Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach

Abstract

Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.

Key points

  • Ovarian cancer is an immunogenic malignancy, although the trials of immune-checkpoint inhibitors (ICIs) performed thus far have had modest response rates.

  • Triplet combinations of PARP inhibitors, anti-angiogenic agents and ICIs hold promise as a treatment option regardless of BRCA1/2 status; however, further studies are needed to define the optimal treatment schedule and account for the potentially higher risk of toxicities.

  • Adoptive cell therapies using T cells are feasible and have therapeutic potential in patients with ovarian cancer.

  • Novel combinations modulating the tumour myeloid compartment could be effective as salvage therapies for patients with immune-excluded or immune-deserted tumours as well as those resistant to ICIs.

  • The CD8+ tumour infiltrating lymphocyte immunophenotype could provide a rational and easy-to-implement biomarker to better select patients with ovarian cancer for next-generation immunotherapy combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed roadmap for personalized immunotherapies in ovarian cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  2. Webb, P. M. & Jordan, S. J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 21, 389–400 (2024).

    Article  PubMed  Google Scholar 

  3. Lheureux, S., Gourley, C., Vergote, I. & Oza, A. M. Epithelial ovarian cancer. Lancet 393, 1240–1253 (2019).

    Article  PubMed  Google Scholar 

  4. Clair, K. H., Wolford, J., Zell, J. A. & Bristow, R. E. Surgical management of gynecologic cancers. Surg. Oncol. Clin. N. Am. 30, 69–88 (2021).

    Article  PubMed  Google Scholar 

  5. Ledermann, J. A. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv259 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Coleridge, S. L., Bryant, A., Kehoe, S. & Morrison, J. Neoadjuvant chemotherapy before surgery versus surgery followed by chemotherapy for initial treatment in advanced ovarian epithelial cancer. Cochrane Database Syst. Rev. 7, CD005343 (2021).

    PubMed  Google Scholar 

  7. Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 365, 2484–2496 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Ray-Coquard, I. et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381, 2416–2428 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol. 13, 255–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Makker, V. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N. Engl. J. Med. 386, 437–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Colombo, N. et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med. 385, 1856–1867 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

    Article  Google Scholar 

  15. Konecny, G. E. et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J. Natl Cancer Inst. 106, dju249 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Adams, S. F. et al. Intraepithelial T cells and tumor proliferation: impact on the benefit from surgical cytoreduction in advanced serous ovarian cancer. Cancer 115, 2891–2902 (2009).

    Article  PubMed  Google Scholar 

  19. Hao, J., Yu, H., Zhang, T., An, R. & Xue, Y. Prognostic impact of tumor-infiltrating lymphocytes in high grade serous ovarian cancer: a systematic review and meta-analysis. Ther. Adv. Med. Oncol. 12, 1758835920967241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ovarian Tumor Tissue Analysis, C. et al. Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol. 3, e173290 (2017).

    Article  Google Scholar 

  21. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8+ T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anadon, C. M. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 40, 545–557.e13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duraiswamy, J. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 39, 1623–1642.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bruand, M. et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 36, 109412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamanishi, J. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015–4022 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Hamanishi, J. et al. Nivolumab versus gemcitabine or pegylated liposomal doxorubicin for patients with platinum-resistant ovarian cancer: open-label, randomized trial in Japan (NINJA). J. Clin. Oncol. 39, 3671–3681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varga, A. et al. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of KEYNOTE-028. Gynecol. Oncol. 152, 243–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Matulonis, U. A. et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann. Oncol. 30, 1080–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, J. F. et al. Safety, clinical activity and biomarker assessments of atezolizumab from a phase I study in advanced/recurrent ovarian and uterine cancers. Gynecol. Oncol. 154, 314–322 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Disis, M. L. et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 5, 393–401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Duraiswamy, J., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors – response. Cancer Res. 74, 633–634, discussion 635 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Hartl, C. A. et al. Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. J. Immunother. Cancer 7, 199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pavicic, P. G. Jr et al. Immunotherapy with IL12 and PD1/CTLA4 inhibition is effective in advanced ovarian cancer and associates with reversal of myeloid cell-induced immunosuppression. Oncoimmunology 12, 2198185 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zamarin, D. et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J. Clin. Oncol. 38, 1814–1823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leary, A. et al. Phase Ib INEOV neoadjuvant trial of the anti-PDL1, durvalumab (D) +/− anti-CTLA4 tremelimumab (T) with platinum chemotherapy for patients (pts) with unresectable ovarian cancer (OC): A GINECO study [abstract 727P]. Ann. Oncol. 32 (Suppl. 5), S731 (2021).

    Article  Google Scholar 

  39. Leary, A. et al. Phase Ib INEOV neoadjuvant trial of durvalumab +/− tremelimumab with platinum chemotherapy for patients (pts) with unresectable ovarian cancer (OC): Final complete resection and pathological response rates [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 5557 (2022).

    Article  Google Scholar 

  40. Lo, C. S. et al. Neoadjuvant chemotherapy of ovarian cancer results in three patterns of tumor-infiltrating lymphocyte response with distinct implications for immunotherapy. Clin. Cancer Res. 23, 925–934 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Bohm, S. et al. Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin. Cancer Res. 22, 3025–3036 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Mesnage, S. J. L. et al. Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). Ann. Oncol. 28, 651–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, H. S. et al. Expression of programmed cell death ligand 1 and immune checkpoint markers in residual tumors after neoadjuvant chemotherapy for advanced high-grade serous ovarian cancer. Gynecol. Oncol. 151, 414–421 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Jimenez-Sanchez, A. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet. 52, 582–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng, J. et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 75, 5034–5045 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Ghaffari, A. et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br. J. Cancer 119, 440–449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, M. et al. Improved T-cell immunity following neoadjuvant chemotherapy in ovarian cancer. Clin. Cancer Res. 28, 3356–3366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Sordo-Bahamonde, C. et al. Chemo-immunotherapy: a new trend in cancer treatment. Cancers 15(11), 2912 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fucikova, J. et al. Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 8, 426–444 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Monk, B. J. et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol. 22, 1275–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Pujade-Lauraine, E. et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 22, 1034–1046 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, E. K. et al. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: a phase 2 clinical trial. Gynecol. Oncol. 159, 72–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Moore, K. N. et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 39, 1842–1855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rahma, O. E. & Hodi, F. S. The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res. 25, 5449–5457 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Ruscito, I. et al. Characterisation of tumour microvessel density during progression of high-grade serous ovarian cancer: clinico-pathological impact (an OCTIPS Consortium study). Br. J. Cancer 119, 330–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leary, A., Tan, D. & Ledermann, J. Immune checkpoint inhibitors in ovarian cancer: where do we stand? Ther. Adv. Med. Oncol. 13, 17588359211039899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, J. F. et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1731–1738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Banerjee, S. et al. Principal results of the EORTC-1508 trial: a phase II randomised, multicentre study of bevacizumab vs atezolizumab and bevacizumab with acetylsalicylic acid or placebo in recurrent platinum-resistant ovarian, fallopian tube or primary peritoneal adenocarcinoma [abstract LBA32]. Ann. Oncol. 32 (Suppl. 5), S1308 (2021).

    Article  Google Scholar 

  63. Kurtz, J. E. et al. Atezolizumab combined with bevacizumab and platinum-based therapy for platinum-sensitive ovarian cancer: placebo-controlled randomized phase III ATALANTE/ENGOT-ov29 trial. J. Clin. Oncol. 41, 4768–4778 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, J. M. et al. Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women’s cancers: a dose-escalation, phase I study. J. Clin. Oncol. 35, 2193–2202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Le, D. T. & Jaffee, E. M. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 72, 3439–3444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zsiros, E. et al. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol. 7, 78–85 (2021).

    Article  PubMed  Google Scholar 

  67. Ruscito, I. et al. Incorporating PARP-inhibitors in primary and recurrent ovarian cancer: a meta-analysis of 12 phase II/III randomized controlled trials. Cancer Treat. Rev. 87, 102040 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Luo, X. et al. Poly(ADP-ribosyl)ation of FOXP3 protein mediated by PARP-1 protein regulates the function of regulatory T cells. J. Biol. Chem. 290, 28675–28682 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Musacchio, L. et al. Combining PARP inhibition and immune checkpoint blockade in ovarian cancer patients: a new perspective on the horizon? ESMO Open. 7, 100536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, E. K. & Konstantinopoulos, P. A. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther. Adv. Med. Oncol. 12, 1758835920944116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Drew, Y. et al. Olaparib plus durvalumab, with or without bevacizumab, as treatment in PARP inhibitor-naive platinum-sensitive relapsed ovarian cancer: a phase II multi-cohort study. Clin. Cancer Res. 30, 50–62 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Poveda, A. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 22, 620–631 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Konstantinopoulos, P. A. et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 5, 1141–1149 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Farkkila, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Capoluongo, E. D. et al. Alternative academic approaches for testing homologous recombination deficiency in ovarian cancer in the MITO16A/MaNGO-OV2 trial. ESMO Open. 7, 100585 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lampert, E. J. et al. Combination of PARP inhibitor olaparib, and PD-L1 inhibitor durvalumab, in recurrent ovarian cancer: a proof-of-concept phase II study. Clin. Cancer Res. 26, 4268–4279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. González-Martin, A. et al. LBA37 - Atezolizumab (atezo) combined with platinum-based chemotherapy (CT) and maintenance niraparib for recurrent ovarian cancer (rOC) with a platinum-free interval (TFIp) >6 months: primary analysis of the double-blind placebo (pbo)-controlled ENGOT-Ov41/GEICO 69-O/ANITA phase III trial. Ann. Oncol. 34  (Suppl. 2), S1254–S1335 (2023).

    Google Scholar 

  80. Ledermann, J. A. et al. Molecular determinants of clinical outcomes of pembrolizumab in recurrent ovarian cancer: exploratory analysis of KEYNOTE-100. Gynecol. Oncol. 178, 119–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Drew, Y. et al. Phase II study of olaparib (O) plus durvalumab (D) and bevacizumab (B) (MEDIOLA): initial results in patients (pts) with non-germline BRCA-mutated (non-gBRCAm) platinum sensitive relapsed (PSR) ovarian cancer (OC) [abstract 814MO]. Ann. Oncol. 31 (Suppl. 4), 615–616 (2020).

    Article  Google Scholar 

  82. Banerjee, S. et al. Phase II study of olaparib plus durvalumab with or without bevacizumab (MEDIOLA): final analysis of overall survival in patients with non-germline BRCA-mutated platinum-sensitive relapsed ovarian cancer [abstract 529MO]. Ann. Oncol. 33 (Suppl. 7), 788–789 (2022).

    Article  Google Scholar 

  83. Kim, Y. N. et al. Triplet maintenance therapy of olaparib, pembrolizumab and bevacizumab in women with BRCA wild-type, platinum-sensitive recurrent ovarian cancer: the multicenter, single-arm phase II study OPEB-01/APGOT-OV4. Nat. Commun. 14, 5476 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harter, P. et al. Durvalumab with paclitaxel/carboplatin (PC) and bevacizumab (bev), followed by maintenance durvalumab, bev, and olaparib in patients (pts) with newly diagnosed advanced ovarian cancer (AOC) without a tumor BRCA1/2 mutation (non-tBRCAm): results from the randomized, placebo (pbo)-controlled phase III DUO-O trial [abstract]. J. Clin. Oncol. 41 (Suppl. 17), LBA5506 (2023).

    Article  Google Scholar 

  85. Freyer, G. et al. Bevacizumab, olaparib, and durvalumab in patients with relapsed ovarian cancer: a phase II clinical trial from the GINECO group. Nat. Commun. 15, 1985 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cunnea, P. et al. Spatial and temporal intra-tumoral heterogeneity in advanced HGSOC: implications for surgical and clinical outcomes. Cell Rep. Med. 4, 101055 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Prat, J. New insights into ovarian cancer pathology. Ann. Oncol. 23, X111–X117 (2012).

    Article  PubMed  Google Scholar 

  88. Maxwell, M. B. et al. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 187, 3390–3408.e19 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Norquist, B. M. et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2, 482–490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sia, T. Y. et al. Treatment of ovarian clear cell carcinoma with immune checkpoint blockade: a case series. Int. J. Gynecol. Cancer 32, 1017–1024 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xiao, X., Melton, D. W. & Gourley, C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol. Oncol. 132, 506–512 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Fraune, C. et al. High homogeneity of MMR deficiency in ovarian cancer. Gynecol. Oncol. 156, 669–675 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Friedman, C. F. et al. Nivolumab for mismatch-repair-deficient or hypermutated gynecologic cancers: a phase 2 trial with biomarker analyses. Nat. Med. 30, 1330–1338 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. [No authors listed] World’s first TIL therapy approved. Nat. Biotechnol. 42, 349 (2024).

    Article  Google Scholar 

  95. Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Hong, D. S. et al. Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients: a phase 1 trial. Nat. Med. 29, 104–114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kawai, A. et al. Results from phase I/II study of NY-ESO-1-specific TCR gene-transduced T cell therapy (TBI-1301, mipetresgene autoleucel) in patients with advanced synovial sarcoma. J. Clin. Oncol. 41, 11558 (2023).

    Article  Google Scholar 

  98. Monberg, T. J., Borch, T. H., Svane, I. M. & Donia, M. TIL therapy: facts and hopes. Clin. Cancer Res. 29, 3275–3283 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Aoki, Y. et al. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer. Cancer Res. 51, 1934–1939 (1991).

    CAS  PubMed  Google Scholar 

  100. Fujita, K. et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res. 1, 501–507 (1995).

    CAS  PubMed  Google Scholar 

  101. Pedersen, M. et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 7, e1502905 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sarivalasis, A., Morotti, M., Mulvey, A., Imbimbo, M. & Coukos, G. Cell therapies in ovarian cancer. Ther. Adv. Med. Oncol. 13, 17588359211008399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Verdegaal, E. M. E. et al. Timed adoptive T cell transfer during chemotherapy in patients with recurrent platinum-sensitive epithelial ovarian cancer. J. Immunother. Cancer 11, e007697 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gonzalez, T., Muminovic, M., Nano, O. & Vulfovich, M. Folate receptor alpha – a novel approach to cancer therapy. Int. J. Mol. Sci. 25, 1046 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kandalaft, L. E., Powell, D. J. Jr & Coukos, G. A phase I clinical trial of adoptive transfer of folate receptor-α redirected autologous T cells for recurrent ovarian cancer. J. Transl. Med. 10, 157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Daigre, J. et al. Preclinical evaluation of novel folate receptor 1-directed CAR T cells for ovarian cancer. Cancers 16, 333 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hassan, R. et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat. Med. 29, 2099–2109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6, 261ra151 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mackensen, A. et al. CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial. Nat. Med. 29, 2844–2853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu, J. W. Y. et al. T-cell receptor therapy in the treatment of ovarian cancer: a mini review. Front. Immunol. 12, 672502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gitto, S. B., Ihewulezi, C. J. N. & Powell, D. J. Jr Adoptive T cell therapy for ovarian cancer. Gynecol. Oncol. 186, 77–84 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dhodapkar, K. M., Krasovsky, J., Williamson, B. & Dhodapkar, M. V. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J. Exp. Med. 195, 125–133 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gnjatic, S. et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res. 95, 1–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yarza, R. et al. Efficacy of T-cell receptor-based adoptive cell therapy in cutaneous melanoma: a meta-analysis. Oncologist 28, e406–e415 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Meeuwsen, M. H. et al. Broadly applicable TCR-based therapy for multiple myeloma targeting the immunoglobulin J chain. J. Hematol. Oncol. 16, 16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Szender, J. B. et al. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. Gynecol. Oncol. 145, 420–425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kandalaft, L. E., Dangaj Laniti, D. & Coukos, G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat. Rev. Cancer 22, 640–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Garsed, D. W. et al. The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer. Nat. Genet. 54, 1853–1864 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Larson, R. C. et al. Anti-TACI single and dual-targeting CAR T cells overcome BCMA antigen loss in multiple myeloma. Nat. Commun. 14, 7509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, Y. L. et al. BRCA mutations, homologous DNA repair deficiency, tumor mutational burden, and response to immune checkpoint inhibition in recurrent ovarian cancer. JCO Precis. Oncol. 4, https://doi.org/10.1200/PO.20.00069 (2020).

  127. Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Parvathareddy, S. K. et al. Differential expression of PD-L1 between primary and metastatic epithelial ovarian cancer and its clinico-pathological correlation. Sci. Rep. 11, 3750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Abiko, K., Hamanishi, J., Matsumura, N. & Mandai, M. Dynamic host immunity and PD-L1/PD-1 blockade efficacy: developments after “IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer”. Br. J. Cancer 128, 461–467 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Webb, J. R., Milne, K., Kroeger, D. R. & Nelson, B. H. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol. Oncol. 141, 293–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dangaj, D. et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35, 885–900.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Truxova, I. et al. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J. Immunother. Cancer 6, 139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Conejo-Garcia, J. R., Biswas, S., Chaurio, R. & Rodriguez, P. C. Neglected no more: B cell-mediated anti-tumor immunity. Semin. Immunol. 65, 101707 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Biswas, S. et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591, 464–470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bruno, T. C. New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nature 577, 474–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Lu, H. et al. Tumor and local lymphoid tissue interaction determines prognosis in high-grade serous ovarian cancer. Cell Rep. Med. 4, 101092 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nielsen, J. S. et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27 memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res. 18, 3281–3292 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Montfort, A. et al. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin. Cancer Res. 23, 250–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Kasikova, L. et al. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat. Commun. 15, 2528 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hwang, W. T., Adams, S. F., Tahirovic, E., Hagemann, I. S. & Coukos, G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol. Oncol. 124, 192–198 (2012).

    Article  PubMed  Google Scholar 

  146. Li, X. et al. Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy. J. Pathol. 263, 190–202 (2024).

    Article  CAS  PubMed  Google Scholar 

  147. Shen, J. et al. Inflamed immune phenotype predicts favorable clinical outcomes of immune checkpoint inhibitor therapy across multiple cancer types. J. Immunother. Cancer 12, e008339 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Roller, A. et al. Tumor-agnostic transcriptome-based classifier identifies spatial infiltration patterns of CD8+ T cells in the tumor microenvironment and predicts clinical outcome in early-phase and late-phase clinical trials. J. Immunother. Cancer 12, e008185 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 39, 928–944.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nat. Commun. 11, 5583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ghisoni, E. et al. Integrated digital pathology and single-cell analysis identify the spatial and temporal evolution of immune cells networks in epithelial ovarian cancer [abstract 27MO]. Ann. Oncol. 33 (Suppl. 5), 395 (2022).

    Article  Google Scholar 

  152. Hegde, P. S., Karanikas, V. & Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 22, 1865–1874 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Salerno, E. P. et al. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncoimmunology 5, e1240857 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Chae, C. S. et al. Tumor-derived lysophosphatidic acid blunts protective type-I interferon responses in ovarian cancer. Cancer Discov. 12, 1904–1921 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Song, M. et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Brightwell, R. M. et al. The CD47 “don’t eat me signal” is highly expressed in human ovarian cancer. Gynecol. Oncol. 143, 393–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Ferrone, S. & Marincola, F. M. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol. Today 16, 487–494 (1995).

    Article  CAS  PubMed  Google Scholar 

  166. Han, L. Y. et al. HLA class I antigen processing machinery component expression and intratumoral T-cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin. Cancer Res. 14, 3372–3379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769.e22 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Jimenez-Sanchez, A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Launonen, I. M. et al. Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. Nat. Commun. 13, 835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ghisoni, E. et al. Myeloid cell networks determine reinstatement of original immune environments in recurrent ovarian cancer. Preprint at bioRxiv https://doi.org/10.1101/2024.05.02.590528 (2024).

  172. Trujillo, J. A., Sweis, R. F., Bao, R. & Luke, J. J. T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res. 6, 990–1000 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 185, 576 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Ghisoni, E., Imbimbo, M., Zimmermann, S. & Valabrega, G. Ovarian cancer immunotherapy: turning up the heat. Int. J. Mol. Sci. 20, 2927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huang, R. Y. et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 6, 27359–27377 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Fucikova, J. et al. TIM-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin. Cancer Res. 25, 4820–4831 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Blanc-Durand, F. et al. Distribution of novel immune-checkpoint targets in ovarian cancer tumor microenvironment: a dynamic landscape. Gynecol. Oncol. 160, 279–284 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Schöffski, P. et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J. Immunother. Cancer 10, e003776 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Harding, J. J. et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin. Cancer Res. 27, 2168–2178 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Curigliano, G. et al. Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin. Cancer Res. 27, 3620–3629 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Sanborn, R. E. et al. Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J. Immunother. Cancer 10, e005147 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mascarelli, D. E. et al. Boosting antitumor response by costimulatory strategies driven to 4-1BB and OX40 T-cell receptors. Front. Cell Dev. Biol. 9, 692982 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ramser, M. et al. High OX40 expression in recurrent ovarian carcinoma is indicative for response to repeated chemotherapy. BMC Cancer 18, 425 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Moiseyenko, A. et al. Sequential therapy with INCAGN01949 followed by ipilimumab and nivolumab in two patients with advanced ovarian carcinoma. Gynecol. Oncol. Rep. 34, 100655 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Goldman, J. W. et al. Safety and tolerability of MEDI0562, an OX40 agonist mAb, in combination with durvalumab or tremelimumab in adult patients with advanced solid tumors. Clin. Cancer Res. 28, 3709–3719 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Hoffman-Censits, J. et al. The JAVELIN Bladder Medley trial: avelumab-based combinations as first-line maintenance in advanced urothelial carcinoma. Future Oncol. 20, 179–190 (2024).

    Article  CAS  PubMed  Google Scholar 

  188. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lakhani, N. et al. Phase 1 dose escalation study of the agonist redirected checkpoint, SL-172154 (SIRPα-Fc-CD40L) in subjects with platinum-resistant ovarian cancer [abstract 429]. J. Immunother. Cancer 9 (Suppl. 2), A459 (2021).

    Google Scholar 

  191. Frankish, J. et al. The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front. Immunol. 14, 1160116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ochoa de Olza, M., Navarro Rodrigo, B., Zimmermann, S. & Coukos, G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol. 21, e419–e430 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Wang, M., Wang, S., Desai, J., Trapani, J. A. & Neeson, P. J. Therapeutic strategies to remodel immunologically cold tumors. Clin. Transl. Immunol. 9, e1226 (2020).

    Article  Google Scholar 

  195. Herrera, F. G. et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12, 108–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Zamarin, D. et al. Study to evaluate intraperitoneal (IP) ONCOS-102 with systemic durvalumab in patients with peritoneal disease who have epithelial ovarian (OC) or metastatic colorectal cancer (CRC): phase 2 results [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 2600 (2022).

    Article  Google Scholar 

  197. Barsoumian, H. B. et al. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J. Immunother. Cancer 8, e000537 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Reislander, T., Groelly, F. J. & Tarsounas, M. DNA damage and cancer immunotherapy: a STING in the tale. Mol. Cell 80, 21–28 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Xu, H. et al. CCNE1 copy number is a biomarker for response to combination WEE1-ATR inhibition in ovarian and endometrial cancer models. Cell Rep. Med. 2, 100394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Keenan, T. E. et al. Clinical efficacy and molecular response correlates of the WEE1 inhibitor adavosertib combined with cisplatin in patients with metastatic triple-negative breast cancer. Clin. Cancer Res. 27, 983–991 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. MacGregor, H. L. et al. High expression of B7-H3 on stromal cells defines tumor and stromal compartments in epithelial ovarian cancer and is associated with limited immune activation. J. Immunother. Cancer 7, 357 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Beckermann, K. E. et al. A phase 1b open-label study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of py314 in combination with pembrolizumab in patients with advanced renal cell carcinoma. Invest. New Drugs 42, 179–184 (2024).

    Article  CAS  PubMed  Google Scholar 

  204. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Morotti, M. et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature 629, 426–434 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Eynde, B. J. V. D., Baren, N. V. & Baurain, J.-F. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? Annu. Rev. Cancer Biol. 4, 241–256 (2020).

    Article  Google Scholar 

  208. An, D., Banerjee, S. & Lee, J. M. Recent advancements of antiangiogenic combination therapies in ovarian cancer. Cancer Treat. Rev. 98, 102224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents – overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).

    Article  PubMed  Google Scholar 

  210. Lacher, S. B. et al. PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells. Nature 629, 417–425 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rutten, M. J. et al. Laparoscopy to predict the result of primary cytoreductive surgery in patients with advanced ovarian cancer: a randomized controlled trial. J. Clin. Oncol. 35, 613–621 (2017).

    Article  PubMed  Google Scholar 

  212. Topalian, S. L. et al. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy. Cancer Cell 41, 1551–1566 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Porter, R. L. et al. A phase 2, two-stage study of mirvetuximab soravtansine (IMGN853) in combination with pembrolizumab in patients with microsatellite stable (MSS) recurrent or persistent endometrial cancer [abstract]. Cancer Res. 84 (Suppl. 7), CT008 (2024).

    Article  Google Scholar 

  214. Lybaert, L. et al. Challenges in neoantigen-directed therapeutics. Cancer Cell 41, 15–40 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Zacharakis, N. et al. Breast cancers are immunogenic: immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes. J. Clin. Oncol. 40, 1741–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schmidt, J. et al. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat. Commun. 14, 3188 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kast, F., Klein, C., Umana, P., Gros, A. & Gasser, S. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies. Oncoimmunology 10, 1869389 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Kandalaft, L. E., Odunsi, K. & Coukos, G. Immunotherapy in ovarian cancer: are we there yet? J. Clin. Oncol. 37, 2460–2471 (2019).

    Article  CAS  PubMed  Google Scholar 

  219. Dafni, U. et al. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: a 20-year systematic review and meta-analysis. Eur. J. Cancer 142, 63–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug. Discov. 19, 635–652 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10, eaao5931 (2018).

    Article  PubMed  Google Scholar 

  222. Kandalaft, L. E. et al. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2, e22664 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Bobisse, S. et al. A phase 1 trial of adoptive transfer of vaccine-primed autologous circulating T cells in ovarian cancer. Nat. Cancer 4, 1410–1417 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Atsavapranee, E. S., Billingsley, M. M. & Mitchell, M. J. Delivery technologies for T cell gene editing: applications in cancer immunotherapy. EBioMedicine 67, 103354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Corria-Osorio, J. et al. Orthogonal cytokine engineering enables novel synthetic effector states escaping canonical exhaustion in tumor-rejecting CD8+ T cells. Nat. Immunol. 24, 869–883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Vlad, A. M. et al. A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol. Immunother. 59, 293–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  227. Mucci, A. et al. Myeloid cell-based delivery of IFN-γ reprograms the leukemia microenvironment and induces anti-tumoral immune responses. EMBO Mol. Med. 13, e13598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Escobar, G. et al. Genetic engineering of hematopoiesis for targeted IFN-α delivery inhibits breast cancer progression. Sci. Transl. Med. 6, 217ra213 (2014).

    Article  Google Scholar 

  229. Bertucci, F. et al. High-dose melphalan-based chemotherapy and autologous stem cell transplantation after second look laparotomy in patients with chemosensitive advanced ovarian carcinoma: long-term results. Bone Marrow Transpl. 26, 61–67 (2000).

    Article  CAS  Google Scholar 

  230. Sabatier, R. et al. Are there candidates for high-dose chemotherapy in ovarian carcinoma? J. Exp. Clin. Cancer Res. 31, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Muller, A. M. et al. Long-term outcome of patients with metastatic breast cancer treated with high-dose chemotherapy and transplantation of purified autologous hematopoietic stem cells. Biol. Blood Marrow Transpl. 18, 125–133 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

D.D.L. receives support from the Ludwig Institute for Cancer Research and is the recipient of the Department of Defense (DOD) Early Career Investigator (ECI) W81XWH2210703 Award OC210038. Any views, opinions, findings, conclusions, or recommendations expressed in this material are solely those of the authors and do not necessarily reflect those of DOD.

Author information

Authors and Affiliations

Authors

Contributions

E.G. and M.M. researched data for and wrote the article. G.C. and D.D.L. provided supervision and made substantial contributions to discussion of the content. All the authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to George Coukos.

Ethics declarations

Competing interests

M.M. is currently an employee of the CDR-Life company. A.S. has been a consultant and advisory board member for AstraZeneca, Bristol-Myers Squibb, Celgene, Eisai, GSK-Tesaro, MSD, Novartis, Roche and Seagen; received research support from AstraZeneca and Roche; and received institutional travel and congress support from Amgen, AstraZeneca, Celgene, Clovis, GSK-Tesaro, MSD, Novartis, Pfizer, Roche and Seagen. D.D.L. has received a grant from F. Hoffmann-La Roche AG. G.C. has received grants, research support or has been a co-investigator in clinical trials by Boehringer Ingelheim, Bristol-Myers Squibb, F. Hoffmann-La Roche AG, Iovance and Tigen Pharma. Lausanne University Hospital (CHUV) has received honoraria for advisory services that G.C. has provided to AstraZeneca, EVIR and Genentech. Patents related to the NeoTIL technology from the laboratory of G.C. have been licensed by the Ludwig Institute, on behalf of the University of Lausanne and the CHUV, to Tigen Pharma. G.C. has received royalties from the University of Pennsylvania for a CAR T cell product licensed to Novartis and Tmunity Therapeutics. E.G., A.J.G. and L.K. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks J. Hamanishi, J. Lederman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghisoni, E., Morotti, M., Sarivalasis, A. et al. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00937-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00937-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing