Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polycystic kidney disease

Abstract

Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced ‘dosage’ of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Renal and extrarenal manifestations in polycystic kidney disease.
Fig. 2: Domain organization of proteins implicated in polycystic kidney disease.
Fig. 3: The dosage model of cystogenesis in autosomal dominant polycystic kidney disease.
Fig. 4: Mechanisms of cyst formation and expansion.
Fig. 5: Renal fibrosis in autosomal dominant polycystic kidney disease.
Fig. 6: Hepatobiliary lesions in hepatorenal disease.
Fig. 7: Diagnosis of autosomal dominant polycystic kidney disease using different imaging techniques.
Fig. 8: Diagnosis of autosomal recessive polycystic kidney disease using MRI.

Similar content being viewed by others

References

  1. Bergmann, C. ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr. Nephrol. 30, 15–30 (2015).

    PubMed  Google Scholar 

  2. Torres, V. E., Harris, P. C. & Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1301 (2007).

    PubMed  Google Scholar 

  3. Bergmann, C. & Weiskirchen, R. It’s not all in the cilium, but on the road to it: genetic interaction network in polycystic kidney and liver diseases and how trafficking and quality control matter. J. Hepatol. 56, 1201–1203 (2012).

    CAS  PubMed  Google Scholar 

  4. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dalgaard, O. Z. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med. Scand. Suppl. 328, 1–255 (1957).

    CAS  PubMed  Google Scholar 

  7. Iglesias, C. G. et al. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935–1980. Am. J. Kidney Dis. 2, 630–639 (1983).

    CAS  PubMed  Google Scholar 

  8. Levy, M. & Feingold, J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 58, 925–943 (2000).

    CAS  PubMed  Google Scholar 

  9. Davies, F. et al. Polycystic kidney disease re-evaluated: a population-based study. Q. J. Med. 79, 477–485 (1991).

    CAS  PubMed  Google Scholar 

  10. Simon, P. et al. [Epidemiologic data, clinical and prognostic features of autosomal dominant polycystic kidney disease in a French region]. Nephrologie 17, 123–130 (1996).

    CAS  PubMed  Google Scholar 

  11. Yersin, C. et al. Frequency and impact of autosomal dominant polycystic kidney disease in the Seychelles (Indian Ocean). Nephrol. Dial. Transplant. 12, 2069–2074 (1997).

    CAS  PubMed  Google Scholar 

  12. Higashihara, E. et al. Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan. Nephron 80, 421–427 (1998).

    CAS  PubMed  Google Scholar 

  13. de Almeida, E. et al. Prevalence of autosomal-dominant polycystic kidney disease in Alentejo. Portugal. Kidney Int. 59, 2374 (2001).

    PubMed  Google Scholar 

  14. Neumann, H. P. et al. Epidemiology of autosomal-dominant polycystic kidney disease: an in-depth clinical study for south-western Germany. Nephrol. Dial. Transplant. 28, 1472–1487 (2013).

    CAS  PubMed  Google Scholar 

  15. McGovern, A. P. et al. Identification of people with autosomal dominant polycystic kidney disease using routine data: a cross sectional study. BMC Nephrol. 15, 182 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Willey, C. J. et al. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol. Dial. Transplant. 32, 1356–1363 (2017).

    PubMed  Google Scholar 

  17. Chan, K. W. Adult polycystic kidney disease in Hong Kong Chinese: an autopsy study. Pathology 25, 229–232 (1993).

    CAS  PubMed  Google Scholar 

  18. Cornec-Le Gall, E., Torres, V. E. & Harris, P. C. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J. Am. Soc. Nephrol. 29, 13–23 (2018).

    PubMed  Google Scholar 

  19. Wakai, K. et al. Trends in incidence of end-stage renal disease in Japan, 1983-2000: age-adjusted and age-specific rates by gender and cause. Nephrol. Dial. Transplant. 19, 2044–2052 (2004).

    PubMed  Google Scholar 

  20. The United States Renal Data System (USRDS). USRDS 1999 Annual Data Report (National Institute of Diabetes and Digestive and Kidney Diseases,1999).

  21. Stengel, B. et al. Trends in the incidence of renal replacement therapy for end-stage renal disease in Europe, 1990–1999. Nephrol. Dial. Transplant. 18, 1824–1833 (2003).

    PubMed  Google Scholar 

  22. Parfrey, P. S. et al. The diagnosis and prognosis of autosomal dominant polycystic kidney disease. N. Engl. J. Med. 323, 1085–1090 (1990).

    CAS  PubMed  Google Scholar 

  23. Simon, P. Prognosis of autosomal dominant polycystic kidney disease. Nephron 71, 247–248 (1995).

    CAS  PubMed  Google Scholar 

  24. Spithoven, E. M. et al. Analysis of data from the ERA-EDTA registry indicates that conventional treatments for chronic kidney disease do not reduce the need for renal replacement therapy in autosomal dominant polycystic kidney disease. Kidney Int. 86, 1244–1252 (2014).

    PubMed  Google Scholar 

  25. Shaw, C., Simms, R. J., Pitcher, D. & Sandford, R. Epidemiology of patients in England and Wales with autosomal dominant polycystic kidney disease and end-stage renal failure. Nephrol. Dial. Transplant. 29, 1910–1918 (2014).

    CAS  PubMed  Google Scholar 

  26. Alzarka, B., Morizono, H., Bollman, J. W., Kim, D. & Guay-Woodford, L. M. Design and Implementation of the Hepatorenal Fibrocystic Disease Core Center Clinical Database: a centralized resource for characterizing autosomal recessive polycystic kidney disease and other hepatorenal fibrocystic diseases. Front. Pediatr. 5, 80 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Kääriäinen, H. Polycystic kidney disease in children: a genetic and epidemiological study of 82 Finnish patients. J. Med. Genet. 24, 474–481 (1987).

    PubMed  PubMed Central  Google Scholar 

  28. Bergmann, C. & Zerres, K. Early manifestations of polycystic kidney disease. Lancet 369, 2157 (2007).

    PubMed  Google Scholar 

  29. Guay-Woodford, L. M. & Desmond, R. A. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111, 1072–1080 (2003).

    PubMed  Google Scholar 

  30. Bergmann, C. et al. PKHD1 mutations in families requesting prenatal diagnosis for autosomal recessive polycystic kidney disease (ARPKD). Hum. Mutat. 23, 487–495 (2004).

    CAS  PubMed  Google Scholar 

  31. Gimpel, C. et al. Perinatal diagnosis, management, and follow-up of cystic renal diseases: a clinical practice recommendation with systematic literature reviews. JAMA Pediatr. 172, 74–86 (2018).

    PubMed  Google Scholar 

  32. Bergmann, C. et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 67, 829–848 (2005).

    CAS  PubMed  Google Scholar 

  33. Harris, P. C. & Torres, V. E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease (ADPKD). J. Clin. Invest. 124, 2315–2324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Porath, B. et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 98, 1193–1207 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Besse, W. et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J. Clin. Invest. 127, 3558 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Cornec-Le Gall, E. et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am. J. Hum. Genet. 102, 832–844 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Drenth, J. P., Te Morsche, R. H., Smink, R., Bonifacino, J. S. & Jansen, J. B. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet. 33, 345–347 (2003).

    CAS  PubMed  Google Scholar 

  38. Davila, S. et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat. Genet. 36, 575–577 (2004).

    CAS  PubMed  Google Scholar 

  39. Li, A. et al. Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am. J. Hum. Genet. 72, 691–703 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cnossen, W. R. et al. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis. Proc. Natl Acad. Sci. USA 111, 5343–5348 (2014).

    CAS  PubMed  Google Scholar 

  41. Gunay-Aygun, M. et al. Hepatorenal findings in obligate heterozygotes for autosomal recessive polycystic kidney disease. Mol. Genet. Metab. 104, 677–681 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chapman, A. B. et al. Autosomal dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 88, 17–27 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Bolar, N. A. et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am. J. Hum. Genet. 99, 174–187 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Plaisier, E. et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N. Engl. J. Med. 357, 2687–2695 (2007).

    CAS  PubMed  Google Scholar 

  47. Bergmann, C. Recent advances in the molecular diagnosis of polycystic kidney disease. Expert Rev. Mol. Diagn. 17, 1037–1054 (2017).

    CAS  PubMed  Google Scholar 

  48. Hughes, J. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat. Genet. 10, 151–160 (1995).

    CAS  PubMed  Google Scholar 

  49. Qian, F. et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc. Natl Acad. Sci. USA 99, 16981–16986 (2002).

    CAS  PubMed  Google Scholar 

  50. Kurbegovic, A. et al. Novel functional complexity of polycystin-1 by GPS cleavage in vivo: role in polycystic kidney disease. Mol. Cell. Biol. 34, 3341–3353 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Low, S. H. et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev. Cell 10, 57–69 (2006).

    CAS  PubMed  Google Scholar 

  52. Xu, Y. et al. The polycystin-1, lipoxygenase, and α-toxin domain regulates polycystin-1 trafficking. J. Am. Soc. Nephrol. 27, 1159–1173 (2016).

    CAS  PubMed  Google Scholar 

  53. Tsiokas, L., Kim, E., Arnould, T., Sukhatme, V. P. & Walz, G. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc. Natl Acad. Sci. USA 94, 6965–6970 (1997).

    CAS  PubMed  Google Scholar 

  54. Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grieben, M. et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114–122 (2017).

    CAS  PubMed  Google Scholar 

  56. Qian, F., Watnick, T. J., Onuchic, L. F. & Germino, G. G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979–987 (1996).

    CAS  PubMed  Google Scholar 

  57. Watnick, T. et al. Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat. Genet. 25, 143–144 (2000).

    CAS  PubMed  Google Scholar 

  58. Pei, Y. et al. Somatic PKD2 mutations in individual kidney and liver cysts support a ‘two-hit’ model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 10, 1524–1529 (1999).

    CAS  PubMed  Google Scholar 

  59. Bergmann, C. et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J. Am. Soc. Nephrol. 22, 2047–2056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Happe, H. et al. Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum. Mol. Genet. 18, 2532–2542 (2009).

    CAS  PubMed  Google Scholar 

  61. Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lantinga-van Leeuwen, I. S. et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 13, 3069–3077 (2004).

    CAS  PubMed  Google Scholar 

  63. Hopp, K. et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J. Clin. Invest. 122, 4257–4273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cornec-Le Gall, E. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 24, 1006–1013 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. Leonhard, W. N. et al. Scattered deletion of PKD1 in kidneys causes a cystic snowball effect and recapitulates polycystic kidney disease. J. Am. Soc. Nephrol. 26, 1322–1333 (2015).

    CAS  PubMed  Google Scholar 

  66. Heyer, C. M. et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 27, 2872–2884 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cornec-Le Gall, E. et al. The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 27, 942–951 (2016).

    PubMed  Google Scholar 

  68. Chebib, F. T. et al. Effect of genotype on the severity and volume progression of polycystic liver disease in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 31, 952–960 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Irazabal, M. V. et al. Extended follow-up of unruptured intracranial aneurysms detected by presymptomatic screening in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1274–1285 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. Vujic, M. et al. Incompletely penetrant PKD1 alleles mimic the renal manifestations of ARPKD. J. Am. Soc. Nephrol. 21, 1097–1102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Audrezet, M.-P. et al. Comprehensive PKD1 and PKD2 mutation analysis in prenatal autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 27, 722–729 (2016).

    CAS  PubMed  Google Scholar 

  72. Losekoot, M. et al. Neonatal onset autosomal dominant polycystic kidney disease (ADPKD) in a patient homozygous for a PKD2 missense mutation due to uniparental disomy. J. Med. Genet. 49, 37–40 (2012).

    CAS  PubMed  Google Scholar 

  73. Pei, Y. et al. Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am. J. Hum. Genet. 68, 355–363 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rossetti, S. et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am. J. Hum. Genet. 68, 46–63 (2001).

    CAS  PubMed  Google Scholar 

  75. Iliuta, I. A. et al. Polycystic kidney disease without an apparent family history. J. Am. Soc. Nephrol. 28, 2768–2776 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Persu, A. et al. Comparison between siblings and twins supports a role for modifier genes in ADPKD. Kidney Int. 66, 2132–2136 (2004).

    CAS  PubMed  Google Scholar 

  77. Paterson, A. D. et al. Progressive loss of renal function is an age-dependent heritable trait in type 1 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 16, 755–762 (2005).

    PubMed  Google Scholar 

  78. Fain, P. R. et al. Modifier genes play a significant role in the phenotypic expression of PKD1. Kidney Int. 67, 1256–1267 (2005).

    CAS  PubMed  Google Scholar 

  79. Liu, X.-G. et al. Genetic variation of DKK3 may modify renal disease severity in PKD1. J. Am. Soc. Nephrol. 21, 1510–1520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hogan, M. C. et al. Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 20, 278–288 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Drummond, I. A. Polycystins, focal adhesions and extracellular matrix interactions. Biochim. Biophys. Acta 1812, 1322–1326 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, K., Battini, L. & Gusella, G. L. Cilium, centrosome and cell cycle regulation in polycystic kidney disease. Biochim. Biophys. Acta 1812, 1263–1271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamaguchi, T. et al. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int. 63, 1983–1994 (2003).

    CAS  PubMed  Google Scholar 

  85. Fischer, E. et al. Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 38, 21–23 (2006).

    CAS  PubMed  Google Scholar 

  86. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  87. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Du, J. & Wilson, P. D. Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am. J. Physiol. 269, C487–C495 (1995).

    CAS  PubMed  Google Scholar 

  89. MacRae Dell, K., Nemo, R., Sweeney, W. E. Jr. & Avner, E. D. EGF-related growth factors in the pathogenesis of murine ARPKD. Kidney Int. 65, 2018–2029 (2004).

    PubMed  Google Scholar 

  90. Arnould, T. et al. The polycystic kidney disease 1 gene product mediates protein kinase C α-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1. J. Biol. Chem. 273, 6013–6018 (1998).

    CAS  PubMed  Google Scholar 

  91. Parnell, S. C. et al. The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem. Biophys. Res. Commun. 251, 625–631 (1998).

    CAS  PubMed  Google Scholar 

  92. Bhunia, A. K. et al. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109, 157–168 (2002).

    CAS  PubMed  Google Scholar 

  93. Boca, M. et al. Polycystin-1 induces resistance to apoptosis through the phosphatidylinositol 3-kinase/Akt signaling pathway. J. Am. Soc. Nephrol. 17, 637–647 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011).

    CAS  PubMed  Google Scholar 

  95. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    CAS  PubMed  Google Scholar 

  96. Renken, C., Fischer, D.-C., Kundt, G., Gretz, N. & Haffner, D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant. 26, 92–100 (2011).

    CAS  PubMed  Google Scholar 

  97. Leonhard, W. N. et al. Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model. Am. J. Physiol. Renal Physiol. 300, F1193–F1202 (2011).

    CAS  PubMed  Google Scholar 

  98. Menezes, L. F. et al. Network analysis of a Pkd1-mouse model of autosomal dominant polycystic kidney disease identifies HNF4alpha as a disease modifier. PLOS Genet. 8, e1003053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chiaravalli, M. et al. 2-deoxy-d-glucose ameliorates PKD progression. J. Am. Soc. Nephrol. 27, 1958–1969 (2016).

    CAS  PubMed  Google Scholar 

  100. Riwanto, M. et al. Inhibition of aerobic glycolysis attenuates disease progression in polycystic kidney disease. PLOS ONE 11, e0146654 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Rodriguez, D. et al. Inhibition of sodium-glucose cotransporter 2 with dapagliflozin in han: SPRD rats with polycystic kidney disease. Kidney Blood Press Res. 40, 638–647 (2015).

    CAS  PubMed  Google Scholar 

  102. Menezes, L. F., Lin, C. C., Zhou, F. & Germino, G. G. Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. EBioMedicine 5, 183–192 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee, K., Boctor, S., Barisoni, L. M. C. & Gusella, G. L. Inactivation of integrin-beta1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J. Am. Soc. Nephrol. 26, 888–895 (2015).

    CAS  PubMed  Google Scholar 

  105. Wilson, P. D., Geng, L., Li, X. & Burrow, C. R. The PKD1 gene product, ‘polycystin-1,’ is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest. 79, 1311–1323 (1999).

    CAS  PubMed  Google Scholar 

  106. Silberberg, M., Charron, A. J., Bacallao, R. & Wandinger-Ness, A. Mispolarization of desmosomal proteins and altered intercellular adhesion in autosomal dominant polycystic kidney disease. Am. J. Physiol. Ren. Physiol. 288, F1153–F1163 (2005).

    CAS  Google Scholar 

  107. Castelli, M. et al. Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration. BMC Cell Biol. 16, 15 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Luyten, A. et al. Aberrant regulation of planar cell polarity in polycystic kidney disease. J. Am. Soc. Nephrol. 21, 1521–1532 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kunimoto, K. et al. Disruption of core planar cell polarity signaling regulates renal tubule morphogenesis but is not cystogenic. Curr. Biol. 27, 3120–3131 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Griffin, M. D., Torres, V. E., Grande, J. P. & Kumar, R. Vascular expression of polycystin. J. Am. Soc. Nephrol. 8, 616–626 (1997).

    CAS  PubMed  Google Scholar 

  111. Huang, J. L. et al. Vascular endothelial growth factor C for polycystic kidney diseases. J. Am. Soc. Nephrol. 27, 69–77 (2016).

    CAS  PubMed  Google Scholar 

  112. Outeda, P. et al. Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep. 7, 634–644 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Grantham, J. J., Geiser, J. L. & Evan, A. P. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 31, 1145–1152 (1987).

    CAS  PubMed  Google Scholar 

  114. Liu, D. et al. A Pkd1-Fbn1 genetic interaction implicates TGF-beta signaling in the pathogenesis of vascular complications in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 25, 81–91 (2014).

    CAS  PubMed  Google Scholar 

  115. Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359, 1477–1485 (2008).

    CAS  PubMed  Google Scholar 

  116. Swenson-Fields, K. I. et al. Macrophages promote polycystic kidney disease progression. Kidney Int. 83, 855–864 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ta, M. H., Harris, D. C. & Rangan, G. K. Role of interstitial inflammation in the pathogenesis of polycystic kidney disease. Nephrology (Carlton). 18, 317–330 (2013).

    CAS  PubMed  Google Scholar 

  118. Karihaloo, A. et al. Macrophages promote cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 22, 1809–1814 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen, L. et al. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. J. Clin. Invest. 125, 2399–2412 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Watnick, T. J. et al. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol. Cell 2, 247–251 (1998).

    CAS  PubMed  Google Scholar 

  121. Fedeles, S. V. et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ecder, T. & Schrier, R. W. Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease. Nat. Rev. Nephrol. 5, 221–228 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Belz, M. M. et al. Familial clustering of ruptured intracranial aneurysms in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 38, 770–776 (2001).

    CAS  PubMed  Google Scholar 

  124. Lorthioir, A. et al. Polycystin deficiency induces dopamine-reversible alterations in flow-mediated dilatation and vascular nitric oxide release in humans. Kidney Int. 87, 465–472 (2015).

    CAS  PubMed  Google Scholar 

  125. Sharif-Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596 (2009).

    CAS  PubMed  Google Scholar 

  126. Morel, N. et al. PKD1 haploinsufficiency is associated with altered vascular reactivity and abnormal calcium signaling in the mouse aorta. Pflugers Arch. 457, 845–856 (2009).

    CAS  PubMed  Google Scholar 

  127. Qian, Q. et al. Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum. Mol. Genet. 12, 1875–1880 (2003).

    CAS  PubMed  Google Scholar 

  128. Hassane, S. et al. Pathogenic sequence for dissecting aneurysm formation in a hypomorphic polycystic kidney disease 1 mouse model. Arter. Thromb. Vasc. Biol. 27, 2177–2183 (2007).

    CAS  Google Scholar 

  129. Kim, K., Drummond, I., Ibraghimov-Beskrovnaya, O., Klinger, K. & Arnaout, M. A. Polycystin 1 is required for the structural integrity of blood vessels. Proc. Natl Acad. Sci. USA 97, 1731–1736 (2000).

    CAS  PubMed  Google Scholar 

  130. Boulter, C. et al. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc. Natl Acad. Sci. USA 98, 12174–12179 (2001).

    CAS  PubMed  Google Scholar 

  131. Pennekamp, P. et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 12, 938–943 (2002).

    CAS  PubMed  Google Scholar 

  132. Lu, H. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 49, 1025–1034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ahrabi, A. K. et al. Glomerular and proximal tubule cysts as early manifestations of Pkd1 deletion. Nephrol. Dial. Transplant. 25, 1067–1078 (2010).

    CAS  PubMed  Google Scholar 

  134. Garcia-Gonzalez, M. A. et al. Pkd1 and Pkd2 are required for normal placental development. PLOS ONE 5, e12821 (2010).

    PubMed  PubMed Central  Google Scholar 

  135. Lu, W. et al. Perinatal lethality with kidney and pancreas defects in mice with a targeted Pkd1 mutation. Nat. Genet. 17, 179–181 (1997).

    CAS  PubMed  Google Scholar 

  136. Lu, W. et al. Late onset of renal and hepatic cysts in Pkd1-targeted heterozygotes. Nat. Genet. 21, 160–161 (1999).

    CAS  PubMed  Google Scholar 

  137. Piontek, K. B. et al. A functional floxed allele of Pkd1 that can be conditionally inactivated in vivo. J. Am. Soc. Nephrol. 15, 3035–3043 (2004).

    PubMed  Google Scholar 

  138. Lantinga-van Leeuwen, I. S. et al. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum. Mol. Genet. 16, 3188–3196 (2007).

    CAS  PubMed  Google Scholar 

  139. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    CAS  PubMed  Google Scholar 

  140. Bastos, A. P. et al. Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J. Am. Soc. Nephrol. 20, 2389–2402 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bergmann, C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front. Pediatr. https://doi.org/10.3389/fped.2017.00221 (2018).

  142. Onuchic, L. F. et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin- transcription-factor domains and parallel β-helix 1 repeats. Am. J. Hum. Genet. 70, 1305–1317 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Boddu, R. et al. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1. J. Mol. Med. 92, 1045–1056 (2014).

    CAS  PubMed  Google Scholar 

  144. Ward, C. J. et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 30, 259–269 (2002).

    PubMed  Google Scholar 

  145. Ward, C. J. et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum. Mol. Genet. 12, 2703–2710 (2003).

    CAS  PubMed  Google Scholar 

  146. Follit, J. A., Li, L., Vucica, Y. & Pazour, G. J. The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J. Cell Biol. 188, 21–28 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hiesberger, T. et al. Proteolytic cleavage and nuclear translocation of fibrocystin is regulated by intracellular Ca2+ and activation of protein kinase C. J. Biol. Chem. 281, 34357–34364 (2006).

    CAS  PubMed  Google Scholar 

  148. Kaimori, J. Y. et al. Polyductin undergoes notch-like processing and regulated release from primary cilia. Hum. Mol. Genet. 16, 942–956 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cabezas, O. R. et al. Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in phosphomannomutase 2. J. Am. Soc. Nephrol. 28, 2529–2539 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bergmann, C. et al. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J. Am. Soc. Nephrol. 14, 76–89 (2003).

    CAS  PubMed  Google Scholar 

  151. Menezes, L. F. C. et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int. 66, 1345–1355 (2004).

    CAS  PubMed  Google Scholar 

  152. Zhang, M. Z. et al. PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc. Natl Acad. Sci. USA 101, 2311–2316 (2004).

    CAS  PubMed  Google Scholar 

  153. Wang, S. et al. Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol. Cell. Biol. 27, 3241–3252 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Fischer, D. C. et al. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol. Dial. Transplant. 24, 1819–1827 (2009).

    CAS  PubMed  Google Scholar 

  155. Garcia-Gonzalez, M. A. et al. Genetic interaction studies link autosomal dominant and recessive polycystic kidney disease in a common pathway. Hum. Mol. Genet. 16, 1940–1950 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Lager, D. J., Qian, Q., Bengal, R. J., Ishibashi, M. & Torres, V. E. The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int. 59, 126–136 (2001).

    CAS  PubMed  Google Scholar 

  157. O’Meara, C. C. et al. Role of genetic modifiers in an orthologous rat model of ARPKD. Physiol. Genom. 44, 741–753 (2012).

    Google Scholar 

  158. Reeders, S. T. et al. Prenatal diagnosis of autosomal dominant polycystic kidney disease with a DNA probe. Lancet 328, 6–8 (1986).

    Google Scholar 

  159. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    CAS  PubMed  Google Scholar 

  160. Rule, A. D. et al. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am. J. Kidney Dis. 59, 611–618 (2012).

    PubMed  PubMed Central  Google Scholar 

  161. Pei, Y. et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J. Am. Soc. Nephrol. 20, 205–212 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Belibi, F. A. & Edelstein, C. L. Unified ultrasonographic diagnostic criteria for polycystic kidney disease. J. Am. Soc. Nephrol. 20, 6–8 (2009).

    PubMed  Google Scholar 

  163. Rossetti, S. et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 18, 2143–2160 (2007).

    CAS  PubMed  Google Scholar 

  164. Audrezet, M. P. et al. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum. Mutat. 33, 1239–1250 (2012).

    CAS  PubMed  Google Scholar 

  165. Rossetti, S. et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J. Am. Soc. Nephrol. 23, 915–933 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Trujillano, D. et al. Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing. Mol. Genet. Genom. Med. 2, 412–421 (2014).

    CAS  Google Scholar 

  167. Eisenberger, T. et al. An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney disease. PLOS ONE 10, e0116680 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. Mallawaarachchi, A. C. et al. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. Eur. J. Hum. Genet. 24, 1584–1590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Lanktree, M. B. et al. Prevalence estimates of polycystic kidney and liver disease by population sequencing. J. Am. Soc. Nephrol. 29, 2593–2600 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Rossetti, S. et al. Incompletely penetrant PKD1 alleles associated with mild, homozygous or in utero onset PKD. J. Am. Soc. Nephrol. 18, 848–855 (2009).

    Google Scholar 

  171. Consugar, M. B. et al. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney Int. 74, 1468–1479 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Tan, A. Y. et al. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism. Clin. Genet. 87, 373–377 (2015).

    CAS  PubMed  Google Scholar 

  173. Cnossen, W. R. & Drenth, J. P. Polycystic liver disease: an overview of pathogenesis, clinical manifestations and management. Orphanet J. Rare Dis. 9, 69 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Drenth, J. P. H., Chrispijn, M. & Bergmann, C. Congenital fibrocystic liver diseases. Best Pract. Res. Clin. Gastroenterol. 24, 573–584 (2010).

    CAS  PubMed  Google Scholar 

  175. De Rechter, S. et al. Clinicians’ attitude towards family planning and timing of diagnosis in autosomal dominant polycystic kidney disease. PLOS ONE 12, e0185779 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Massella, L. et al. Prevalence of hypertension in children with early-stage ADPKD. Clin. J. Am. Soc. Nephrol. 13, 874–883 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. Marlais, M. et al. Hypertension in autosomal dominant polycystic kidney disease: a meta-analysis. Arch. Dis. Child 101, 1142–1147 (2016).

    PubMed  Google Scholar 

  178. Irazabal, M. V. et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J. Am. Soc. Nephrol. 26, 160–172 (2015).

    CAS  PubMed  Google Scholar 

  179. Gansevoort, R. T. et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice. Nephrol. Dial Transpl. 31, 337–348 (2016).

    Google Scholar 

  180. Gunay-Aygun, M. et al. Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis: summary statement of a first National Institutes of Health/Office of Rare Diseases conference. J. Pediatr. 149, 159–164 (2006).

    PubMed  PubMed Central  Google Scholar 

  181. Adeva, M. et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore). 85, 1–21 (2006).

    PubMed  Google Scholar 

  182. Dell, K. M. et al. Kidney disease progression in autosomal recessive polycystic kidney disease. J. Pediatr. 171, 196–201 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Guay-Woodford, L. M. et al. Consensus expert recommendations for the diagnosis and management of autosomal recessive polycystic kidney disease: report of an international conference. J. Pediatr. 165, 611–617 (2014).

    PubMed  PubMed Central  Google Scholar 

  184. Fonck, C. et al. Autosomal recessive polycystic kidney disease in adulthood. Nephrol. Dial. Transplant. 16, 1648–1652 (2001).

    CAS  PubMed  Google Scholar 

  185. Avni, F. E. et al. Hereditary polycystic kidney diseases in children: changing sonographic patterns through childhood. Pediatr. Radiol. 32, 169–174 (2002).

    PubMed  Google Scholar 

  186. Bergmann, C. et al. PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum. Mutat. 23, 453–463 (2004).

    CAS  PubMed  Google Scholar 

  187. Consugar, M. B. et al. Haplotype analysis improves molecular diagnostics of autosomal recessive polycystic kidney disease. Am. J. Kidney Dis. 45, 77–87 (2005).

    CAS  PubMed  Google Scholar 

  188. Liu, L., Li, K., Fu, X., Chung, C. & Zhang, K. A. Forward look at noninvasive prenatal testing. Trends Mol. Med. 22, 958–968 (2016).

    PubMed  Google Scholar 

  189. Chervenak, F. A. & McCullough, L. B. Ethical issues in perinatal genetics. Semin. Fetal Neonatal Med. 16, 70–73 (2011).

    PubMed  Google Scholar 

  190. Chebib, F. T. & Torres, V. E. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am. J. Kidney Dis. 67, 792–810 (2016).

    PubMed  Google Scholar 

  191. Dhariwal, M., Rasmussen, M. & Holstein, B. E. Body mass index and smoking: cross-sectional study of a representative sample of adolescents in Denmark. Int. J. Publ. Heal. 55, 307–314 (2010).

    Google Scholar 

  192. Ahrabi, A. K. et al. PKD1 haploinsufficiency causes a syndrome of inappropriate antidiuresis in mice. J. Am. Soc. Nephrol. 18, 1740–1753 (2007).

    CAS  PubMed  Google Scholar 

  193. Boertien, W. E. et al. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am. J. Kidney Dis. 61, 420–429 (2013).

    CAS  PubMed  Google Scholar 

  194. Bankir, L., Bouby, N. & Ritz, E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat. Rev. Nephrol. 9, 223–239 (2013).

    CAS  PubMed  Google Scholar 

  195. Torres, V. E. et al. Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 640–647 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Nowak, K. L. et al. Overweight and obesity are predictors of progression in early autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 29, 571–578 (2018).

    CAS  PubMed  Google Scholar 

  197. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Torres, V. E. et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N. Engl. J. Med. 377, 1930–1942 (2017).

    CAS  PubMed  Google Scholar 

  199. Chebib, F. T. et al. A practical guide for treatment of rapidly progressive ADPKD with tolvaptan. J. Am. Soc. Nephrol. 29, 2458–2470 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Caroli, A. et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 382, 1485–1495 (2013).

    CAS  PubMed  Google Scholar 

  201. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    CAS  PubMed  Google Scholar 

  202. Perico, N. et al. Sirolimus therapy to halt the progression of ADPKD. J. Am. Soc. Nephrol. 21, 1031–1040 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    CAS  PubMed  Google Scholar 

  204. Cadnapaphornchai, M. A. et al. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 9, 889–896 (2014).

    PubMed  PubMed Central  Google Scholar 

  205. Schrier, R. S. et al. Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2255–2266 (2014).

    PubMed  PubMed Central  Google Scholar 

  206. Irazabal, M. V. et al. Prognostic enrichment design in clinical trials for ADPKD: the HALT PKD clinical trial. Nephrol. Dial. Transplant. 32, 1857–1865 (2017).

    CAS  PubMed  Google Scholar 

  207. Torres, V. E. et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2267–2276 (2014).

    PubMed  PubMed Central  Google Scholar 

  208. Tellman, M. W., Bahler, C. D., Shumate, A. M., Bacallao, R. L. & Sundaram, C. P. Management of pain in autosomal dominant polycystic kidney disease and anatomy of renal innervation. J. Urol. 193, 1470–1478 (2015).

    PubMed  Google Scholar 

  209. Casteleijn, N. F. et al. A stepwise approach for effective management of chronic pain in autosomal-dominant polycystic kidney disease. Nephrol. Dial. Transplant. 29(Suppl. 4), iv142–iv153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. de Jager, R. L. et al. Catheter-based renal denervation as therapy for chronic severe kidney-related pain. Nephrol. Dial. Transplant. 33, 614–619 (2017).

    Google Scholar 

  211. Hulme, P. & Wylie, K. Towards evidence based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 1: tranexamic acid in life-threatening haematuria. Emerg. Med. J. 32, 168–169 (2015).

    Google Scholar 

  212. Mallett, A., Patel, M., Tunnicliffe, D. J. & Rangan, G. K. KHA-CARI autosomal dominant polycystic kidney disease guideline: management of renal stone disease. Semin. Nephrol. 35, 603–606 (2015).

    PubMed  Google Scholar 

  213. Yili, L. et al. Flexible ureteroscopy and holmium laser lithotripsy for treatment of upper urinary tract calculi in patients with autosomal dominant polycystic kidney disease. Urol. Res. 40, 87–91 (2012).

    PubMed  Google Scholar 

  214. Jouret, F. et al. Diagnosis of cyst infection in patients with autosomal dominant polycystic kidney disease: attributes and limitations of the current modalities. Nephrol. Dial. Transplant. 27, 3746–3751 (2012).

    CAS  PubMed  Google Scholar 

  215. Lantinga, M. A., Drenth, J. P. & Gevers, T. J. Diagnostic criteria in renal and hepatic cyst infection. Nephrol. Dial. Transplant. 30, 744–751 (2014).

    PubMed  Google Scholar 

  216. Neuville, M., Hustinx, R., Jacques, J., Krzesinski, J. M. & Jouret, F. Diagnostic algorithm in the management of acute febrile abdomen in patients with autosomal dominant polycystic kidney disease. PLOS ONE 11, e0161277 (2016).

    PubMed  PubMed Central  Google Scholar 

  217. Lantinga, M. A. et al. Management of renal cyst infection in patients with autosomal dominant polycystic kidney disease: a systematic review. Nephrol. Dial. Transplant. 32, 144–150 (2017).

    CAS  PubMed  Google Scholar 

  218. Watanabe, K. et al. A case of autosomal dominant polycystic kidney disease with emphysematous polycystic renal infection that required surgical treatment. Intern. Med. https://doi.org/10.2169/internalmedicine.1257-18 (2018).

  219. Karami, S. et al. Risk of renal cell carcinoma among kidney transplant recipients in the United States. Am. J. Transplant. 16, 3479–3489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Keith, D. S., Torres, V. E., King, B. F., Zincki, H. & Farrow, G. M. Renal cell carcinoma in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 4, 1661–1669 (1994).

    CAS  PubMed  Google Scholar 

  221. Xu, L. et al. Percutaneous radiofrequency ablation with contrast-enhanced ultrasonography for solitary and sporadic renal cell carcinoma in patients with autosomal dominant polycystic kidney disease. World J. Surg. Oncol. 14, 193 (2016).

    PubMed  PubMed Central  Google Scholar 

  222. Spithoven, E. M. et al. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival-an analysis of data from the ERA-EDTA Registry. Nephrol. Dial. Transplant. 29, 15–25 (2014).

    Google Scholar 

  223. Jung, Y. et al. Volume regression of native polycystic kidneys after renal transplantation. Nephrol. Dial. Transplant. 31, 73–79 (2015).

    PubMed  PubMed Central  Google Scholar 

  224. Neeff, H. P. et al. One hundred consecutive kidney transplantations with simultaneous ipsilateral nephrectomy in patients with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 28, 466–471 (2013).

    PubMed  Google Scholar 

  225. Courivaud, C. et al. Polycystic kidney size and outcomes on peritoneal dialysis: comparison with haemodialysis. Clin. Kidney J. 7, 138–143 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Perrone, R. D., Ruthazer, R. & Terrin, N. C. Survival after end-stage renal disease in autosomal dominant polycystic kidney disease: contribution of extrarenal complications to mortality. Am. J. Kidney Dis. 38, 777–784 (2001).

    CAS  PubMed  Google Scholar 

  227. Hogan, M. C. et al. Liver involvement in early autosomal-dominant polycystic kidney disease. Clin. Gastroenterol. Hepatol. 13, 155–164 (2015).

    PubMed  Google Scholar 

  228. Drenth, J. P., Chrispijn, M., Nagorney, D. M., Kamath, P. S. & Torres, V. E. Medical and surgical treatment options for polycystic liver disease. Hepatology 52, 2223–2230 (2010).

    PubMed  Google Scholar 

  229. Chebib, F. T. et al. Outcomes and durability of hepatic reduction after combined partial hepatectomy and cyst fenestration for massive polycystic liver disease. J. Am. Coll. Surg. 223, 118–126 (2016).

    PubMed  PubMed Central  Google Scholar 

  230. Hoshino, J. et al. Intravascular embolization therapy in patients with enlarged polycystic liver. Am. J. Kidney Dis. 63, 937–944 (2014).

    PubMed  Google Scholar 

  231. Yang, J. et al. Comparison of volume-reductive therapies for massive polycystic liver disease in autosomal dominant polycystic kidney disease. Hepatol. Res. 46, 183–191 (2016).

    PubMed  Google Scholar 

  232. van Keimpema, L., de Man, R. A. & Drenth, J. P. Somatostatin analogues reduce liver volume in polycystic liver disease. Gut 57, 1338–1339 (2008).

    PubMed  Google Scholar 

  233. Caroli, A. et al. Reducing polycystic liver volume in ADPKD: effects of somatostatin analogue octreotide. Clin. J. Am. Soc. Nephrol. 5, 783–789 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Hogan, M. C. et al. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J. Am. Soc. Nephrol. 21, 1052–1061 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Hogan, M. C. et al. Efficacy of 4 years of octreotide long-acting release therapy in patients with severe polycystic liver disease. Mayo Clin. Proc. 90, 1030–1037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Gevers, T. J. et al. Young women with polycystic liver disease respond best to somatostatin analogues: a pooled analysis of individual patient data. Gastroenterology 145, 352–357 (2013).

    Google Scholar 

  237. Ishikawa, I. et al. High incidence of common bile duct dilatation in autosomal dominant polycystic kidney disease patients. Am. J. Kidney Dis. 27, 321–326 (1996).

    CAS  PubMed  Google Scholar 

  238. Pirson, Y., Chauveau, D. & Torres, V. Management of cerebral aneurysms in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 13, 269–276 (2002).

    PubMed  Google Scholar 

  239. Brown, R. D. & Torner, J. Unruptured intracranial aneurysms: some questions answered, many questions remain. Re: Pelz D. CURES and the dilemma of unruptured intracranial aneurysms. Can J Neuro Sci. 2011 Mar;38(2):191-2. Can. J. Neurol. Sci. 38, 785–787 (2011).

    PubMed  Google Scholar 

  240. Rozenfeld, M. N. et al. Autosomal dominant polycystic kidney disease and intracranial aneurysms: is there an increased risk of treatment? AJNR Am. J. Neuroradiol 37, 290–293 (2016).

    CAS  PubMed  Google Scholar 

  241. Flahault, A. et al. Screening for intracranial aneurysms in autosomal dominant polycystic kidney disease is cost-effective. Kidney Int. 93, 716–726 (2018).

    PubMed  Google Scholar 

  242. Jiang, T. et al. A follow-up study of autosomal dominant polycystic kidney disease with intracranial aneurysms using 3.0 T three-dimensional time-of-flight magnetic resonance angiography. Eur. J. Radiol 82, 1840–1845 (2013).

    PubMed  Google Scholar 

  243. Ring, T. & Spiegelhalter, D. Risk of intracranial aneurysm bleeding in autosomal-dominant polycystic kidney disease. Kidney Int. 72, 1400–1402 (2007).

    CAS  PubMed  Google Scholar 

  244. Xu, H. W., Yu, S. Q., Mei, C. L. & Li, M. H. Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke 42, 204–206 (2011).

    CAS  PubMed  Google Scholar 

  245. Flahault, A. et al. Screening for unruptured intracranial aneurysms in autosomal dominant polycystic kidney disease: a survey of 420 nephrologists. PLOS ONE 11, e0153176 (2016).

    PubMed  PubMed Central  Google Scholar 

  246. Hartung, E. A. & Guay-Woodford, L. M. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics 134, e833–e845 (2014).

    PubMed  PubMed Central  Google Scholar 

  247. Lilova, M., Kaplan, B. S. & Meyers, K. E. C. Recombinant human growth hormone therapy in autosomal recessive polycystic kidney disease. Pediatr. Nephrol. 18, 57–61 (2003).

    PubMed  Google Scholar 

  248. Becker, T. et al. Paediatric kidney transplantation in small children— a single centre experience. Transpl. Int. 19, 197–202 (2006).

    PubMed  Google Scholar 

  249. Davis, I. D., Ho, M., Hupertz, V. & Avner, E. D. Survival of childhood polycystic kidney disease following renal transplantation: the impact of advanced hepatobiliary disease. Pediatr. Transplant. 7, 364–369 (2003).

    PubMed  Google Scholar 

  250. Srinath, A. & Shneider, B. L. Congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. J. Pediatr. Gastroenterol. Nutr. 54, 580–587 (2012).

    PubMed  PubMed Central  Google Scholar 

  251. Chapal, M. et al. Kidney and liver transplantation in patients with autosomal recessive polycystic kidney disease: a multicentric study. Nephrol. Dial. Transplant. 27, 2083–2088 (2012).

    PubMed  Google Scholar 

  252. Telega, G., Cronin, D. & Avner, E. D. New approaches to the autosomal recessive polycystic kidney disease patient with dual kidney-liver complications. Pediatr. Transplant. 17, 328–335 (2013).

    PubMed  PubMed Central  Google Scholar 

  253. Brinkert, F. et al. Combined liver-kidney transplantation for children with autosomal recessive polycystic kidney disease (ARPKD): indication and outcome. Transpl. Int. 26, 640–650 (2013).

    CAS  PubMed  Google Scholar 

  254. Patrick, D. L. & Erickson, P. Health Status and Health Policy: Quality of Life in Health Care Evaluation and Resource Allocation (Oxford Univ. Press Inc., 1993).

  255. Eriksson, D. et al. Health-related quality of life across all stages of autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 32, 2106–2111 (2017).

    PubMed  Google Scholar 

  256. Miskulin, D. C. et al. Health-related quality of life in patients with autosomal dominant polycystic kidney disease and CKD stages 1-4: a cross-sectional study. Am. J. Kidney Dis. 63, 214–226 (2014).

    PubMed  Google Scholar 

  257. Simms, R. J., Thong, K. M., Dworschak, G. C. & Ong, A. C. Increased psychosocial risk, depression and reduced quality of life living with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 31, 1130–1140 (2016).

    PubMed  Google Scholar 

  258. Mujais, S. K. et al. Health-related quality of life in CKD patients: correlates and evolution over time. Clin. J. Am. Soc. Nephrol. 4, 1293–1301 (2009).

    PubMed  PubMed Central  Google Scholar 

  259. Rizk, D. et al. Quality of life in autosomal dominant polycystic kidney disease patients not yet on dialysis. Clin. J. Am. Soc. Nephrol. 4, 560–566 (2009).

    PubMed  PubMed Central  Google Scholar 

  260. Oberdhan, D. et al. Development of the autosomal dominant polycystic kidney disease impact scale: a new health-related quality-of-life instrument. Am. J. Kidney Dis. 71, 225–235 (2018).

    PubMed  Google Scholar 

  261. Tong, A. et al. A painful inheritance-patient perspectives on living with polycystic kidney disease: thematic synthesis of qualitative research. Nephrol. Dial. Transplant. 30, 790–800 (2015).

    CAS  PubMed  Google Scholar 

  262. Gainullin, V. G., Hopp, K., Ward, C. J., Hommerding, C. J. & Harris, P. C. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J. Clin. Invest. 125, 607–620 (2015).

    PubMed  PubMed Central  Google Scholar 

  263. Kim, H. et al. Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat. Commun. 5, 5482 (2014).

    PubMed  PubMed Central  Google Scholar 

  264. Tan, A. Y. et al. Somatic mutations in renal cyst epithelium in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 29, 2139–2156 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA 100, 5286–5291 (2003).

    CAS  PubMed  Google Scholar 

  266. Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Gen. 43, 776–784 (2011).

    CAS  Google Scholar 

  267. Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2012).

    CAS  Google Scholar 

  268. Kim, S. et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat. Cell Biol. 18, 752–764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. DeCaen, P. G., Delling, M., Vien, T. N. & Clapham, D. E. Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504, 315–318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Mick, D. U. et al. Proteomics of primary cilia by proximity labeling. Dev. Cell 35, 497–512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Yuan, S., Zhao, L., Brueckner, M. & Sun, Z. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr. Biol. 25, 556–567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Moser, M. et al. A mouse model for cystic biliary dysgenesis in autosomal recessive polycystic kidney disease (ARPKD). Hepatology 41, 1113–1121 (2005).

    CAS  PubMed  Google Scholar 

  273. Bakeberg, J. L. et al. Epitope-tagged Pkhd1 tracks the processing, secretion, and localization of fibrocystin. J. Am. Soc. Nephrol. 22, 2266–2277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Galarreta, C. I. et al. Tubular obstruction leads to progressive proximal tubular injury and atubular glomeruli in polycystic kidney disease. Am. J. Pathol. 184, 1957–1966 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Wood, C. R. & Rosenbaum, J. L. Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol. 25, 276–285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Chauvet, V. et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J. Clin. Invest. 114, 1433–1443 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Tran, P. V. et al. Downregulating hedgehog signaling reduces renal cystogenic potential of mouse models. J. Am. Soc. Nephrol. 25, 2201–2212 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Kline, T. L. et al. Image texture features predict renal function decline in patients with autosomal dominant polycystic kidney disease. Kidney Int. 92, 1206–1216 (2017).

    PubMed  PubMed Central  Google Scholar 

  279. Hogan, M. C. et al. Identification of biomarkers for PKD1 using urinary exosomes. J. Am. Soc. Nephrol. 26, 1661–1670 (2015).

    CAS  PubMed  Google Scholar 

  280. Pejchinovski, M. et al. Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol. Dial. Transplant. 32, 487–497 (2016).

    Google Scholar 

  281. Shillingford, J. M., Leamon, C. P., Vlahov, I. R. & Weimbs, T. Folate-conjugated rapamycin slows progression of polycystic kidney disease. J. Am. Soc. Nephrol. 23, 1674–1681 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Warner, G. et al. Food restriction ameliorates the development of polycystic kidney disease. J. Am. Soc. Nephrol. 27, 1437–1447 (2015).

    PubMed  PubMed Central  Google Scholar 

  283. Hopp, K. et al. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J. Am. Soc. Nephrol. 26, 39–47 (2014).

    PubMed  PubMed Central  Google Scholar 

  284. Masyuk, T. V., Masyuk, A. I. & La Russo, N. F. Therapeutic targets in polycystic liver disease. Curr. Drug Targets 18, 950–957 (2015).

    Google Scholar 

  285. Wainwright, C. E. et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

    CAS  PubMed  Google Scholar 

  287. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).

    CAS  PubMed  Google Scholar 

  288. Fedeles, S. V. et al. Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity. J. Clin. Invest. 125, 1955–1967 (2015).

    PubMed  PubMed Central  Google Scholar 

  289. Nagel-Wolfrum, K., Moller, F., Penner, I., Baasov, T. & Wolfrum, U. Targeting nonsense mutations in diseases with translational read-through-inducing drugs (TRIDs). BioDrugs 30, 49–74 (2016).

    CAS  PubMed  Google Scholar 

  290. Wojtal, D. et al. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am. J. Hum. Genet. 98, 90–101 (2016).

    CAS  PubMed  Google Scholar 

  291. Huang, E. et al. DNA testing for live kidney donors at risk for autosomal dominant polycystic kidney disease. Transplantation 87, 133–137 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Harris, P. C. & Rossetti, S. Molecular diagnostics for autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 6, 197–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Chebib, F. T., Sussman, C. R., Wang, X., Harris, P. C. & Torres, V. E. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat. Rev. Nephrol. 11, 451–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Ong, A. C. M. & Harris, P. C. A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int. 88, 699–710 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Streets, A. J., Wessely, O., Peters, D. J. & Ong, A. C. Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. Hum. Mol. Genet. 22, 1924–1939 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Kim, I. et al. Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J. Am. Soc. Nephrol. 19, 455–468 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4, 191–197 (2002).

    CAS  PubMed  Google Scholar 

  298. Hartung, E. A. & Guay-Woodford, L. M. Polycystic kidney disease: DZIP1L defines a new functional zip code for autosomal recessive PKD. Nat. Rev. Nephrol. 13, 519–520 (2017).

    CAS  PubMed  Google Scholar 

  299. Song, C. J., Zimmerman, K. A., Henke, S. J. & Yoder, B. K. Inflammation and fibrosis in polycystic kidney disease. Results Probl. Cell Differ. 60, 323–344 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Qian, Q., Harris, P. C. & Torres, V. E. Treatment prospects for autosomal-dominant polycystic kidney disease. Kidney Int. 59, 2005–2022 (2001).

    CAS  PubMed  Google Scholar 

  301. Brancatelli, G. et al. Fibropolycystic liver disease: CT and MR imaging findings. RadioGraphics 25, 659–670 (2005).

    PubMed  Google Scholar 

  302. Ho, T. A. et al. Autosomal dominant polycystic kidney disease is associated with central and nephrogenic defects in osmoregulation. Kidney Int. 82, 1121–1129 (2012).

    CAS  PubMed  Google Scholar 

  303. O’Brien, K. et al. Congenital hepatic fibrosis and portal hypertension in autosomal dominant polycystic kidney disease. J. Pediatr. Gastroenterol. Nutr. 54, 83–89 (2012).

    PubMed  Google Scholar 

  304. Luciano, R. L. & Dahl, N. K. Extra-renal manifestations of autosomal dominant polycystic kidney disease (ADPKD): considerations for routine screening and management. Nephrol. Dial. Transplant. 29, 247–254 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

C.B. receives research support for his laboratory from the Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 and the Federal Ministry of Education and Research (BMBF, 01GM1515C). L.M.G.-W. is supported by US National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) funding of the University of Alabama–Birmingham Hepato-Renal Fibrocystic Disease Core Center (DK074038). D.J.M.P. receives financial support from the Dutch Kidney Foundation and the Netherlands Organisation for Scientific Research. S.H. is supported by the Japan Society for the Promotion of Science KAKENHI grant number JP15K10632. P.C.H. and V.E.T. are supported by NIDDK funding of the Mayo Translational Polycystic Kidney Disease Center (DK090728). The authors thank J. Smith, T. Kline and M. Edwards (all at the Mayo Clinic, MN, USA) for their assistance with figures 1 and 7.

Reviewer information

Nature Reviews Disease Primers thanks J. Calvet and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.B.); Epidemiology (S.H.); Mechanisms/pathophysiology (D.J.M.P. and L.M.G.-W.); Diagnosis, screening and prevention (P.C.H. and C.B.); Management (V.E.T.); Quality of life (S.H.); Outlook (P.C.H.); Overview of Primer (C.B.).

Corresponding author

Correspondence to Carsten Bergmann.

Ethics declarations

Competing interests

C.B. is an employee of Bioscientia/Sonic Healthcare and holds a part-time faculty appointment at the University of Freiburg, Germany.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ADPKD Mutation Database (PKDB): http://pkdb.mayo.edu/

Genome aggregation database (gnomAD): http://gnomad.broadinstitute.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, C., Guay-Woodford, L.M., Harris, P.C. et al. Polycystic kidney disease. Nat Rev Dis Primers 4, 50 (2018). https://doi.org/10.1038/s41572-018-0047-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0047-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing