prev. 18, 1271–1276 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Savage, S. A. et al. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat. Genet. 45, 799–803 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Postel-Vinay, S. et al. Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat. Genet. 44, 323–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Shern, J. F. et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 4, 216–231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, X. et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 24, 710–724 (2013). References 28 and 29 represent two of the early and comprehensive applications of next-generation sequencing approaches to investigate RMS pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seki, M. et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat. Commun. 6, 7557 (2015).

    Article  PubMed  Google Scholar 

  31. Diller, L., Sexsmith, E., Gottlieb, A., Li, F. P. & Malkin, D. Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J. Clin. Invest. 95, 1606–1611 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartley, A. L., Birch, J. M., Marsden, H. B., Harris, M. & Blair, V. Neurofibromatosis in children with soft tissue sarcoma. Pediatr. Hematol. Oncol. 5, 7–16 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, P. et al. Association of childhood rhabdomyosarcoma with neurofibromatosis type I and birth defects. Genet. Epidemiol. 12, 467–474 (1995). This paper reports the important addition of RMS to the cancer susceptibility imposed by heritable genetic defects, including NF1 mutation.

    Article  CAS  PubMed  Google Scholar 

  34. Kratz, C. P., Rapisuwon, S., Reed, H., Hasle, H. & Rosenberg, P. S. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am. J. Med. Genet. 157C, 83–89 (2011).

    Article  PubMed  Google Scholar 

  35. Estep, A. L., Tidyman, W. E., Teitell, M. A., Cotter, P. D. & Rauen, K. A. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am. J. Med. Genet. 140A, 8–16 (2006).

    Article  CAS  Google Scholar 

  36. Shuman, C., Beckwith, J. B. & Weksberg, R. Beckwith-Wiedemann syndrome. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1394 (updated 11 Aug 2016).

  37. Doros, L. et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr. Blood Cancer 59, 558–560 (2012).

    Article  PubMed  Google Scholar 

  38. Plon, S. E. & Malkin, D. in Principles and Practice of Pediatric Oncology (eds Pizzo, P. A. & Poplack, D. G.) 1600 (Lippincott Williams & Wilkins, Philadelphia, PA, 2010).

    Google Scholar 

  39. Ognjanovic, S., Olivier, M., Bergemann, T. L. & Hainaut, P. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 118, 1387–1396 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Keller, C. et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626 (2004). This elegant study demonstrates the power of genetically engineered mouse models in the study of translocation-driven sarcomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grufferman, S., Delzell, E. & Delong, E. R. An approach to conducting epidemiologic research within cooperative clinical trials groups. J. Clin. Oncol. 2, 670–675 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Grufferman, S., Schwartz, A. G., Ruymann, F. B. & Maurer, H. M. Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 4, 217–224 (1993).

    CAS  PubMed  Google Scholar 

  43. Lupo, P. J. et al. Maternal and birth characteristics and childhood rhabdomyosarcoma: a report from the Children’s Oncology Group. Cancer Causes Control 25, 905–913 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lupo, P. J. et al. Allergies, atopy, immune-related factors and childhood rhabdomyosarcoma: a report from the Children’s Oncology Group. Int. J. Cancer 134, 431–436 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Lupo, P. J. et al. Family history of cancer and childhood rhabdomyosarcoma: a report from the Children’s Oncology Group and the Utah Population Database. Cancer Med. 4, 781–790 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ottaviani, G. & Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 152, 3–13 (2009).

    Article  PubMed  Google Scholar 

  47. Eyre, R., Feltbower, R. G., Mubwandarikwa, E., Eden, T. O. & McNally, R. J. Epidemiology of bone tumours in children and young adults. Pediatr. Blood Cancer 53, 941–952 (2009).

    Article  PubMed  Google Scholar 

  48. Grufferman, S. et al. Environmental factors in the etiology of rhabdomyosarcoma in childhood. J. Natl Cancer Inst. 68, 107–113 (1982).

    CAS  PubMed  Google Scholar 

  49. Grimson, R. C., Aldrich, T. E. & Drane, J. W. Clustering in sparse data and an analysis of rhabdomyosarcoma incidence. Stat. Med. 11, 761–768 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Linardic, C. M. et al. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res. 67, 6691–6699 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Drummond, C. J. et al. Hedgehog pathway drives fusion-negative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell 33, 108–124 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marshall, A. D. & Grosveld, G. C. Alveolar rhabdomyosarcoma — the molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet. Muscle 2, 25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barr, F. G. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20, 5736–5746 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Galili, N. et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat. Genet. 5, 230–235 (1993). This seminal work describes the identification of the PAX3FOXO1 fusion transcript.

    Article  CAS  PubMed  Google Scholar 

  55. Bennicelli, J. L., Advani, S., Schafer, B. W. & Barr, F. G. PAX3 and PAX7 exhibit conserved cis -acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma. Oncogene 18, 4348–4356 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Bennicelli, J. L., Edwards, R. H. & Barr, F. G. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 93, 5455–5459 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davis, R. J. & Barr, F. G. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 94, 8047–8051 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. del Peso, L., Gonzalez, V. M., Hernandez, R., Barr, F. G. & Nunez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3–FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 18, 7328–7333 (1999).

    Article  PubMed  CAS  Google Scholar 

  59. Thalhammer, V. et al. PLK1 phosphorylates PAX3–FOXO1, the inhibition of which triggers regression of alveolar rhabdomyosarcoma. Cancer Res. 75, 98–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Bharathy, N. et al. P/CAF mediates PAX3–FOXO1-dependent oncogenesis in alveolar rhabdomyosarcoma. J. Pathol. 240, 269–281 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Amstutz, R. et al. Phosphorylation regulates transcriptional activity of PAX3/FKHR and reveals novel therapeutic possibilities. Cancer Res. 68, 3767–3776 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Cao, L. et al. Genome-wide identification of PAX3–FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res. 70, 6497–6508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gryder, B. E. et al. PAX3–FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 7, 884–899 (2017). References 62 and 63 provide elegant insight into how the oncogenic fusion protein derails developmental pathways to foster tumour formation and progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bohm, M. et al. Helicase CHD4 is an epigenetic coregulator of PAX3–FOXO1 in alveolar rhabdomyosarcoma. J. Clin. Invest. 126, 4237–4249 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lam, P. Y. P., Sublett, J. E., Hollenbach, A. D. & Roussel, M. F. The oncogenic potential of the Pax3–FKHR fusion protein requires the pax3 homeodomain recognition helix but not the pax3 paired-box DNA binding domain. Mol. Cell. Biol. 19, 594–601 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xia, S. J., Holder, D. D., Pawel, B. R., Zhang, C. & Barr, F. G. High expression of the PAX3–FKHR oncoprotein is required to promote tumorigenesis of human myoblasts. Am. J. Pathol. 175, 2600–2608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kikuchi, K. et al. Effects of PAX3–FKHR on malignant phenotypes in alveolar rhabdomyosarcoma. Biochem. Biophys. Res. Commun. 365, 568–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Ebauer, M., Wachtel, M., Niggli, F. K. & Schafer, B. W. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26, 7267–7281 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Sorensen, P. H. et al. PAX3–FKHR and PAX7–FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J. Clin. Oncol. 20, 2672–2679 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Barr, F. G. et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res. 62, 4704–4710 (2002).

    CAS  PubMed  Google Scholar 

  71. Wachtel, M. et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res. 64, 5539–5545 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Williamson, D. et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J. Clin. Oncol. 28, 2151–2158 (2010).

    Article  PubMed  Google Scholar 

  73. Weber-Hall, S. et al. Gains, losses, and amplification of genomic material in rhabdomyosarcoma analyzed by comparative genomic hybridization. Cancer Res. 56, 3220–3224 (1996).

    CAS  PubMed  Google Scholar 

  74. Shukla, N. et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin. Cancer Res. 18, 748–757 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Davicioni, E. et al. Molecular classification of rhabdomyosarcoma — genotypic and phenotypic determinants of diagnosis. Am. J. Pathol. 174, 550–564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stewart, E. et al. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses. Cancer Cell 34, 411–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martinelli, S. et al. RAS signaling dysregulation in human embryonal rhabdomyosarcoma. Genes Chromosomes Cancer 48, 975–982 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Davicioni, E. et al. Identification of a PAX–FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res. 66, 6936–6946 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Tremblay, A. M. et al. The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer Cell 26, 273–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Romualdi, C. et al. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 7, 287 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Renshaw, J. et al. Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin. Cancer Res. 19, 5940–5951 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Taylor, J. G. et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J. Clin. Invest. 119, 3395–3407 (2009). This elegant report highlights FGFR4 as one of the relative few, targetable vulnerabilities in RMS.

    CAS  PubMed  Google Scholar 

  83. Li, S. Q. et al. Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534). PLOS ONE 8, e76551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crose, L. E. et al. FGFR4 blockade exerts distinct antitumorigenic effects in human embryonal versus alveolar rhabdomyosarcoma. Clin. Cancer Res. 18, 3780–3790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wachtel, M. et al. FGFR4 signaling couples to Bim and not Bmf to discriminate subsets of alveolar rhabdomyosarcoma cells. Int. J. Cancer 135, 1543–1552 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Bridge, J. A. et al. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer 33, 310–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Martins, A. S., Olmos, D., Missiaglia, E. & Shipley, J. Targeting the insulin-like growth factor pathway in rhabdomyosarcomas: rationale and future perspectives. Sarcoma 2011, 209736 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Petricoin, E. F. 3rd et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res. 67, 3431–3440 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Wan, X., Yeung, C., Heske, C., Mendoza, A. & Helman, L. J. IGF-1R inhibition activates a YES/SFK bypass resistance pathway: rational basis for co-targeting IGF-1R and Yes/SFK kinase in rhabdomyosarcoma. Neoplasia 17, 358–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ganti, R. et al. Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod. Pathol. 19, 1213–1220 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Mark, H. F., Brown, S., Sun, C. L., Samy, M. & Afify, A. Fluorescent in situ hybridization detection of HER-2/neu gene amplification in rhabdomyosarcoma. Pathobiology 66, 59–63 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Abraham, J. et al. Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma. Mol. Cancer Ther. 10, 697–707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Blake, J. & Ziman, M. R. Aberrant PAX3 and PAX7 expression. A link to the metastatic potential of embryonal rhabdomyosarcoma and cutaneous malignant melanoma? Histol. Histopathol. 18, 529–539 (2003).

    CAS  PubMed  Google Scholar 

  94. Chiappalupi, S., Riuzzi, F., Fulle, S., Donato, R. & Sorci, G. Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis 35, 2382–2392 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Megiorni, F. et al. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells. J. Hematol. Oncol. 10, 161 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Rees, H. et al. The MET receptor tyrosine kinase contributes to invasive tumour growth in rhabdomyosarcomas. Growth Factors 24, 197–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Taulli, R. et al. Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res. 66, 4742–4749 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Otabe, O. et al. MET/ERK2 pathway regulates the motility of human alveolar rhabdomyosarcoma cells. Oncol. Rep. 37, 98–104 (2017).

    Article  PubMed  Google Scholar 

  99. Skrzypek, K. et al. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget 6, 31378–31398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Miekus, K. et al. The decreased metastatic potential of rhabdomyosarcoma cells obtained through MET receptor downregulation and the induction of differentiation. Cell Death Dis. 4, e459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taniguchi, E. et al. PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 27, 6550–6560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ehnman, M. et al. Distinct effects of ligand-induced PDGFRalpha and PDGFRbeta signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res. 73, 2139–2149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shern, J. F. et al. Targeted resequencing of pediatric rhabdomyosarcoma: report from the Children’s Oncology Group, The Children’s Cancer and Leukemia Group, The Institute of Cancer Research UK, and the National Cancer Institute. J. Clin. Oncol. 36, S10515 (2018).

    Article  Google Scholar 

  104. Naini, S. et al. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res. 68, 9583–9588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hayes, M. N. & Langenau, D. M. Discovering novel oncogenic pathways and new therapies using zebrafish models of sarcoma. Methods Cell Biol. 138, 525–561 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Annavarapu, S. R. et al. Characterization of Wnt/beta-catenin signaling in rhabdomyosarcoma. Lab. Invest. 93, 1090–1099 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Chen, E. Y. et al. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/beta-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 111, 5349–5354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Satheesha, S. et al. Targeting Hedgehog signaling reduces self-renewal in embryonal rhabdomyosarcoma. Oncogene 35, 2020–2030 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Zibat, A. et al. Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene 29, 6323–6330 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Almazan-Moga, A. et al. Ligand-dependent Hedgehog pathway activation in rhabdomyosarcoma: the oncogenic role of the ligands. Br. J. Cancer 117, 1314–1325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Conti, B., Slemmons, K. K., Rota, R. & Linardic, C. M. Recent insights into Notch signaling in embryonal rhabdomyosarcoma. Curr. Drug Targets 17, 1235–1244 (2015).

    Article  CAS  Google Scholar 

  112. Mohamed, A. D., Tremblay, A. M., Murray, G. I. & Wackerhage, H. The Hippo signal transduction pathway in soft tissue sarcomas. Biochim. Biophys. Acta 1856, 121–129 (2015).

    CAS  PubMed  Google Scholar 

  113. Crose, L. E. et al. Alveolar rhabdomyosarcoma-associated PAX3–FOXO1 promotes tumorigenesis via Hippo pathway suppression. J. Clin. Invest. 124, 285–296 (2014). This elegant study demonstrates the intersection between oncogenic fusion protein and key developmental pathways in RMS genesis.

    Article  CAS  PubMed  Google Scholar 

  114. Slemmons, K. K., Crose, L. E., Rudzinski, E., Bentley, R. C. & Linardic, C. M. Role of the YAP oncoprotein in priming Ras-driven rhabdomyosarcoma. PLOS ONE 10, e0140781 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Roma, J., Almazan-Moga, A., Sanchez de Toledo, J. & Gallego, S. Notch, Wnt, and Hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network. Sarcoma 2012, 695603 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kohsaka, S. et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K–AKT pathway mutations. Nat. Genet. 46, 595–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Van Antwerp, M. E., Chen, D. G., Chang, C. & Prochownik, E. V. A point mutation in the MyoD basic domain imparts c-Myc-like properties. Proc. Natl Acad. Sci. USA 89, 9010–9014 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  118. MacQuarrie, K. L. et al. Comparison of genome-wide binding of MyoD in normal human myogenic cells and rhabdomyosarcomas identifies regional and local suppression of promyogenic transcription factors. Mol. Cell. Biol. 33, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee, M. H., Jothi, M., Gudkov, A. V. & Mal, A. K. Histone methyltransferase KMT1A restrains entry of alveolar rhabdomyosarcoma cells into a myogenic differentiated state. Cancer Res. 71, 3921–3931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Walters, Z. S. et al. JARID2 is a direct target of the PAX3–FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells. Oncogene 33, 1148–1157 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Ciarapica, R. et al. The Polycomb group (PcG) protein EZH2 supports the survival of PAX3–FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx). Oncogene 33, 4173–4184 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Huynh, K. D., Fischle, W., Verdin, E. & Bardwell, V. J. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 14, 1810–1823 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Missiaglia, E. et al. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer Lett. 385, 251–260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Marshall, A. D., Lagutina, I. & Grosveld, G. C. PAX3–FOXO1 induces cannabinoid receptor 1 to enhance cell invasion and metastasis. Cancer Res. 71, 7471–7480 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Yu, Y., Davicioni, E., Triche, T. J. & Merlino, G. The homeoprotein Six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res. 66, 1982–1989 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Zheng, H. & Kang, Y. Multilayer control of the EMT master regulators. Oncogene 33, 1755–1763 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Skrzypek, K. et al. SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis. 9, 643 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ignatius, M. S. et al. The NOTCH1/SNAIL1/MEF2C pathway regulates growth and self-renewal in embryonal rhabdomyosarcoma. Cell Rep. 19, 2304–2318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Khan, J. et al. cDNA microarrays detect activation of a myogenic transcription program by the PAX3–FKHR fusion oncogene. Proc. Natl Acad. Sci. USA 96, 13264–13269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xu, L. et al. Integrative Bayesian analysis identifies rhabdomyosarcoma disease genes. Cell Rep. 24, 238–251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Soleimani, V. D. et al. Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis. Mol. Cell 47, 457–468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Eichmuller, S. B., Osen, W., Mandelboim, O. & Seliger, B. Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J. Natl Cancer Inst. 109, djx034 (2017).

    Article  CAS  Google Scholar 

  136. Tran, E., Robbins, P. F. & Rosenberg, S. A. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat. Immunol. 18, 255–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Davicioni, E., Anderson, J. R., Buckley, J. D., Meyer, W. H. & Triche, T. J. Gene expression profiling for survival prediction in pediatric rhabdomyosarcomas: a report from the children’s oncology group. J. Clin. Oncol. 28, 1240–1246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rodeberg, D. A. et al. Prognostic significance and tumor biology of regional lymph node disease in patients with rhabdomyosarcoma: a report from the Children’s Oncology Group. J. Clin. Oncol. 29, 1304–1311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Mackall, C. L. et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin. Cancer Res. 14, 4850–4858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Qualman, S. J. et al. Intergroup rhabdomyosarcoma study: update for pathologists. Pediatr. Dev. Pathol. 1, 550–561 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Oberlin, O. et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J. Clin. Oncol. 26, 2384–2389 (2008). This international effort defines new clinical features to more precisely define risk groups among children with metastatic disease.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Miser, J. S. & Pizzo, P. A. Soft tissue sarcomas in childhood. Pediatr. Clin. North Am. 32, 779–800 (1985).

    Article  CAS  PubMed  Google Scholar 

  143. Haussler, S. M. et al. Head and neck rhabdomyosarcoma in children: a 20-year retrospective study at a tertiary referral center. J. Cancer Res. Clin. Oncol. 144, 371–379 (2018).

    Article  PubMed  Google Scholar 

  144. Sachedina, A., Chan, K., MacGregor, D., Campbell, M. & Grover, S. R. More than grapes and bleeding: an updated look at pelvic rhabdomyosarcoma in young females. J. Pediatr. Adolesc. Gynecol. 31, 522–525 (2018).

    Article  PubMed  Google Scholar 

  145. Fernandez-Pineda, I. et al. Vaginal tumors in childhood: the experience of St. Jude Children’s Research Hospital. J. Pediatr. Surg. 46, 2071–2075 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Karcioglu, Z. A., Hadjistilianou, D., Rozans, M. & DeFrancesco, S. Orbital rhabdomyosarcoma. Cancer Control 11, 328–333 (2004).

    Article  PubMed  Google Scholar 

  147. Doyle, L. A. Sarcoma classification: an update based on the 2013 World Health Organization classification of tumors of soft tissue and bone. Cancer 120, 1763–1774 (2014).

    Article  PubMed  Google Scholar 

  148. Dziuba, I., Kurzawa, P., Dopierala, M., Larque, A. B. & Januszkiewicz-Lewandowska, D. Rhabdomyosarcoma in children — current pathologic and molecular classification. Pol. J. Pathol. 69, 20–32 (2018).

    Article  PubMed  Google Scholar 

  149. Parham, D. (ed.) Pediatric Neoplasia: Morphology and Biology 87–104 (Lippincott-Raven, 1996).

  150. Rudzinski, E. R. et al. Dense pattern of embryonal rhabdomyosarcoma, a lesion easily confused with alveolar rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Am. J. Clin. Pathol. 140, 82–90 (2013).

    Article  PubMed  Google Scholar 

  151. Rudzinski, E. R. Histology and fusion status in rhabdomyosarcoma. Am. Soc. Clin. Oncol. Educ. Book 2013, 425–428 (2013).

    Article  Google Scholar 

  152. Arnold, M. A. et al. Histology, fusion status, and outcome in alveolar rhabdomyosarcoma with low-risk clinical features: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 63, 634–639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ruiz-Mesa, C., Goldberg, J. M., Coronado Munoz, A. J., Dumont, S. N. & Trent, J. C. Rhabdomyosarcoma in adults: new perspectives on therapy. Curr. Treat. Options Oncol. 16, 27 (2015).

    Article  PubMed  Google Scholar 

  154. Noujaim, J. et al. Adult pleomorphic rhabdomyosarcoma: a multicentre retrospective study. Anticancer Res. 35, 6213–6217 (2015).

    CAS  PubMed  Google Scholar 

  155. Goldstein, M., Meller, I., Issakov, J. & Orr-Urtreger, A. Novel genes implicated in embryonal, alveolar, and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia 8, 332–343 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Arnold, M. A. & Barr, F. G. Molecular diagnostics in the management of rhabdomyosarcoma. Expert Rev. Mol. Diagn. 17, 189–194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nishio, J. et al. Use of a novel FISH assay on paraffin-embedded tissues as an adjunct to diagnosis of alveolar rhabdomyosarcoma. Lab. Invest. 86, 547–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Missiaglia, E. et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J. Clin. Oncol. 30, 1670–1677 (2012). This paper highlights the development and testing of what seems to be a durable molecular biomarker for risk stratification in RMS.

    Article  PubMed  Google Scholar 

  159. Skapek, S. X. et al. PAX–FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children’s oncology group report. Pediatr. Blood Cancer 60, 1411–1417 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Rudzinski, E. R. et al. Myogenin, AP2beta, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Am. J. Surg. Pathol. 38, 654–659 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Villani, A. et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li–Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 17, 1295–1305 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Kratz, C. P. et al. Cancer screening recommendations for individuals with Li–Fraumeni syndrome. Clin. Cancer Res. 23, e38–e45 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Malkin, D., Nichols, K. E., Schiffman, J. D., Plon, S. E. & Brodeur, G. M. The future of surveillance in the context of cancer predisposition: through the murky looking glass. Clin. Cancer Res. 23, e133–e137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl Med. 9, eaan2415 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  165. Ferrari, A. et al. Adult-type soft tissue sarcomas in pediatric-age patients: experience at the Istituto Nazionale Tumori in Milan. J. Clin. Oncol. 23, 4021–4030 (2005).

    Article  PubMed  Google Scholar 

  166. Blakely, M. L. et al. Prognostic factors and surgical treatment guidelines for children with rhabdomyosarcoma of the perineum or anus: a report of Intergroup Rhabdomyosarcoma Studies I through IV, 1972 through 1997. J. Pediatr. Surg. 38, 347–353 (2003).

    Article  PubMed  Google Scholar 

  167. Crist, W. M. et al. Prognosis in children with rhabdomyosarcoma: a report of the intergroup rhabdomyosarcoma studies I and II. Intergroup Rhabdomyosarcoma Committee. J. Clin. Oncol. 8, 443–452 (1990).

    Article  CAS  PubMed  Google Scholar 

  168. Malempati, S. & Hawkins, D. S. Rhabdomyosarcoma: review of the Children’s Oncology Group (COG) soft-tissue sarcoma committee experience and rationale for current COG studies. Pediatr. Blood Cancer 59, 5–10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ferrari, A. et al. Access to clinical trials for adolescents with soft tissue sarcomas: enrollment in European pediatric soft tissue sarcoma study group (EpSSG) protocols. Pediatr. Blood Cancer 64, e26348 (2017).

    Article  Google Scholar 

  170. Dantonello, T. M. et al. Survival following disease recurrence of primary localized alveolar rhabdomyosarcoma. Pediatr. Blood Cancer 60, 1267–1273 (2013).

    Article  PubMed  Google Scholar 

  171. Heyn, R. M. et al. The role of combined chemotherapy in the treatment of rhabdomyosarcoma in children. Cancer 34, 2128–2142 (1974).

    Article  CAS  PubMed  Google Scholar 

  172. Gallego, S. et al. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J. Cancer Res. Clin. Oncol. 132, 356–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Meza, J. L., Anderson, J., Pappo, A. S. & Meyer, W. H. Analysis of prognostic factors in patients with nonmetastatic rhabdomyosarcoma treated on intergroup rhabdomyosarcoma studies III and IV: the Children’s Oncology Group. J. Clin. Oncol. 24, 3844–3851 (2006).

    Article  PubMed  Google Scholar 

  174. Lawrence, W. Jr, Anderson, J. R., Gehan, E. A. & Maurer, H. Pretreatment TNM staging of childhood rhabdomyosarcoma: a report of the Intergroup Rhabdomyosarcoma Study Group. Children’s Cancer Study Group. Pediatr. Oncol. Group. Cancer 80, 1165–1170 (1997).

    Google Scholar 

  175. Maurer, H. M. et al. The Intergroup Rhabdomyosarcoma Study-I. A final report. Cancer 61, 209–220 (1988).

    Article  CAS  PubMed  Google Scholar 

  176. Hingorani, P. et al. Clinical application of prognostic gene expression signature in fusion gene-negative rhabdomyosarcoma: a report from the Children’s Oncology Group. Clin. Cancer Res. 21, 4733–4739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bisogno, G. et al. Addition of dose-intensified doxorubicin to standard chemotherapy for rhabdomyosarcoma (EpSSG RMS 2005): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet Oncol. 19, 1061–1071 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Bisogno, G. et al. The role of doxorubicin in the treatment of rhabdomyosarcoma: preliminary results from the EpSSG RMS 2005 randomized trial. Pediatr. Blood Cancer 61, S133–S134 (2014).

    Article  CAS  Google Scholar 

  179. Casanova, M. et al. Vinorelbine and low-dose cyclophosphamide in the treatment of pediatric sarcomas: pilot study for the upcoming European Rhabdomyosarcoma Protocol. Cancer 101, 1664–1671 (2004). This early report demonstrates the potential value of low-dose ‘maintenance’ chemotherapy — an emerging concept that provides a new opportunity to improve survival for those with the highest-risk disease.

    Article  CAS  PubMed  Google Scholar 

  180. Bisogno, G. et al. Maintenance low-dose chemotherapy in patients with high-risk (HR) rhabdomyosarcoma (RMS): a report from the European paediatric soft tissue sarcoma study group (EpSSG). J. Clin. Oncol. https://doi.org/10.1200/JCO.2018.36.18_suppl.LBA2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Pappo, A. S. et al. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: the Children’s Oncology Group. J. Clin. Oncol. 25, 362–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Hawkins, D. et al. Vincristine, dactinomycin, cyclophosphamide (VAC) versus VAC/V plus irinotecan (VI) for intermediate-risk rhabdomyosarcoma (IRRMS): a report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. J. Clin. Oncol. 32, 10004 (2014).

    Article  Google Scholar 

  183. Hawkins, D. S. et al. Addition of vincristine and irinotecan to vincristine, dactinomycin, and cyclophosphamide does not improve outcome for intermediate-risk rhabdomyosarcoma: a report from the Children’s Oncology Group. J. Clin. Oncol. 36, 2770–2777 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Bisogno, G. et al. Sequential high-dose chemotherapy for children with metastatic rhabdomyosarcoma. Eur. J. Cancer 45, 3035–3041 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Weigel, B. J. et al. Intensive multiagent therapy, including dose-compressed cycles of ifosfamide/etoposide and vincristine/doxorubicin/cyclophosphamide, irinotecan, and radiation, in patients with high-risk rhabdomyosarcoma: a report from the Children’s Oncology Group. J. Clin. Oncol. 34, 117–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Walterhouse, D. O. et al. Shorter-duration therapy using vincristine, dactinomycin, and lower-dose cyclophosphamide with or without radiotherapy for patients with newly diagnosed low-risk rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J. Clin. Oncol. 32, 3547–3552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Walterhouse, D. O. et al. Reduction of cyclophosphamide dose for patients with subset 2 low-risk rhabdomyosarcoma is associated with an increased risk of recurrence: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Cancer 123, 2368–2375 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Dasgupta, R., Fuchs, J. & Rodeberg, D. Rhabdomyosarcoma. Semin. Pediatr. Surg. 25, 276–283 (2016).

    Article  PubMed  Google Scholar 

  189. Kieran, K. & Shnorhavorian, M. Current standards of care in bladder and prostate rhabdomyosarcoma. Urol. Oncol. 34, 93–102 (2016).

    Article  PubMed  Google Scholar 

  190. Maurer, H. M. et al. The Intergroup Rhabdomyosarcoma Study-II. Cancer 71, 1904–1922 (1993).

    Article  CAS  PubMed  Google Scholar 

  191. Terezakis, S. A. & Wharam, M. D. Radiotherapy for rhabdomyosarcoma: indications and outcome. Clin. Oncol. 25, 27–35 (2013).

    Article  CAS  Google Scholar 

  192. Saltzman, A. F. & Cost, N. G. Current treatment of pediatric bladder and prostate rhabdomyosarcoma. Curr. Urol. Rep. 19, 11 (2018).

    Article  PubMed  Google Scholar 

  193. Casey, D. L. & Wolden, S. L. Rhabdomyosarcoma of the head and neck: a multimodal approach. J. Neurol. Surg. B 79, 58–64 (2018).

    Article  Google Scholar 

  194. Ferrari, A. et al. Rhabdomyosarcoma in infants younger than one year old: a report from the Italian Cooperative Group. Cancer 97, 2597–2604 (2003).

    Article  PubMed  Google Scholar 

  195. Malempati, S. et al. Rhabdomyosarcoma in infants younger than 1 year: a report from the Children’s Oncology Group. Cancer 117, 3493–3501 (2011).

    Article  PubMed  Google Scholar 

  196. Alaggio, R. et al. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. Am. J. Surg. Pathol. 40, 224–235 (2016).

    PubMed  PubMed Central  Google Scholar 

  197. Pappo, A. S. et al. Survival after relapse in children and adolescents with rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma Study Group. J. Clin. Oncol. 17, 3487–3493 (1999).

    Article  CAS  PubMed  Google Scholar 

  198. Pappo, A. S. et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a Sarcoma Alliance for Research Through Collaboration study. Cancer 120, 2448–2456 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Kim, A. et al. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 62, 1562–1566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wagner, L. M. et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 62, 440–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Mascarenhas, L. et al. Randomized phase II trial of bevacizumab and temsirolimus in combination with vinorelbine (V) and cyclophosphamide (C) for first relapse/disease progression of rhabdomyosarcoma (RMS): a report from the Children’s Oncology Group (COG). J. Clin. Oncol. 32, S10003 (2014).

    Article  Google Scholar 

  202. Wolfe, J. et al. Symptoms and distress in children with advanced cancer: prospective patient-reported outcomes from the PediQUEST study. J. Clin. Oncol. 33, 1928–1935 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Gupta, A. A. et al. Patterns of chemotherapy-induced toxicities and outcome in children and adolescents with metastatic rhabdomyosarcoma: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 64, e26479 (2017).

    Article  CAS  Google Scholar 

  204. Cotter, S. E. et al. Proton radiotherapy for pediatric bladder/prostate rhabdomyosarcoma: clinical outcomes and dosimetry compared to intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 81, 1367–1373 (2011).

    Article  PubMed  Google Scholar 

  205. Macedo, A. Jr et al. Sexual function in teenagers after multimodal treatment of pelvic rhabdomyosarcoma: a preliminary report. J. Pediatr. Urol. 6, 605–608 (2010).

    Article  PubMed  Google Scholar 

  206. Frees, S. et al. Erectile function after treatment for rhabdomyosarcoma of prostate and bladder. J. Pediatr. Urol. 12, 404.e1–404.e6 (2016).

    Article  CAS  Google Scholar 

  207. Martelli, H. et al. Quality of life and functional outcome of male patients with bladder–prostate rhabdomyosarcoma treated with conservative surgery and brachytherapy during childhood. Brachytherapy 15, 306–311 (2016).

    Article  PubMed  Google Scholar 

  208. Raney, B. et al. Late effects in 164 patients with rhabdomyosarcoma of the bladder/prostate region: a report from the international workshop. J. Urol. 176, 2190–2194; discussion 2194–2195 (2006).

    Article  PubMed  Google Scholar 

  209. Shapiro, D. D., Harel, M., Ferrer, F. & McKenna, P. H. Focusing on organ preservation and function: paradigm shifts in the treatment of pediatric genitourinary rhabdomyosarcoma. Int. Urol. Nephrol. 48, 1009–1013 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Rodeberg, D. A. et al. Delayed primary excision with subsequent modification of radiotherapy dose for intermediate-risk rhabdomyosarcoma: a report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. Int. J. Cancer 137, 204–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Stewart, E. et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549, 96–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Langenau, D. M. et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 21, 1382–1395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Amatruda, J. F., Shepard, J. L., Stern, H. M. & Zon, L. I. Zebrafish as a cancer model system. Cancer Cell 1, 229–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  215. Galindo, R. L., Allport, J. A. & Olson, E. N. A. Drosophila model of the rhabdomyosarcoma initiator PAX7–FKHR. Proc. Natl Acad. Sci. USA 103, 13439–13444 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Linardic, C. M. & Counter, C. M. Genetic modeling of Ras-induced human rhabdomyosarcoma. Methods Enzymol. 438, 419–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Linardic, C. M., Downie, D. L., Qualman, S., Bentley, R. C. & Counter, C. M. Genetic modeling of human rhabdomyosarcoma. Cancer Res. 65, 4490–4495 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Sharp, R. et al. Synergism between Ink4a/Arf inactivation and aberrrant HGF/SF signaling in rhabdomyosarcomagenesis. Nat. Med. 8, 1276–1280 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Merchant, M. S. et al. Adjuvant immunotherapy to improve outcome in high-risk pediatric sarcomas. Clin. Cancer Res. 22, 3182–3191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Merchant, M. S. et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin. Cancer Res. 22, 1364–1370 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Chicas-Sett, R., Morales-Orue, I., Rodriguez-Abreu, D. & Lara-Jimenez, P. Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: a systematic review. Clin. Transl Radiat. Oncol. 9, 5–11 (2018).

    Article  PubMed  Google Scholar 

  222. Allen, C. E. et al. Target and agent prioritization for the Children’s Oncology Group-National Cancer Institute pediatric MATCH trial. J. Natl Cancer Inst. 109, djw274 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  223. Volchenboum, S. L. et al. Data commons to support pediatric cancer research. Am. Soc. Clin. Oncol. Educ. Book 37, 746–752 (2017).

    Article  PubMed  Google Scholar 

  224. Ren, Y. X. et al. Mouse mesenchymal stem cells expressing PAX–FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res. 68, 6587–6597 (2008).

    Article  CAS  PubMed  Google Scholar 

  225. Hahn, H. et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat. Med. 4, 619–622 (1998).

    Article  CAS  PubMed  Google Scholar 

  226. Hatley, M. E. et al. A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 22, 536–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Nyagetuba, J. K. M. & Hansen, E. N. Pediatric solid tumors in Africa: different biology? Curr. Opin. Pediatr. 29, 354–357 (2017).

    Article  PubMed  Google Scholar 

  228. Gupta, S. et al. in Cancer: Disease Control Priorities 3rd edn Vol. 3 Ch. 3 (eds Gelband, H., Jha, P., Sankaranarayanan, R. & Horton, S.) 121–146 (World Bank, 2015).

  229. Antillon, F. et al. Treating pediatric soft tissue sarcomas in a country with limited resources: the experience of the Unidad Nacional de Oncologia Pediatrica in Guatemala. Pediatr. Blood Cancer 51, 760–764 (2008).

    Article  PubMed  Google Scholar 

  230. Sultan, I., Qaddoumi, I., Yaser, S., Rodriguez-Galindo, C. & Ferrari, A. Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J. Clin. Oncol. 27, 3391–3397 (2009).

    Article  PubMed  Google Scholar 

  231. Ferrari, A. et al. Rhabdomyosarcoma in adults. A retrospective analysis of 171 patients treated at a single institution. Cancer 98, 571–580 (2003).

    Article  PubMed  Google Scholar 

  232. Davis, L. E. et al. Clinical trial enrollment of adolescents and young adults with sarcoma. Cancer 123, 3434–3440 (2017).

    Article  PubMed  Google Scholar 

  233. Helman, L. J., Wexler, L. H. & Meyer, W. H. in Principles and Practice of Pediatric Oncology (eds Pizzo, P. A. & Poplack, D. G.) 798–826 (Wolters Kluwer, Philadelphia, PA, 2016).

    Google Scholar 

  234. Grufferman, S. et al. Parental military service, agent orange exposure, and the risk of rhabdomyosarcoma in offspring. J. Pediatr. 165, 1216–1221 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Disease Primers thanks P.-L. Lollini, B. Schäfer, T. Triche and the other anonymous referee(s) for the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.X.S.); Epidemiology (S.X.S. and P.J.L.); Mechanisms/pathophysiology (S.X.S., J.S. and F.G.B.); Diagnosis, screening and prevention (S.X.S., A.F., P.J.L., E.B., F.G.B. and D.S.H.); Management (S.X.S., A.F., E.B. and D.S.H.); Quality of life (S.X.S. and A.A.G.); Outlook (S.X.S.); Overview of the Primer (S.X.S.).

Corresponding author

Correspondence to Stephen X. Skapek.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skapek, S.X., Ferrari, A., Gupta, A.A. et al. Rhabdomyosarcoma. Nat Rev Dis Primers 5, 1 (2019). https://doi.org/10.1038/s41572-018-0051-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0051-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer