Primer | Published:

Schistosomiasis

Nature Reviews Disease Primersvolume 4, Article number: 13 (2018) | Download Citation

Abstract

Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms (blood flukes) of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia and, particularly, in sub-Saharan Africa. Infective larvae grow in an intermediate host (fresh-water snails) before penetrating the skin of the definitive human host. Mature adult worms reside in the mesenteric (Schistosoma mansoni and Schistosoma japonicum) or pelvic (Schistosoma haematobium) veins, where female worms lay eggs, which are secreted in stool or urine. Eggs trapped in the surrounding tissues and organs, such as the liver and bladder, cause inflammatory immune responses (including granulomas) that result in intestinal, hepato-splenic or urogenital disease. Diagnosis requires the detection of eggs in excreta or worm antigens in the serum, and sensitive, rapid, point-of-care tests for populations living in endemic areas are needed. The anti-schistosomal drug praziquantel is safe and efficacious against adult worms of all the six Schistosoma spp. infecting humans; however, it does not prevent reinfection and the emergence of drug resistance is a concern. Schistosomiasis elimination will require a multifaceted approach, including: treatment; snail control; information, education and communication; improved water, sanitation and hygiene; accurate diagnostics; and surveillance-response systems that are readily tailored to social-ecological settings.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Jordan, P. From Katayama to the Dakhla Oasis: the beginning of epidemiology and control of bilharzia. Acta Trop. 77, 9–40 (2000).

  2. 2.

    Ross, A. G. et al. Schistosomiasis. N. Engl. J. Med. 346, 1212–1220 (2002). This review article describes the latest updates at the turn of the new millennium with an emphasis on the pathophysiology, diagnosis, genomics, host infection susceptibility, epidemiology, treatment, control and vaccine development for human schistosomiasis.

  3. 3.

    Gryseels, B., Polman, K., Clerinx, J. & Kestens, L. Human schistosomiasis. Lancet 368, 1106–1118 (2006).

  4. 4.

    Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. Human schistosomiasis. Lancet 383, 2253–2264 (2014). This authoritative review pertains to all aspects of human schistosomiasis, including diagnosis, epidemiology, immunology, mapping and surveillance, pathogenesis, morbidity and comorbidities, treatment and control and elimination.

  5. 5.

    World Health Organization. Schistosomiasis (WHO, 2017).

  6. 6.

    Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6, 411–425 (2006). This highly cited paper presents global estimates of people at risk of schistosomiasis, number of people infected and evidence of changing risk patterns due to water resource developments, specifically the construction and management of large dams and irrigation systems.

  7. 7.

    McCreesh, N., Nikulin, G. & Booth, M. Predicting the effects of climate change on Schistosoma mansoni transmission in eastern Africa. Parasit. Vectors 8, 4 (2015).

  8. 8.

    Zhou, X.-N. et al. Potential impact of climate change on schistosomiasis transmission in China. Am. J. Trop. Med. Hyg. 78, 188–194 (2008).

  9. 9.

    Ross, A. G., Vickers, D., Olds, G. R., Shah, S. M. & McManus, D. P. Katayama syndrome. Lancet Infect. Dis. 7, 218–224 (2007).

  10. 10.

    Olveda, D. U. et al. The chronic enteropathogenic disease schistosomiasis. Int. J. Infect. Dis. 28, 193–203 (2014).

  11. 11.

    Hatz, C. F. The use of ultrasound in schistosomiasis. Adv. Parasitol. 48, 225–284 (2001).

  12. 12.

    van der Werf, M. J. et al. Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop. 86, 125–139 (2003). This paper reviews and quantifies clinical morbidity due to S. haematobium and S. mansoni and puts forward annual mortality estimates of schistosomiasis in excess of 200,000 in Africa alone.

  13. 13.

    King, C. H. Parasites and poverty: the case of schistosomiasis. Acta Trop. 113, 95–104 (2010).

  14. 14.

    Secor, W. E. The effects of schistosomiasis on HIV/AIDS infection, progression and transmission. Curr. Opin. HIV AIDS 7, 254–259 (2012).

  15. 15.

    Kjetland, E. F. et al. Genital schistosomiasis and its unacknowledged role on HIV transmission in the STD intervention studies. Int. J. STD AIDS 25, 705–715 (2014).

  16. 16.

    Rollinson, D. et al. Time to set the agenda for schistosomiasis elimination. Acta Trop. 128, 423–440 (2013). This paper reviews schistosomiasis control and elimination efforts in different parts of the world and puts forward a schistosomiasis elimination agenda.

  17. 17.

    Boissier, J. et al. Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. Lancet Infect. Dis. 16, 971–979 (2016). The study describes the epidemiology of an outbreak of urogenital schistosomiasis in Corsica, France, showing that the causative parasite (that is, S. haematobium) was imported by individuals infected in West Africa, that suitable intermediate hosts were present to close the life cycle and that hybridization between S. haematobium and the cattle schistosome Schistosoma bovis had a putative role in this outbreak. The study recommends future monitoring to offset the potential risk of schistosomiasis outbreaks elsewhere in Europe.

  18. 18.

    Kurup, R. & Hunjan, G. S. Epidemiology and control of schistosomiasis and other intestinal parasitic infections among school children in three rural villages of south Saint Lucia. J. Vector Borne Dis. 47, 228–234 (2010).

  19. 19.

    Tchuem Tchuenté, L.-A., Southgate, V. R., Jourdane, J., Webster, B. L. & Vercruysse, J. Schistosoma intercalatum: an endangered species in Cameroon? Trends Parasitol. 19, 389–393 (2003).

  20. 20.

    Ekpo, U. F. et al. Mapping and prediction of schistosomiasis in Nigeria using compiled survey data and Bayesian geospatial modelling. Geospat. Health 7, 355 (2013).

  21. 21.

    Muth, S. et al. Schistosoma mekongi in Cambodia and Lao People’s Democratic Republic. Adv. Parasitol. 72, 179–203 (2010).

  22. 22.

    Zhou, X.-N. et al. Schistosomiasis japonica control and research needs. Adv. Parasitol. 72, 145–178 (2010).

  23. 23.

    Latif, B., Heo, C. C., Razuin, R., Shamalaa, D. V. & Tappe, D. Autochthonous human schistosomiasis, Malaysia. Emerg. Infect. Dis. 19, 1340–1341 (2013).

  24. 24.

    Greer, G. J., Ow-Yang, C. K. & Yong, H.-S. Schistosoma malayensis n. sp.: a Schistosoma japonicum-complex schistosome from Peninsular Malaysia. J. Parasitol. 74, 471 (1988).

  25. 25.

    Utzinger, J. et al. Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136, 1859 (2009).

  26. 26.

    Hotez, P. J. et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 8, e2865 (2014).

  27. 27.

    Lai, Y.-S. et al. Spatial distribution of schistosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis. Lancet Infect. Dis. 15, 927–940 (2015). This systematic review and geostatistical meta-analysis describes the use of advanced Bayesian-based geostatistical modelling to produce high-resolution risk estimates of infection with Schistosoma spp. in sub-Saharan Africa. Additionally, through the use of gridded population estimates, the authors determined the annualized numbers of doses of praziquantel treatment needed to prevent morbidity in sub-Saharan Africa countries for spatial targeting of schistosomiasis control interventions.

  28. 28.

    Walz, Y., Wegmann, M., Dech, S., Raso, G. & Utzinger, J. Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook. Parasit. Vectors 8, 163 (2015).

  29. 29.

    Simoonga, C. et al. Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa. Parasitology 136, 1683–1693 (2009).

  30. 30.

    Schur, N., Vounatsou, P. & Utzinger, J. Determining treatment needs at different spatial scales using geostatistical model-based risk estimates of schistosomiasis. PLoS Negl. Trop. Dis. 6, e1773 (2012).

  31. 31.

    Grimes, J. E. T. et al. The relationship between water, sanitation and schistosomiasis: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 8, e3296 (2014).

  32. 32.

    GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1260–1344 (2017).

  33. 33.

    WHO Expert Committee on the Control of Schistosomiasis. Prevention and control of schistosomiasis and soil-transmitted helminthiasis: WHO Technical Report Series N°912, (WHO, 2002).

  34. 34.

    Utzinger, J. & Keiser, J. Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opin. Pharmacother. 5, 263–285 (2004).

  35. 35.

    World Health Organization. The World Health Report 2004 – changing history (WHO, 2004).

  36. 36.

    King, C. H., Dickman, K. & Tisch, D. J. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365, 1561–1569 (2005).This systematic review of data on disability-associated outcomes for all forms of schistosomiasis shows that the disease is significantly associated with anaemia, chronic pain, diarrhoea, exercise intolerance and undernutrition, suggesting that the disability burden previously assigned to schistosomiasis by the WHO is an underestimate and indicating a need to reassess priorities for treating this silent pandemic.

  37. 37.

    Gillespie, S. H. & Pearson, R. D. Principles and Practice of Clinical Parasitology (John Wiley & Sons, Ltd, 2001).

  38. 38.

    Ross, A. G. P. et al. Schistosomiasis in the People’s Republic of China: prospects and challenges for the 21st century. Clin. Microbiol. Rev. 14, 270–295 (2001).

  39. 39.

    Ishii, A., Tsuji, M. & Tada, I. History of Katayama disease: schistosomiasis japonica in Katayama district, Hiroshima, Japan. Parasitol. Int. 52, 313–319 (2003).

  40. 40.

    Clerinx, J. & Van Gompel, A. Schistosomiasis in travellers and migrants. Travel Med. Infect. Dis. 9, 6–24 (2011).

  41. 41.

    King, C. L. et al. B cell sensitization to helminthic infection develops in utero in humans. J. Immunol. 160, 3578–3584 (1998).

  42. 42.

    Sanin, D. E., Prendergast, C. T., Bourke, C. D. & Mountford, A. P. Helminth infection and commensal microbiota drive early IL-10 production in the skin by CD4+ T cells that are functionally suppressive. PLoS Pathog. 11, e1004841 (2015). This study reports the use of a murine model of repeated infection with S. mansoni larvae, showing that the site of infection in the skin becomes rich in regulatory IL-10, whereas in its absence, inflammation, neutrophil recruitment and local lymphocyte proliferation are increased, and suggests how tolerance and pathogen clearance are co-regulated early after exposure to an infectious agent.

  43. 43.

    Wu, X.-H. et al. Effect of floods on the transmission of schistosomiasis in the Yangtze River valley, People’s Republic of China. Parasitol. Int. 57, 271–276 (2008).

  44. 44.

    Colley, D. G. & Secor, W. E. Immunology of human schistosomiasis. Parasite Immunol. 36, 347–357 (2014). This paper comprehensively summarizes the range of immunological studies that have been carried out on immunopathogenesis mechanisms, resistance to reinfection and diagnostics in experimental and human schistosomiasis.

  45. 45.

    Wilkins, H. A., Goll, P. H., de Marshall, C. T. F. & Moore, P. J. Dynamics of Schistosoma haematobium infection in a Gambian community. III. Acquisition and loss of infection. Trans. R. Soc. Trop. Med. Hyg. 78, 227–232 (1984).

  46. 46.

    Fitzsimmons, C. M. et al. Progressive cross-reactivity in IgE responses: an explanation for the slow development of human immunity to schistosomiasis? Infect. Immun. 80, 4264–4270 (2012). This important study provides a possible explanation of why individuals in S. mansoni -endemic areas slowly acquire immunity to schistosomiasis over many years.

  47. 47.

    Barron, L. & Wynn, T. A. Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur. J. Immunol. 41, 2509–2514 (2011).

  48. 48.

    Chen, X. et al. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog. 10, e1004097 (2014).

  49. 49.

    Cook, P. C. et al. A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells. Nat. Commun. 6, 6920 (2015).

  50. 50.

    Chen, M. Assessment of morbidity due to Schistosoma japonicum infection in China. Infect. Dis. Poverty 3, 6 (2014).

  51. 51.

    Lambertucci, J. R., Voieta, I. & Barbosa, A. J. A. Colonic polyps in hepatosplenic schistosomiasis mansoni. Rev. Soc. Bras. Med. Trop. 38, 80–81 (2005).

  52. 52.

    Vennervald, B. J. et al. Detailed clinical and ultrasound examination of children and adolescents in a Schistosoma mansoni endemic area in Kenya: hepatosplenic disease in the absence of portal fibrosis. Trop. Med. Int. Health 9, 461–470 (2004).

  53. 53.

    Wilson, S., Vennervald, B. J. & Dunne, D. W. Chronic hepatosplenomegaly in African school children: a common but neglected morbidity associated with schistosomiasis and malaria. PLOS Negl. Trop. Dis. 5, e1149 (2011).

  54. 54.

    Wilson, S. et al. Health implications of chronic hepatosplenomegaly in Kenyan school-aged children chronically exposed to malarial infections and Schistosoma mansoni. Trans. R. Soc. Trop. Med. Hyg. 104, 110–116 (2010).

  55. 55.

    Gray, D. J., Ross, A. G., Li, Y.-S. & McManus, D. P. Diagnosis and management of schistosomiasis. BMJ 342, d2651 (2011).

  56. 56.

    Lambertucci, J. R., Voieta, I. & Resende, V. Mild, moderate and intense Symmers’s fibrosis in hepatosplenic schistosomiasis mansoni. Rev. Soc. Bras. Med. Trop. 42, 611–612.

  57. 57.

    Randrianasolo, B. S. et al. Gynecological manifestations, histopathological findings, and schistosoma-specific polymerase chain reaction results among women with Schistosoma haematobium infection: a cross-sectional study in Madagascar. J. Infect. Dis. 212, 275–284 (2015).

  58. 58.

    Ghoneim, M. A. Bilharziasis of the genitourinary tract. BJU Int. 89, 22–30 (2002).

  59. 59.

    Burki, A. et al. Comparison of ultrasonography, intravenous pyelography and cystoscopy in detection of urinary tract lesions due to Schistosoma haematobium. Acta Trop. 43, 139–151 (1986).

  60. 60.

    Hatz, C. et al. Measurement of schistosomiasis-related morbidity at community level in areas of different endemicity. Bull. World Health Organ. 68, 777–787 (1990).

  61. 61.

    Kayange, N. M. et al. Kidney disease among children in sub-Saharan Africa: systematic review. Pediatr. Res. 77, 272–281 (2014).

  62. 62.

    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 100, 1–441 (2012).

  63. 63.

    Vennervald, B. J. & Polman, K. Helminths and malignancy. Parasite Immunol. 31, 686–696 (2009).

  64. 64.

    Leutscher, P. et al. Schistosoma haematobium induced lesions in the female genital tract in a village in Madagascar. Acta Trop. 66, 27–33 (1997).

  65. 65.

    Leutscher, P. et al. Community-based study of genital schistosomiasis in men from Madagascar. Lancet 355, 117–118 (2000).

  66. 66.

    Kjetland, E. F. et al. Classification of the lesions observed in female genital schistosomiasis. Int. J. Gynecol. Obstet. 127, 227–228 (2014).

  67. 67.

    Leutscher, P. D. C. et al. Increased prevalence of leukocytes and elevated cytokine levels in semen from Schistosoma haematobium–infected individuals. J. Infect. Dis. 191, 1639–1647 (2005).

  68. 68.

    Midzi, N., Mduluza, T., Mudenge, B., Foldager, L. & Leutscher, P. D. C. Decrease in seminal HIV-1 RNA load after praziquantel treatment of urogenital schistosomiasis coinfection in HIV-Positive men-an observational study. Open Forum Infect. Dis. 4, ofx199 (2017).

  69. 69.

    Booth, M. et al. Hepatosplenic morbidity in two neighbouring communities in Uganda with high levels of Schistosoma mansoni infection but very different durations of residence. Trans. R. Soc. Trop. Med. Hyg. 98, 125–136 (2004).

  70. 70.

    Strauss, E. Hepatosplenic schistosomiasis: a model for the study of portal hypertension. Ann. Hepatol. 1, 6–11 (2002).

  71. 71.

    Ganapathi, L. & Somers, M. A. Child with gross hematuria. N. Engl. J. Med. 373, e11 (2015).

  72. 72.

    Ismail, H. et al. Prevalence, risk factors, and clinical manifestations of schistosomiasis among school children in the White Nile River basin, Sudan. Parasit. Vectors 7, 478 (2014).

  73. 73.

    Wagatsuma, Y. et al. Resolution and resurgence of Schistosoma haematobium-induced pathology after community-based chemotherapy in Ghana, as detected by ultrasound. J. Infect. Dis. 179, 1515–1522 (1999).

  74. 74.

    Hegertun, I. E. A. et al. S. haematobium as a common cause of genital morbidity in girls: a cross-sectional study of children in South Africa. PLoS Negl. Trop. Dis. 7, e2104 (2013).

  75. 75.

    van Delft, F., Visser, L., Polderman, A. & van Lieshout, L. Cough and alterations in semen after a tropical swim. Neth. J. Med. 65, 304–306 (2007).

  76. 76.

    Kjetland, E. F. et al. Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS 20, 593–600 (2006).

  77. 77.

    Ferrari, T. C. A. & Moreira, P. R. R. Neuroschistosomiasis: clinical symptoms and pathogenesis. Lancet Neurol. 10, 853–864 (2011).

  78. 78.

    Ross, A. G. et al. Neuroschistosomiasis. J. Neurol. 259, 22–32 (2011).

  79. 79.

    Vale, T. C., de Sousa-Pereira, S. R., Ribas, J. G. R. & Lambertucci, J. R. Neuroschistosomiasis mansoni: literature review and guidelines. Neurologist 18, 333–342 (2012).

  80. 80.

    Graham, B. B., Bandeira, A. P., Morrell, N. W., Butrous, G. & Tuder, R. M. Schistosomiasis-associated pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137, 20S–29S (2010).

  81. 81.

    Weerakoon, K. G., Gobert, G. N., Cai, P. & McManus, D. P. Advances in the diagnosis of human schistosomiasis. Clin. Microbiol. Rev. 28, 939–967 (2015). This authoritative review considers some of the earlier approaches in the search for new diagnostics for schistosomiasis but emphasizes the more-recent developments that have practical applications in the laboratory, the clinic and the field.

  82. 82.

    Coltart, C. E. et al. Schistosomiasis presenting in travellers: a 15 year observational study at the Hospital for Tropical Diseases, London. Trans. R. Soc. Trop. Med. Hyg. 109, 214–220 (2015).

  83. 83.

    Checkley, A. M. et al. Eosinophilia in returning travellers and migrants from the tropics: UK recommendations for investigation and initial management. J. Infect. 60, 1–20 (2010).

  84. 84.

    Katz, N., Chaves, A. & Pellegrino, J. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev. Inst. Med. Trop. Sao Paulo 14, 397–400.

  85. 85.

    Feldmeier, H., Doehring, E. & Daffalla, A. A. Simultaneous use of a sensitive filtration technique and reagent strips in urinary schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 76, 416–421 (1982).

  86. 86.

    Feldmeier, H. & Poggensee, G. Diagnostic techniques in schistosomiasis control. A review. Acta Trop. 52, 205–220 (1993).

  87. 87.

    Utzinger, J., Becker, S. L., van Lieshout, L., van Dam, G. J. & Knopp, S. New diagnostic tools in schistosomiasis. Clin. Microbiol. Infect. 21, 529–542 (2015). This comprehensive review of past, current and potential future diagnostic tools for schistosomiasis emphasizes target product profiles that are required for different stages of control and elimination efforts.

  88. 88.

    Polman, K., Deelder, A. M., Fathers, L., Gryseels, B. & Engels, D. Day-to-day fluctuation of schistosome circulating antigen levels in serum and urine of humans infected with Schistosoma mansoni in Burundi. Am. J. Trop. Med. Hyg. 59, 150–154 (1998).

  89. 89.

    Doehring, E., Feldmeier, H. & Daffalla, A. A. Day-to-day variation and circadian rhythm of egg excretion in urinary schistosomiasis in the Sudan. Ann. Trop. Med. Parasitol. 77, 587–594 (1983).

  90. 90.

    Fritzsche, C. et al. Confocal laser scanning microscopy, a new in vivo diagnostic tool for schistosomiasis. PLoS ONE 7, e34869 (2012).

  91. 91.

    Deelder, A. M., Kornelis, D., Van Marck, E. A. E., Eveleigh, P. C. & Van Egmond, J. G. Schistosoma mansoni: characterization of two circulating polysaccharide antigens and the immunological response to these antigens in mouse, hamster, and human infections. Exp. Parasitol. 50, 16–32 (1980).

  92. 92.

    van Dam, G. J. et al. A robust dry reagent lateral flow assay for diagnosis of active schistosomiasis by detection of Schistosoma circulating anodic antigen. Exp. Parasitol. 135, 274–282 (2013).

  93. 93.

    van Dam, G. J., Bogitsh, B. J., van Zeyl, R. J. M., Rotmans, J. P. & Deelder, A. M. Schistosoma mansoni: in vitro and in vivo excretion of CAA and CCA by developing schistosomula and adult worms. J. Parasitol. 82, 557 (1996).

  94. 94.

    Van Lieshout, L. et al. Analysis of worm burden variation in human Schistosoma mansoni infections by determination of serum levels of circulating anodic antigen and circulating cathodic antigen. J. Infect. Dis. 172, 1336–1342 (1995).

  95. 95.

    van Lieshout, L., Polderman, A. M., Visser, L. G., Verwey, J. J. & Deelder, A. M. Detection of the circulating antigens CAA and CCA in a group of Dutch travellers with acute schistosomiasis. Trop. Med. Int. Health 2, 551–557 (1997).

  96. 96.

    Ochodo, E. A. et al. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas. Cochrane Database Syst. Rev. 3, CD009579 https://doi.org/10.1002/14651858.cd009579.pub2 (2015). This systematic review shows that microhaematuria correctly detected the largest proportions of infections and non-infections identified by microscopy for S. haematobium infections, whereas the POC-CCA urine cassette test for S. mansoni detected a high proportion of infections identified by microscopy but misclassified a large number of microscopy negatives as positives in endemic areas with a moderate to high prevalence of infection.

  97. 97.

    Grenfell, R. F. Q. et al. Innovative methodology for point-of-care circulating cathodic antigen with rapid urine concentration for use in the field for detecting low Schistosoma mansoni infection and for control of cure with high accuracy. Trans. R. Soc. Trop. Med. Hyg. 112, 1–7 (2018).

  98. 98.

    Meurs, L. et al. Is PCR the next reference standard for the diagnosis of Schistosoma in stool? A comparison with microscopy in Senegal and Kenya. PLoS Negl. Trop. Dis. 9, e0003959 (2015).

  99. 99.

    Obeng, B. B. et al. Application of a circulating-cathodic-antigen (CCA) strip test and real-time PCR, in comparison with microscopy, for the detection of Schistosoma haematobiumin urine samples from Ghana. Ann. Trop. Med. Parasitol. 102, 625–633 (2008).

  100. 100.

    He, P. et al. Real-time PCR diagnosis of Schistosoma japonicum in low transmission areas of China. Infect. Dis. Poverty 7, 8 (2018).

  101. 101.

    Härter, G. et al. Diagnosis of neuroschistosomiasis by antibody specificity index and semi-quantitative real-time PCR from cerebrospinal fluid and serum. J. Med. Microbiol. 63, 309–312 (2014).

  102. 102.

    Cnops, L., Tannich, E., Polman, K., Clerinx, J. & Van Esbroeck, M. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants. Trop. Med. Int. Health 17, 1208–1216 (2012).

  103. 103.

    Whitty, C. J. M., Mabey, D. C., Armstrong, M., Wright, S. G. & Chiodini, P. L. Presentation and outcome of 1107 cases of schistosomiasis from Africa diagnosed in a non-endemic country. Trans. R. Soc. Trop. Med. Hyg. 94, 531–534 (2000).

  104. 104.

    Doenhoff, M. J., Chiodini, P. L. & Hamilton, J. V. Specific and sensitive diagnosis of schistosome infection: can it be done with antibodies? Trends Parasitol. 20, 35–39 (2004).

  105. 105.

    Nausch, N. et al. Field evaluation of a new antibody-based diagnostic for Schistosoma haematobium and S. mansoni at the point-of-care in northeast Zimbabwe. BMC Infect. Dis. 14, 165 (2014).

  106. 106.

    Cai, Y.-C. et al. Field comparison of circulating antibody assays versus circulating antigen assays for the detection of schistosomiasis japonica in endemic areas of China. Parasit. Vectors 7, 138 (2014).

  107. 107.

    Barata, C. H., Pinto-Silva, R. A. & Lambertucci, J. R. Abdominal ultrasound in acute schistosomiasis mansoni. Br. J. Radiol. 72, 949–952 (1999).

  108. 108.

    Akpata, R. et al. The WHO ultrasonography protocol for assessing morbidity due to Schistosoma haematobium. Acceptance and evolution over 14 years. Syst. Rev. Parasitol. Res. 114, 1279–1289 (2015).

  109. 109.

    Chigusa, Y. et al. Effects of repeated praziquantel treatment on schistosomiasis mekongi morbidity as detected by ultrasonography. Parasitol. Int. 55, 261–265 (2006).

  110. 110.

    World Health Organization. Ultrasound in schistosomiasis: a practical guide to the standard use of ultrasonography for assessment of schistosomiasis-related morbidity (WHO, 2016).

  111. 111.

    Chofle, A. A. et al. Oesophageal varices, schistosomiasis, and mortality among patients admitted with haematemesis in Mwanza, Tanzania: a prospective cohort study. BMC Infect. Dis. 14, 303 (2014).

  112. 112.

    Ahmed, F. O., Hamdan, H. Z., Abdelgalil, H. B. & Sharfi, A. A. A comparison between transabdominal ultrasonographic and cystourethroscopy findings in adult Sudanese patients presenting with haematuria. Int. Urol. Nephrol. 47, 223–228 (2014).

  113. 113.

    Henriques-Souza, A. M. & Valença, M. M. Schistosomal myelopathy in childhood: findings of magnetic resonance imaging in 26 patients. Pediatr. Neurol. 45, 373–376 (2011).

  114. 114.

    Norseth, H. M. et al. The colposcopic atlas of schistosomiasis in the lower female genital tract based on studies in Malawi, Zimbabwe, Madagascar and South Africa. PLoS Negl. Trop. Dis. 8, e3229 (2014).

  115. 115.

    Ramarokoto, C. E. et al. Eosinophil granule proteins ECP and EPX as markers for a potential early-stage inflammatory lesion in female genital schistosomiasis (FGS). PLoS Negl. Trop. Dis. 8, e2974 (2014).

  116. 116.

    Shiff, C., Naples, J. M., Isharwal, S., Bosompem, K. M. & Veltri, R. W. Non-invasive methods to detect schistosome-based bladder cancer: is the association sufficient for epidemiological use? Trans. R. Soc. Trop. Med. Hyg. 104, 3–5 (2010).

  117. 117.

    King, C. H. & Bertsch, D. Meta-analysis of urine heme dipstick diagnosis of Schistosoma haematobium infection, including low-prevalence and previously-treated populations. PLoS Negl. Trop. Dis. 7, e2431 (2013).

  118. 118.

    Kittur, N., Castleman, J. D., Campbell, C. H., King, C. H. & Colley, D. G. Comparison of Schistosoma mansoni prevalence and intensity of infection, as determined by the circulating cathodic antigen urine assay or by the Kato-Katz fecal assay: a systematic review. Am. J. Trop. Med. Hyg. 94, 605–610 (2016).

  119. 119.

    Sturrock, R. F., Karamsadkar, S. J. & Ouma, J. Schistosome infection rates in field snails: Schistosoma mansoni in Biomphalaria pfeifferi from Kenya. Ann. Trop. Med. Parasitol. 73, 369–375 (1979).

  120. 120.

    Hamburger, J. et al. Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories. Am. J. Trop. Med. Hyg. 88, 344–351 (2013).

  121. 121.

    Tong, Q.-B. et al. A new surveillance and response tool: risk map of infected Oncomelania hupensis detected by loop-mediated isothermal amplification (LAMP) from pooled samples. Acta Trop. 141, 170–177 (2015).

  122. 122.

    Grimes, J. E. T. et al. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review. Parasit. Vectors 8, 156 (2015).

  123. 123.

    Olsen, A., Kinung’hi, S. & Magnussen, P. Schistosoma mansoni infection along the coast of Lake Victoria in Mwanza region, Tanzania. Am. J. Trop. Med. Hyg. 92, 1240–1244 (2015).

  124. 124.

    Wang, L.-D. et al. China’s new strategy to block Schistosoma japonicum transmission: experiences and impact beyond schistosomiasis. Trop. Med. Int. Health 14, 1475–1483 (2009).

  125. 125.

    Mo, A. X., Gordon, L., Hall, B. F., Walson, J. L. & Agosti, J. M. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals. Am. J. Trop. Med. Hyg. 90, 54–60 (2014). This paper describes the outcomes of a 2013 meeting co-sponsored by the National Institute of Allergy and Infectious Diseases and the Bill & Melinda Gates Foundation and concludes that an integrated, multifaceted approach involving chemotherapy; water, sanitation and hygiene (WASH); snail control; vaccines and other innovative tools will be necessary to have a permanent effect on schistosomiasis.

  126. 126.

    Mo, A. X. & Colley, D. G. Workshop report: schistosomiasis vaccine clinical development and product characteristics. Vaccine 34, 995–1001 (2016).

  127. 127.

    Doenhoff, M. J., Cioli, D. & Utzinger, J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 21, 659–667 (2008).

  128. 128.

    Knopp, S., Becker, S. L., Ingram, K. J., Keiser, J. & Utzinger, J. Diagnosis and treatment of schistosomiasis in children in the era of intensified control. Expert Rev. Anti. Infect. Ther. 11, 1237–1258 (2013).

  129. 129.

    Stothard, J. R., Sousa-Figueiredo, J. C. & Navaratnam, A. M. D. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev. Anti. Infect. Ther. 11, 733–752 (2013).

  130. 130.

    Friedman, J. F., Olveda, R. M., Mirochnick, M. H., Bustinduy, A. L. & Elliott, A. M. Praziquantel for the treatment of schistosomiasis during human pregnancy. Bull. World Health Organization 96, 59–65 (2018).

  131. 131.

    Fenwick, A. Praziquantel: do we need another antischistosoma treatment? Future Med. Chem. 7, 677–680 (2015).

  132. 132.

    Zwang, J. & Olliaro, P. L. Clinical efficacy and tolerability of praziquantel for intestinal and urinary schistosomiasis—a meta-analysis of comparative and non-comparative clinical trials. PLoS Negl. Trop. Dis. 8, e3286 (2014).

  133. 133.

    World Health Organization. Preventive chemotherapy in human helminthiasis – coordinated use of anthelminthic drugs in control interventions (WHO, 2006).

  134. 134.

    Ross, A. G. P., Olveda, R. M. & Li, Y. An audacious goal: the elimination of schistosomiasis in our lifetime through mass drug administration. Lancet 385, 2220–2221 (2015).

  135. 135.

    Bustinduy, A. L. et al. Population pharmacokinetics and pharmacodynamics of praziquantel in Ugandan children with intestinal schistosomiasis: higher dosages are required for maximal efficacy. MBio 7, e00227–00216 (2016).

  136. 136.

    Montresor, A. et al. Development and validation of a ‘tablet pole’ for the administration of praziquantel in sub-Saharan Africa. Trans. R. Soc. Trop. Med. Hyg. 95, 542–544 (2001).

  137. 137.

    Sousa-Figueiredo, J. C., Betson, M. & Stothard, J. R. Treatment of schistosomiasis in African infants and preschool-aged children: downward extension and biometric optimization of the current praziquantel dose pole. Int. Health 4, 95–102 (2012).

  138. 138.

    Sousa-Figueiredo, J. C. et al. Performance and safety of praziquantel for treatment of intestinal schistosomiasis in infants and preschool children. PLoS Negl. Trop. Dis. 6, e1864 (2012).

  139. 139.

    World Health Organization. Preventive chemotherapy in human helminthiasis: coordinated use of anthelminthic drugs in control interventions: a manual for health professionals and programme managers. (WHO, 2006).

  140. 140.

    Patel, T. A., Bailey, R. L., Lukawska, J. & Rowe, J. Treatment of schistosomiasis in a patient allergic to praziquantel: a desensitization and treatment protocol. Am. J. Trop. Med. Hyg. 95, 1041–1043 (2016).

  141. 141.

    Fong, G. C. & Cheung, R. T. Caution with praziquantel in neurocysticercosis. Stroke 28, 1648–1649 (1997).

  142. 142.

    Braae, U. et al. Taenia solium taeniosis/cysticercosis and the co-distribution with schistosomiasis in Africa. Parasit. Vectors 8, 323 (2015).

  143. 143.

    Gray, D. J. et al. Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect. Dis. 10, 733–736 (2010). This personal view argues that current praziquantel-based schistosomiasis control programmes are not effective or sustainable in the long term, whereas multifaceted, integrated control options would have a greater and longer lasting effect in reducing morbidity and on disease transmission.

  144. 144.

    Crellen, T. et al. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis. 63, ciw506 (2016).

  145. 145.

    Pica-Mattoccia, L. et al. Genetic analysis of decreased praziquantel sensitivity in a laboratory strain of Schistosoma mansoni. Acta Trop. 111, 82–85 (2009).

  146. 146.

    Messerli, S. M., Kasinathan, R. S., Morgan, W., Spranger, S. & Greenberg, R. M. Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility. Mol. Biochem. Parasitol. 167, 54–59 (2009).

  147. 147.

    Wang, W., Wang, L. & Liang, Y.-S. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol. Res. 111, 1871–1877 (2012).

  148. 148.

    McManus, D. P. et al. Schistosomiasis in the People’s Republic of China: the era of the Three Gorges dam. Clin. Microbiol. Rev. 23, 442–466 (2010).

  149. 149.

    Yang, J. et al. Design, synthesis and biological evaluation of praziquantel and endoperoxide conjugates as antischistosomal agents. Future Med. Chem. 7, 713–725 (2015).

  150. 150.

    Almeida, G. T. et al. Synergy of omeprazole and praziquantel in vitro treatment against Schistosoma mansoni adult worms. PLoS Negl. Trop. Dis. 9, e0004086 (2015).

  151. 151.

    Barda, B. et al. Efficacy and safety of moxidectin, synriam, synriam-praziquantel versus praziquantel against Schistosoma haematobium and S. mansoni infections: a randomized, exploratory phase 2 trial. PLoS Negl. Trop. Dis. 10, e0005008 (2016).

  152. 152.

    Cupit, P. M. & Cunningham, C. What is the mechanism of action of praziquantel and how might resistance strike? Future Med. Chem. 7, 701–705 (2015). This paper discusses current thinking regarding the mechanism of action of praziquantel and the potential for widespread drug resistance.

  153. 153.

    Stothard, J. R., Sousa-Figueiredo, J. C., Betson, M., Bustinduy, A. & Reinhard-Rupp, J. Schistosomiasis in African infants and preschool children: let them now be treated! Trends Parasitol. 29, 197–205 (2013).

  154. 154.

    Bustinduy, A. L. et al. Expanding praziquantel (PZQ) access beyond mass drug administration programs: paving a way forward for a pediatric PZQ formulation for schistosomiasis. PLoS Negl. Trop. Dis. 10, e0004946 (2016).

  155. 155.

    Xiao, S. H., Binggui, S., Chollet, J., Utzinger, J. & Tanner, M. Tegumental alterations in juvenile Schistosoma haematobium harboured in hamsters following artemether treatment. Parasitol. Int. 50, 175–183 (2001).

  156. 156.

    Saeed, M. E. M., Krishna, S., Greten, H. J., Kremsner, P. G. & Efferth, T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol. Res. 110, 216–226 (2016).

  157. 157.

    Xiao, S. H. Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop. 96, 153–167 (2005).

  158. 158.

    Utzinger, J. et al. Oral artemether for prevention of Schistosoma mansoni infection: randomised controlled trial. Lancet 355, 1320–1325 (2000).

  159. 159.

    Pérez del Villar, L., Burguillo, F. J., López-Abán, J. & Muro, A. Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis. PLoS ONE 7, e45867 (2012).

  160. 160.

    Hou, X. Y. et al. A randomized, double-blind, placebo-controlled trial of safety and efficacy of combined praziquantel and artemether treatment for acute schistosomiasis japonica in China. Bull. World Health Organ. 86, 788–795 (2008).

  161. 161.

    Obonyo, C. O., Muok, E. M. O. & Mwinzi, P. N. Efficacy of artesunate with sulfalene plus pyrimethamine versus praziquantel for treatment of Schistosoma mansoni in Kenyan children: an open-label randomised controlled trial. Lancet Infect. Dis. 10, 603–611 (2010).

  162. 162.

    Keiser, J. et al. Praziquantel, mefloquine-praziquantel, and mefloquine-artesunate-praziquantel against Schistosoma haematobium: a randomized, exploratory, open-label trial. PLoS Negl. Trop. Dis. 8, e2975 (2014).

  163. 163.

    Utzinger, J., Tanner, M. & Keiser, J. ACTs for schistosomiasis: do they act? Lancet Infect. Dis. 10, 579–581 (2010).

  164. 164.

    Carod-Artal, F. J. Neuroschistosomiasis. Expert Rev. Anti. Infect. Ther. 8, 1307–1318 (2010).

  165. 165.

    Leite, L. A. C. et al. Splenectomy improves hemostatic and liver functions in hepatosplenic schistosomiasis mansoni. PLoS ONE 10, e0135370 (2015).

  166. 166.

    Richter, J. et al. Severe liver fibrosis caused by Schistosoma mansoni: management and treatment with a transjugular intrahepatic portosystemic shunt. Lancet Infect. Dis. 15, 731–737 (2015).

  167. 167.

    Bergquist, R., Johansen, M. V. & Utzinger, J. Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol. 25, 151–156 (2009).

  168. 168.

    Bärenbold, O. et al. Estimating sensitivity of the Kato-Katz technique for the diagnosis of Schistosoma mansoni and hookworm in relation to infection intensity. PLoS Negl. Trop. Dis. 11, e0005953 (2017).

  169. 169.

    Stothard, J. R. et al. Schistosoma mansoni infections in young children: when are schistosome antigens in urine, eggs in stool and antibodies to eggs first detectable? PLoS Negl. Trop. Dis. 5, e938 (2011).

  170. 170.

    Chami, G. F. et al. Influence of Schistosoma mansoni and hookworm infection intensities on anaemia in Ugandan villages. PLoS Negl. Trop. Dis. 9, e0004193 (2015).

  171. 171.

    Olveda, D. U. et al. Bilharzia in the Philippines: past, present, and future. Int. J. Infect. Dis. 18, 52–56 (2014).

  172. 172.

    World Health Organization. The world health report 1999 – making a difference (WHO, 2013).

  173. 173.

    Hotez, P. J. & Fenwick, A. Schistosomiasis in Africa: an emerging tragedy in our new global health decade. PLoS Negl. Trop. Dis. 3, e485 (2009).

  174. 174.

    World Health Organization. Schistosomiasis: progress report 2001–2011, strategic plan 2012–2020 (WHO, 2013).

  175. 175.

    Secor, W. E. Early lessons from schistosomiasis mass drug administration programs. F1000Res. 4 (2015).

  176. 176.

    Mutapi, F., Maizels, R., Fenwick, A. & Woolhouse, M. Human schistosomiasis in the post mass drug administration era. Lancet Infect. Dis. 17, e42–e48 (2017). This paper considers the potential consequences of the current extensive MDA programmes for schistosomiasis, which, although curing infection, could have profound effects in the future on schistosome biology, immunoepidemiology and public health.

  177. 177.

    Colley, D. G. & Secor, W. E. A. Schistosomiasis research agenda. PLoS Negl. Trop. Dis. 1, e32 (2007).

  178. 178.

    Riveau, G. et al. Safety and immunogenicity of rSh28GST antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl. Trop. Dis. 6, e1704 (2012).

  179. 179.

    Bergquist, R. & McManus, D. P. in Schistosoma: biology, pathology, and control (ed. Jamieson, B.G.M.) 462–478 (CRC Press,2016).

  180. 180.

    McManus, D. P. & Loukas, A. Current status of vaccines for schistosomiasis. Clin. Microbiol. Rev. 21, 225–242 (2008).

  181. 181.

    Tebeje, B. M., Harvie, M., You, H., Loukas, A. & McManus, D. P. Schistosomiasis vaccines: where do we stand? Parasit. Vectors 9, 528 (2016).

  182. 182.

    Alsallaq, R. A., Gurarie, D., Ndeffo Mbah, M., Galvani, A. & King, C. Quantitative assessment of the impact of partially protective anti-schistosomiasis vaccines. PLoS Negl. Trop. Dis. 11, e0005544 (2017).

  183. 183.

    Sokolow, S. H. et al. Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proc. Natl Acad. Sci. USA 112, 9650–9655 (2015).

  184. 184.

    Marques, D. P. & de, A. et al. Reduced susceptibility of a Biomphalaria tenagophila population to Schistosoma mansoni after introducing the resistant Taim/RS strain of B. tenagophila into Herivelton Martins stream. PLoS ONE 9, e99573 (2014).

  185. 185.

    Sokolow, S. H. et al. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl. Trop. Dis. 10, e0004794 (2016).

  186. 186.

    Trainor-Moss, S. & Mutapi, F. Schistosomiasis therapeutics: whats in the pipeline? Expert Rev. Clin. Pharmacol. 9, 157–160 (2015).

  187. 187.

    Cioli, D., Pica-Mattoccia, L., Basso, A. & Guidi, A. Schistosomiasis control: praziquantel forever? Mol. Biochem. Parasitol. 195, 23–29 (2014).

  188. 188.

    Schistosoma japonicum Genome Sequencing & Functional Analysis Consortium. et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345–351 (2009). This paper presents a draft genomic sequence for S. japonicum, along with S. mansoni, the first reported for any flatworm, and provides a unique resource for facilitating the development of new control interventions against schistosomiasis.

  189. 189.

    Berriman, M. et al. The genome of the blood fluke Schistosoma mansoni. Nature 460, 352–358 (2009). This study describes the sequence and analysis of the S. mansoni genome and identifies targets to accelerate drug discovery, leading to new treatments for the control and elimination of schistosomiasis.

  190. 190.

    Young, N. D. et al. Whole-genome sequence of Schistosoma haematobium. Nat. Genet. 44, 221–225 (2012). This article describes the genome of S. haematobium, providing new insights for studying parasite development, host–parasite interactions and schistosome-associated bladder cancer, and offers a resource for the design and development of new anti-schistosomal drugs, vaccines and diagnostic tools.

  191. 191.

    Cowan, N. & Keiser, J. Repurposing of anticancer drugs: in vitro and in vivo activities against Schistosoma mansoni. Parasit. Vectors 8, 417 (2015).

  192. 192.

    Gouveia, M., Brindley, P., Gärtner, F., Costa, J. & Vale, N. Drug repurposing for schistosomiasis: combinations of drugs or biomolecules. Pharmaceuticals 11, 15 (2018).

  193. 193.

    Mansour, N. R. et al. High throughput screening identifies novel lead compounds with activity against larval, juvenile and adult Schistosoma mansoni. PLoS Negl. Trop. Dis. 10, e0004659 (2016).

  194. 194.

    Mafud, A. C., Ferreira, L. G., Mascarenhas, Y. P., Andricopulo, A. D. & de Moraes, J. Discovery of novel antischistosomal agents by molecular modeling approaches. Trends Parasitol. 32, 874–886 (2016).

  195. 195.

    Lee, E. F., Young, N. D., Lim, N. T. Y., Gasser, R. B. & Fairlie, W. D. Apoptosis in schistosomes: toward novel targets for the treatment of schistosomiasis. Trends Parasitol. 30, 75–84 (2014).

  196. 196.

    Lee, E. F. & Fairlie, W. D. Repurposing apoptosis-inducing cancer drugs to treat schistosomiasis. Future Med. Chem. 7, 707–711 (2015).

  197. 197.

    Cabezas-Cruz, A., Lancelot, J., Caby, S., Oliveira, G. & Pierce, R. J. Epigenetic control of gene function in schistosomes: a source of therapeutic targets? Front. Genet. 5, 317 (2014).

  198. 198.

    Hess, J., Keiser, J. & Gasser, G. Toward organometallic antischistosomal drug candidates. Future Med. Chem. 7, 821–830 (2015).

  199. 199.

    Wangchuk, P., Giacomin, P. R., Pearson, M. S., Smout, M. J. & Loukas, A. Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms. Sci. Rep. 6, 32101 (2016).

  200. 200.

    Julé, A. M., Vaillant, M., Lang, T. A., Guérin, P. J. & Olliaro, P. L. The schistosomiasis clinical trials landscape: a systematic review of antischistosomal treatment efficacy studies and a case for sharing individual participant-level data (IPD). PLoS Negl. Trop. Dis. 10, e0004784 (2016).

  201. 201.

    Aagaard-Hansen, J., Nombela, N. & Alvar, J. Population movement: a key factor in the epidemiology of neglected tropical diseases. Trop. Med. Int. Health 15, 1281–1288 (2010).

  202. 202.

    Gnanasekar, M., Salunkhe, A. M., Mallia, A. K., He, Y. X. & Kalyanasundaram, R. Praziquantel affects the regulatory myosin light chain of Schistosoma mansoni. Antimicrob. Agents Chemother. 53, 1054–1060 (2008).

  203. 203.

    Angelucci, F. et al. The anti-schistosomal drug praziquantel is an adenosine antagonist. Parasitology 134, 1215 (2007).

  204. 204.

    Thomas, C. M., Fitzsimmons, C. M., Dunne, D. W. & Timson, D. J. Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: differences in ion and drug binding properties. Biochimie 108, 40–47 (2015).

  205. 205.

    Taylor, A. B. et al. Structural and functional characterization of the enantiomers of the antischistosomal drug oxamniquine. PLoS Negl. Trop. Dis. 9, e0004132 (2015).

  206. 206.

    Rojo-Arreola, L. et al. Chemical and genetic validation of the statin drug target to treat the helminth disease, schistosomiasis. PLoS ONE 9, e87594 (2014).

  207. 207.

    Buro, C. et al. Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects. PLoS Negl. Trop. Dis. 8, e2923 (2014).

  208. 208.

    Anderson, L. et al. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni. PLoS Negl. Trop. Dis. 11, e0005539 (2017).

  209. 209.

    Lancelot, J. et al. Schistosome sirtuins as drug targets. Future Med. Chem. 7, 765–782 (2015).

  210. 210.

    Ishida, K. & Jolly, E. R. Hsp70 may be a molecular regulator of schistosome host invasion. PLoS Negl. Trop. Dis. 10, e0004986 (2016).

  211. 211.

    Johann, L. et al. Synthesis and evaluation of 1,4-naphthoquinone ether derivatives asSmTGR inhibitors and new anti-schistosomal drugs. FEBS J. 282, 3199–3217 (2015).

  212. 212.

    Fajtová, P. et al. Prolyl oligopeptidase from the blood fluke Schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl. Trop. Dis. 9, e0003827 (2015).

  213. 213.

    Cabezas-Cruz, A., Valdés, J. J., Lancelot, J. & Pierce, R. J. Fast evolutionary rates associated with functional loss in class I glucose transporters of Schistosoma mansoni. BMC Genomics 16, 980 (2015).

  214. 214.

    Chan, J. D. et al. A miniaturized screen of a Schistosoma mansoni serotonergic G protein-coupled receptor identifies novel classes of parasite-selective inhibitors. PLoS Pathog. 12, e1005651 (2016).

  215. 215.

    Bais, S. & Greenberg, R. M. TRP channels in schistosomes. Int. J. Parasitol. Drugs Drug Resist. 6, 335–342 (2016).

  216. 216.

    Sundaraneedi, M. K. et al. Polypyridylruthenium(II) complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases. PLoS Negl. Trop. Dis. 11, e0006134 (2017).

  217. 217.

    Chuah, C., Jones, M. K., Burke, M. L., McManus, D. P. & Gobert, G. N. Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology. Trends Parasitol. 30, 141–150 (2014).

  218. 218.

    Harder, A. & Mehlhorn, H. in Treatment of Human Parasitosis in Traditional Chinese Medicine. (eds Mehlhorn, H., Wu, Z. & Ye, B.) 79–115 (Springer, 2014).

Download references

Reviewer information

Nature Reviews Disease Primers thanks P. M. Z. Coelho, J. Friedman, N. Midzi, E. Secor and the other anonymous referee(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia

    • Donald P. McManus
  2. Department of Pathology, University of Cambridge, Cambridge, UK

    • David W. Dunne
  3. Department of Diagnostic and Biomedical Research, Institut National de Recherche en Santé Publique, Bamako, Mali

    • Moussa Sacko
  4. Swiss Tropical and Public Health Institute, Basel, Switzerland

    • Jürg Utzinger
  5. University of Basel, Basel, Switzerland

    • Jürg Utzinger
  6. Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark

    • Birgitte J. Vennervald
  7. National Institute of Parasitic Diseases, Shanghai, People’s Republic of China

    • Xiao-Nong Zhou

Authors

  1. Search for Donald P. McManus in:

  2. Search for David W. Dunne in:

  3. Search for Moussa Sacko in:

  4. Search for Jürg Utzinger in:

  5. Search for Birgitte J. Vennervald in:

  6. Search for Xiao-Nong Zhou in:

Contributions

Introduction (D.P.M. and J.U.); Epidemiology (X.-N.Z. and J.U.); Mechanisms/pathophysiology (B.J.V., D.W.D. and M.S.); Diagnosis, screening and prevention (B.J.V., M.S., D.W.D. and D.P.M.); Management (D.P.M.); Quality of life (J.U.); Outlook (D.P.M. and B.J.V.); Overview of Primer (D.P.M.).

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Donald P. McManus.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41572-018-0013-8