Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigen presentation in cancer — mechanisms and clinical implications for immunotherapy

Abstract

Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour–immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.

Key points

  • The clinical success of immune-checkpoint inhibitors has improved cancer care, although long-term durable remission is only achieved in a subset of patients.

  • Antigen processing and presentation by tumour cells are essential for long-lasting immune surveillance.

  • Alterations in the genes encoding MHC components and other parts of the antigen-presentation machinery are frequently found across several cancer types and are associated with both tumour development and the effectiveness of immunotherapies.

  • MHC-based antigen presentation exerts strong evolutionary pressure on the immunopeptidome, which in turn shapes the mutational landscape of the tumour genome.

  • Germline human leukocyte antigen diversity and somatic aberrations in the antigen-presentation machinery inform the therapeutic response to immune-checkpoint inhibitors.

  • Development of novel therapies based on an accurate understanding of antigen presentation in the setting of tumour–immune dynamics is crucial to the development of improved therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of antigen processing and presentation machinery in tumour cells.
Fig. 2: Germline and somatic alterations converge to influence the APM.
Fig. 3: Characterization of the immunopeptidome and its dynamics in tumour evolution.
Fig. 4: Clinical application of cancer-specific variants in antigen presentation.

Similar content being viewed by others

References

  1. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burtness, B. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394, 1915–1928 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Bellmunt, J. et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 22, 525–537 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelly, R. J. et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 384, 1191–1203 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Schmid, P. et al. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, X. et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: a systematic review and meta-analysis. Lancet Oncol. 22, 1265–1274 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Halima, A., Vuong, W. & Chan, T. A. Next-generation sequencing: unraveling genetic mechanisms that shape cancer immunotherapy efficacy. J. Clin. Invest. 132, e154945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pietanza, M. C. et al. Phase II trial of temozolomide in patients with relapsed sensitive or refractory small cell lung cancer, with assessment of methylguanine-DNA methyltransferase as a potential biomarker. Clin. Cancer Res. 18, 1138–1145 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dudley, J. C., Lin, M. T., Le, D. T. & Eshleman, J. R. Microsatellite instability as a biomarker for PD-1 blockade. Clin. Cancer Res. 22, 813–820 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marcus, L., Lemery, S. J., Keegan, P. & Pazdur, R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 25, 3753–3758 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Mahanty, S., Prigent, A. & Garraud, O. Immunogenicity of infectious pathogens and vaccine antigens. BMC Immunol. 16, 31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pollard, A. J. & Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Li, F. et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: a systematic review and meta-analysis. EClinicalMedicine 41, 101134 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hellstrom, I., Hellstrom, K. E., Pierce, G. E. & Yang, J. P. Cellular and humoral immunity to different types of human neoplasms. Nature 220, 1352–1354 (1968).

    Article  CAS  PubMed  Google Scholar 

  34. Horton, B. L. et al. Lack of CD8+ T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci. Immunol. 6, eabi8800 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, M. Y., Jeon, J. W., Sievers, C. & Allen, C. T. Antigen processing and presentation in cancer immunotherapy. J. Immunother. Cancer 8, e001111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doherty, P. C. & Zinkernagel, R. M. A biological role for the major histocompatibility antigens. Lancet 1, 1406–1409 (1975).

    Article  CAS  PubMed  Google Scholar 

  37. Doherty, P. C. & Zinkernagel, R. M. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256, 50–52 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Parham, P. & Ohta, T. Population biology of antigen presentation by MHC class I molecules. Science 272, 67–74 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Matsumura, M., Fremont, D. H., Peterson, P. A. & Wilson, I. A. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257, 927–934 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Paul, S. et al. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 191, 5831–5839 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Colbert, J. D., Cruz, F. M. & Rock, K. L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol. 64, 1–8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chicz, R. M. et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358, 764–768 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Arnaiz-Villena, A. et al. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol. Life Sci. 79, 464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Dong, Y. et al. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 565, 49–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L. & Goldberg, A. L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J. 20, 2357–2366 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science 304, 587–590 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Warren, E. H. et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313, 1444–1447 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Rolfs, Z., Muller, M., Shortreed, M. R., Smith, L. M. & Bassani-Sternberg, M. Comment on “A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands”. Sci. Immunol. 4, eaaw1622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Admon, A. Are there indeed spliced peptides in the immunopeptidome? Mol. Cell Proteom. 20, 100099 (2021).

    Article  CAS  Google Scholar 

  55. Rock, K. L. & Goldberg, A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Vigneron, N. & Van den Eynde, B. J. Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Curr. Opin. Immunol. 24, 84–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Parcej, D. & Tampe, R. ABC proteins in antigen translocation and viral inhibition. Nat. Chem. Biol. 6, 572–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00707-2 (2022).

    Article  PubMed  Google Scholar 

  60. Garstka, M. A. et al. The first step of peptide selection in antigen presentation by MHC class I molecules. Proc. Natl Acad. Sci. USA 112, 1505–1510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zarling, A. L. et al. Tapasin is a facilitator, not an editor, of class I MHC peptide binding. J. Immunol. 171, 5287–5295 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Hermann, C. et al. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. eLife 4, e09617 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bonaccorsi, I. et al. Membrane transfer from tumor cells overcomes deficient phagocytic ability of plasmacytoid dendritic cells for the acquisition and presentation of tumor antigens. J. Immunol. 192, 824–832 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Sanchez-Paulete, A. R. et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28, xii44–xii55 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Blander, J. M. Regulation of the cell biology of antigen cross-presentation. Annu. Rev. Immunol. 36, 717–753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Canton, J. et al. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat. Immunol. 22, 140–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Shen, L., Sigal, L. J., Boes, M. & Rock, K. L. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21, 155–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Sanchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Lipsitch, M., Bergstrom, C. T. & Antia, R. Effect of human leukocyte antigen heterozygosity on infectious disease outcome: the need for allele-specific measures. BMC Med. Genet. 4, 2 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hraber, P., Kuiken, C. & Yusim, K. Evidence for human leukocyte antigen heterozygote advantage against hepatitis C virus infection. Hepatology 46, 1713–1721 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Arora, J. et al. HLA heterozygote advantage against HIV-1 is driven by quantitative and qualitative differences in HLA allele-specific peptide presentation. Mol. Biol. Evol. 37, 639–650 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, Z. et al. HLA zygosity increases risk of hepatitis B virus-associated hepatocellular carcinoma. J. Infect. Dis. 224, 1796–1805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Anagnostou, V. et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat. Cancer 1, 99–111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abed, A. et al. Prognostic value of HLA-I homozygosity in patients with non-small cell lung cancer treated with single agent immunotherapy. J. Immunother. Cancer 8, e001620 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kobayashi, M. et al. Effect of HLA genotype on intravesical recurrence after bacillus Calmette-Guerin therapy for non-muscle-invasive bladder cancer. Cancer Immunol. Immunother. 71, 727–736 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Chowell, D. et al. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 25, 1715–1720 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. 40, 499–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cuppens, K. et al. HLA-I diversity and tumor mutational burden by comprehensive next-generation sequencing as predictive biomarkers for the treatment of non-small cell lung cancer with PD-(L)1 inhibitors. Lung Cancer 170, 1–10 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Lu, Z. et al. Germline HLA-B evolutionary divergence influences the efficacy of immune checkpoint blockade therapy in gastrointestinal cancer. Genome Med. 13, 175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, C. H. et al. High response rate and durability driven by HLA genetic diversity in patients with kidney cancer treated with Lenvatinib and Pembrolizumab. Mol. Cancer Res. 19, 1510–1521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Takahashi, S. et al. Impact of germline HLA genotypes on clinical outcomes in patients with urothelial cancer treated with pembrolizumab. Cancer Sci. https://doi.org/10.1111/cas.15488 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Roerden, M. et al. HLA evolutionary divergence as a prognostic marker for AML patients undergoing allogeneic stem cell transplantation. Cancers 12, 1835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feray, C. et al. Donor HLA class 1 evolutionary divergence is a major predictor of liver allograft rejection: a retrospective cohort study. Ann. Intern. Med. 174, 1385–1394 (2021).

    Article  PubMed  Google Scholar 

  90. Cummings, A. L. et al. Mutational landscape influences immunotherapy outcomes among patients with non-small-cell lung cancer with human leukocyte antigen supertype B44. Nat. Cancer 1, 1167–1175 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Naranbhai, V. et al. HLA-A*03 and response to immune checkpoint blockade in cancer: an epidemiological biomarker study. Lancet Oncol. 23, 172–184 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Pyke, R. M. et al. A machine learning algorithm with subclonal sensitivity reveals widespread pan-cancer human leukocyte antigen loss of heterozygosity. Nat. Commun. 13, 1925 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hazini, A., Fisher, K. & Seymour, L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J. Immunother. Cancer 9, e002899 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salter, R. D. et al. A binding site for the T-cell co-receptor CD8 on the α3 domain of HLA-A2. Nature 345, 41–46 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shao, X. M. et al. HLA class II immunogenic mutation burden predicts response to immune checkpoint blockade. Ann. Oncol. 33, 728–738 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Pagliuca, S. et al. The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders. Blood 138, 2781–2798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Daull, A. M. et al. Class I/Class II HLA evolutionary divergence ratio is an independent marker associated with disease-free and overall survival after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia. Front. Immunol. 13, 841470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Steimle, V., Siegrist, C. A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-γ mediated by the transactivator gene CIITA. Science 265, 106–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018).

    Article  PubMed  Google Scholar 

  102. Michelakos, T. et al. Differential role of HLA-A and HLA-B, C expression levels as prognostic markers in colon and rectal cancer. J. Immunother. Cancer 10, e004115 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Meissner, T. B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl Acad. Sci. USA 107, 13794–13799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yoshihama, S. et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc. Natl Acad. Sci. USA 113, 5999–6004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chew, G. L. et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev. Cell 50, 658–671.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Forloni, M. et al. NF-κB, and not MYCN, regulates MHC class I and endoplasmic reticulum aminopeptidases in human neuroblastoma cells. Cancer Res. 70, 916–924 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Lorenzi, S. et al. IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma. PLoS ONE 7, e46928 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yi, M. et al. The role of cancer-derived microRNAs in cancer immune escape. J. Hematol. Oncol. 13, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mari, L. et al. microRNA 125a regulates MHC-I expression on esophageal adenocarcinoma cells, associated with suppression of antitumor immune response and poor outcomes of patients. Gastroenterology 155, 784–798 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Colangelo, T. et al. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis. 7, e2120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang, L. et al. The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin. Cancer Res. 24, 3366–3376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cano, F., Rapiteanu, R., Winkler, G. S. & Lehner, P. J. A non-proteolytic role for ubiquitin in deadenylation of MHC-I mRNA by the RNA-binding E3-ligase MEX-3C. Nat. Commun. 6, 8670 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, Y. et al. Oncoprotein SND1 hijacks nascent MHC-I heavy chain to ER-associated degradation, leading to impaired CD8+ T cell response in tumor. Sci. Adv. 6, eaba5412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang, Y. et al. MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J. Clin. Invest. 131, e140837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jongsma, M. L. M. et al. The SPPL3-defined glycosphingolipid repertoire orchestrates HLA class I-mediated immune responses. Immunity 54, 132–150.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bernal, M., Ruiz-Cabello, F., Concha, A., Paschen, A. & Garrido, F. Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol. Immunother. 61, 1359–1371 (2012).

    Article  PubMed  Google Scholar 

  119. Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Challa-Malladi, M. et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fangazio, M. et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 118, e2104504118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, H. L. et al. A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat. Genet. 13, 210–213 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Klampfl, T. et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 369, 2379–2390 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Arshad, N. & Cresswell, P. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J. Biol. Chem. 293, 9555–9569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tripathi, S. C. et al. Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc. Natl Acad. Sci. USA 113, E1555–E1564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kalaora, S. et al. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat. Commun. 11, 896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ramsuran, V. et al. Epigenetic regulation of differential HLA-A allelic expression levels. Hum. Mol. Genet. 24, 4268–4275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ye, Q. et al. Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens 75, 30–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ennishi, D. et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 9, 546–563 (2019).

    Article  PubMed  Google Scholar 

  132. Guo, B., Tan, X. & Cen, H. EZH2 is a negative prognostic biomarker associated with immunosuppression in hepatocellular carcinoma. PLoS ONE 15, e0242191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. He, P. C. & He, C. m6 A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 40, e105977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. McFadden, M. J. et al. Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Rep. 34, 108798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jin, S. et al. m6A RNA modification controls autophagy through upregulating ULK1 protein abundance. Cell Res. 28, 955–957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang, X. et al. m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 16, 1221–1235 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vizcaino, J. A. et al. The human immunopeptidome project: a roadmap to predict and treat immune diseases. Mol. Cell Proteom. 19, 31–49 (2020).

    Article  CAS  Google Scholar 

  139. Marcu, A. et al. HLA ligand atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. J. Immunother. Cancer 9, e002071 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kubiniok, P. et al. Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. iScience 25, 103768 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Phillips, E. R. & Perdue, J. F. The expression and localization of surface neoantigens in transformed and untransformed cultured cells infected with avian tumor viruses. J. Supramol. Struct. 4, 27–44 (1976).

    Article  CAS  PubMed  Google Scholar 

  142. Lennerz, V. et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc. Natl Acad. Sci. USA 102, 16013–16018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maletzki, C., Schmidt, F., Dirks, W. G., Schmitt, M. & Linnebacher, M. Frameshift-derived neoantigens constitute immunotherapeutic targets for patients with microsatellite-instable haematological malignancies: frameshift peptides for treating MSI+ blood cancers. Eur. J. Cancer 49, 2587–2595 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yang, W. et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767–775 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Khodadoust, M. S. et al. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543, 723–727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haen, S. P., Loffler, M. W., Rammensee, H. G. & Brossart, P. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat. Rev. Clin. Oncol. 17, 595–610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kalaora, S. et al. Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget 7, 5110–5117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592, 463–468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Palmer, C. D. et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 28, 1619–1629 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Rotzschke, O. et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348, 252–254 (1990).

    Article  CAS  PubMed  Google Scholar 

  155. Hunt, D. F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992).

    Article  CAS  PubMed  Google Scholar 

  156. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schuster, H. et al. The immunopeptidomic landscape of ovarian carcinomas. Proc. Natl Acad. Sci. USA 114, E9942–E9951 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shao, W. et al. The SysteMHC Atlas project. Nucleic Acids Res. 46, D1237–D1247 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Yi, X. et al. caAtlas: an immunopeptidome atlas of human cancer. iScience 24, 103107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Stopfer, L. E. et al. Absolute quantification of tumor antigens using embedded MHC-I isotopologue calibrants. Proc. Natl Acad. Sci. USA 118, e2111173118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jaeger, A. M. et al. Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature 607, 149–155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nielsen, M., Ternette, N. & Barra, C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert. Rev. Proteom. 19, 77–88 (2022).

    Article  CAS  Google Scholar 

  164. Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput. Biol. 13, e1005725 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Andreatta, M. et al. MS-Rescue: a computational pipeline to increase the quality and yield of immunopeptidomics experiments. Proteomics 19, e1800357 (2019).

    Article  PubMed  Google Scholar 

  166. Alvarez, B. et al. NNAlign_MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved T-cell epitope predictions. Mol. Cell Proteom. 18, 2459–2477 (2019).

    Article  CAS  Google Scholar 

  167. Jurtz, V. et al. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. O’Donnell, T. J., Rubinsteyn, A. & Laserson, U. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 11, 418–419 (2020).

    Article  PubMed  Google Scholar 

  169. Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Chen, B. et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 37, 1332–1343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Erhard, F., Dolken, L., Schilling, B. & Schlosser, A. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol. Res. 8, 1018–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Ouspenskaia, T. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 40, 209–217 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Finn, O. J. A Believer’s overview of cancer immunosurveillance and immunotherapy. J. Immunol. 200, 385–391 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Marty, R. et al. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171, 1272–1283.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Marty Pyke, R. et al. Evolutionary pressure against MHC class II binding cancer mutations. Cell 175, 1991 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Dersh, D., Holly, J. & Yewdell, J. W. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat. Rev. Immunol. 21, 116–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Van den Eynden, J., Jimenez-Sanchez, A., Miller, M. L. & Larsson, E. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51, 1741–1748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Claeys, A., Luijts, T., Marchal, K. & Van den Eynden, J. Low immunogenicity of common cancer hot spot mutations resulting in false immunogenic selection signals. PLoS Genet. 17, e1009368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hoyos, D. et al. Fundamental immune-oncogenicity trade-offs define driver mutation fitness. Nature 606, 172–179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    Article  PubMed  Google Scholar 

  184. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Luksza, M. et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 606, 389–395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Zitvogel, L. & Kroemer, G. Cross-reactivity between cancer and microbial antigens. Oncoimmunology 10, 1877416 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Au, L. et al. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell 39, 1497–1518.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Devarakonda, S. et al. Tumor mutation burden as a biomarker in resected non-small-cell lung cancer. J. Clin. Oncol. 36, 2995–3006 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Attermann, A. S., Bjerregaard, A. M., Saini, S. K., Gronbaek, K. & Hadrup, S. R. Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann. Oncol. 29, 2183–2191 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Rycaj, K. et al. Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells. Clin. Cancer Res. 21, 471–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Saini, S. K. et al. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat. Commun. 11, 5660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Jin, C. et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176, 998–1013.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372.e26 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Sepich-Poore, G. D., Carter, H. & Knight, R. Intratumoral bacteria generate a new class of therapeutically relevant tumor antigens in melanoma. Cancer Cell 39, 601–603 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Xavier, J. B. et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer 6, 192–204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yoo, S. K., Chowell, D., Valero, C., Morris, L. G. T. & Chan, T. A. Outcomes among patients with or without obesity and with cancer following treatment with immune checkpoint blockade. JAMA Netw. Open 5, e220448 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Yoo, S. K., Chowell, D., Valero, C., Morris, L. G. T. & Chan, T. A. Pre-treatment serum albumin and mutational burden as biomarkers of response to immune checkpoint blockade. NPJ Precis. Oncol. 6, 23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Krishna, C., Chowell, D., Gonen, M., Elhanati, Y. & Chan, T. A. Genetic and environmental determinants of human TCR repertoire diversity. Immun. Ageing 17, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Middha, S. et al. Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis. Oncol. 3, PO.18.00321 (2019).

    PubMed  PubMed Central  Google Scholar 

  212. Yeon Yeon, S. et al. Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol. Res. Pract. 215, 209–214 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Zhang, C. et al. B2M and JAK1/2-mutated MSI-H colorectal carcinomas can benefit from anti-PD-1 therapy. J. Immunother. 45, 187–193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhang, H. et al. B2M overexpression correlates with malignancy and immune signatures in human gliomas. Sci. Rep. 11, 5045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Li, D. et al. β2-Microglobulin maintains glioblastoma stem cells and induces M2-like polarization of tumor-associated macrophages. Cancer Res. 82, 3321–3334 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Bern, M. D. et al. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J. Exp. Med. 216, 99–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gong, X. & Karchin, R. Pan-cancer HLA gene-mediated tumor immunogenicity and immune evasion. Mol. Cancer Res. 20, 1272–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Shklovskaya, E. et al. Tumor MHC expression guides first-line immunotherapy selection in melanoma. Cancers 12, 3374 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Axelrod, M. L., Cook, R. S., Johnson, D. B. & Balko, J. M. Biological consequences of MHC-II expression by tumor cells in cancer. Clin. Cancer Res. 25, 2392–2402 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Neuwelt, A. J. et al. Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms. J. Immunother. Cancer 8, e000441 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Johnson, D. B. et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat. Commun. 7, 10582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Roemer, M. G. M. et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J. Clin. Oncol. 36, 942–950 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gonzalez-Ericsson, P. I. et al. Tumor-specific major histocompatibility-II expression predicts benefit to anti-PD-1/L1 therapy in patients with HER2-negative primary breast cancer. Clin. Cancer Res. 27, 5299–5306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Schirrmacher, V., Schild, H. J., Guckel, B. & von Hoegen, P. Tumour-specific CTL response requiring interactions of four different cell types and recognition of MHC class I and class II restricted tumour antigens. Immunol. Cell Biol. 71, 311–326 (1993).

    Article  CAS  PubMed  Google Scholar 

  228. Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Thol, K., Pawlik, P. & McGranahan, N. Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Med. 14, 137 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Homma, Y. et al. Changes in the immune cell population and cell proliferation in peripheral blood after gemcitabine-based chemotherapy for pancreatic cancer. Clin. Transl. Oncol. 16, 330–335 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Jimenez-Sanchez, A. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet. 52, 582–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Szikriszt, B. et al. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol. 17, 99 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Wu, T. et al. Quantification of neoantigen-mediated immunoediting in cancer evolution. Cancer Res. 82, 2226–2238 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Motzer, R. J. et al. Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis blockade. Cancer Cell 38, 803–817.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Dong, L. Q. et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma. J. Hepatol. 72, 896–908 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Frampton, A. E. & Sivakumar, S. A new combination immunotherapy in advanced melanoma. N. Engl. J. Med. 386, 91–92 (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Marin-Acevedo, J. A., Kimbrough, E. O. & Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 14, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Guo, E. et al. WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway. J. Exp. Med. 219, e20210789 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Roschewski, M., Longo, D. L. & Wilson, W. H. CAR T-cell therapy for large B-cell lymphoma — who, when, and how? N. Engl. J. Med. 386, 692–696 (2022).

    Article  PubMed  Google Scholar 

  244. Yarmarkovich, M. et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 599, 477–484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Bonaventura, P. et al. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8, eabj3671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Cameron, B. J. et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl. Med. 5, 197ra103 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Zhao, X. et al. Tuning T cell receptor sensitivity through catch bond engineering. Science 376, eabl5282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Massafra, V. et al. Proteolysis-targeting chimeras enhance T cell bispecific antibody-driven T cell activation and effector function through increased MHC class I antigen presentation in cancer cells. J. Immunol. 207, 493–504 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Duan, Z. & Ho, M. T-cell receptor mimic antibodies for cancer immunotherapy. Mol. Cancer Ther. 20, 1533–1541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hansen, T. H., Connolly, J. M., Gould, K. G. & Fremont, D. H. Basic and translational applications of engineered MHC class I proteins. Trends Immunol. 31, 363–369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Chang, A. Y. et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J. Clin. Invest. 127, 3557 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Dao, T. et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci. Transl. Med. 5, 176ra133 (2013).

    Article  Google Scholar 

  255. Carvajal, R. D. et al. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 20, 99–115 (2023).

    Article  PubMed  Google Scholar 

  256. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).

    Article  CAS  PubMed  Google Scholar 

  257. Carvajal, R. D. et al. Phase I study of safety, tolerability, and efficacy of tebentafusp using a step-up dosing regimen and expansion in patients with metastatic uveal melanoma. J. Clin. Oncol. 40, 1939–1948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Liu, X. et al. Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy. J. Immunother. Cancer 10, e004035 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Hsiue, E. H. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Douglass, J. et al. Bispecific antibodies targeting mutant RAS neoantigens. Sci. Immunol. 6, eabd5515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ma, J. et al. Bispecific antibodies: from research to clinical application. Front. Immunol. 12, 626616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. FDA. FDA Approves Pembrolizumab for Adults and children with TMB-H Solid Tumors https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2020).

  264. FDA. FDA Grants Accelerated Approval to Dostarlimab-gxly for dMMR Advanced Solid Tumors https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors (2021).

  265. Valero, C. et al. The association between tumor mutational burden and prognosis is dependent on treatment context. Nat. Genet. 53, 11–15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Valero, C. et al. Response rates to anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol. 7, 739–743 (2021).

    Article  PubMed  Google Scholar 

  267. Hellmann, M. D. et al. Tumor mutational burden and efficacy of Nivolumab monotherapy and in combination with Ipilimumab in small-cell lung cancer. Cancer Cell 33, 853–861.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Wang, F. et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol. 5, 1504–1506 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Andre, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ma, X. et al. Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nat. Genet. 54, 996–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Bauer, J. et al. The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma. Nat. Commun. 13, 6401 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Weber, D. et al. Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nat. Biotechnol. 40, 1276–1284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Yoshihama, S. et al. NLRC5/CITA expression correlates with efficient response to checkpoint blockade immunotherapy. Sci. Rep. 11, 3258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Takahashi, A. et al. Tyrosine kinase inhibitors stimulate HLA class I expression by augmenting the IFNγ/STAT1 signaling in hepatocellular carcinoma cells. Front. Oncol. 11, 707473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Chang, C. H., Hammer, J., Loh, J. E., Fodor, W. L. & Flavell, R. A. The activation of major histocompatibility complex class I genes by interferon regulatory factor-1 (IRF-1). Immunogenetics 35, 378–384 (1992).

    Article  CAS  PubMed  Google Scholar 

  277. Kriegsman, B. A. et al. Frequent loss of IRF2 in cancers leads to immune evasion through decreased MHC class I antigen presentation and increased PD-L1 expression. J. Immunol. 203, 1999–2010 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Schaafsma, E., Fugle, C. M., Wang, X. & Cheng, C. Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy. Br. J. Cancer 125, 422–432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Jung, H. et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat. Commun. 10, 4278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Zhou, L., Mudianto, T., Ma, X., Riley, R. & Uppaluri, R. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer. Clin. Cancer Res. 26, 290–300 (2020).

    Article  CAS  PubMed  Google Scholar 

  281. Gambacorta, V. et al. Integrated multiomic profiling identifies the epigenetic regulator PRC2 as a therapeutic target to counteract leukemia immune escape and relapse. Cancer Discov. 12, 1449–1461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Zheng, J. et al. miR-148a-3p silences the CANX/MHC-I pathway and impairs CD8+ T cell-mediated immune attack in colorectal cancer. FASEB J. 35, e21776 (2021).

    Article  CAS  PubMed  Google Scholar 

  283. Song, D. et al. Insights into the role of ERp57 in cancer. J. Cancer 12, 2456–2464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Nielsen, M. et al. Coexisting alterations of MHC class I antigen presentation and IFNγ signaling mediate acquired resistance of melanoma to post-PD-1 immunotherapy. Cancer Immunol. Res. 10, 1254–1262 (2022).

    Article  CAS  PubMed  Google Scholar 

  285. Cromme, F. V. et al. Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J. Exp. Med. 179, 335–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  286. Seliger, B. et al. Reduced membrane major histocompatibility complex class I density and stability in a subset of human renal cell carcinomas with low TAP and LMP expression. Clin. Cancer Res. 2, 1427–1433 (1996).

    CAS  PubMed  Google Scholar 

  287. Kaklamanis, L. et al. Loss of major histocompatibility complex-encoded transporter associated with antigen presentation (TAP) in colorectal cancer. Am. J. Pathol. 145, 505–509 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Lopez de Castro, J. A. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins. Front. Immunol. 9, 2463 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from NIH grants R35CA232097 (T.A.C.), R01CA205426 (T.A.C.), U54CA274513 (T.A.C.) and T32CA094186 (K.Y.), a Young Investigator Award from ASCO Conquer Cancer Foundation (K.Y.), a RSNA Research Resident Grant (K.Y.), and a Cleveland Clinic VeloSano Impact Award (K.Y.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Timothy A. Chan.

Ethics declarations

Competing interests

T.A.C. is a co-founder of and holds equity in Gritstone Oncology; holds equity in An2H; acknowledges grant funding from An2H, AstraZeneca, Bristol Myers Squibb, Eisai, Illumina and Pfizer; has served as an advisor for An2H, AstraZeneca, Bristol Myers Squibb, Eisai, Illumina and MedImmune; and holds ownership of intellectual property on using tumour mutational burden to predict immunotherapy response, which has been licensed to PGDx. K.Y. and A.H. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks J. Balko and the other, anonymous, peer reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Halima, A. & Chan, T.A. Antigen presentation in cancer — mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 20, 604–623 (2023). https://doi.org/10.1038/s41571-023-00789-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00789-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer