Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles and implications of RNA m6A modification in cancer

Abstract

N6-Methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, has been extensively and increasingly studied over the past decade. Dysregulation of RNA m6A modification and its associated machinery, including writers, erasers and readers, is frequently observed in various cancer types, and the dysregulation profiles might serve as diagnostic, prognostic and/or predictive biomarkers. Dysregulated m6A modifiers have been shown to function as oncoproteins or tumour suppressors with essential roles in cancer initiation, progression, metastasis, metabolism, therapy resistance and immune evasion as well as in cancer stem cell self-renewal and the tumour microenvironment, highlighting the therapeutic potential of targeting the dysregulated m6A machinery for cancer treatment. In this Review, we discuss the mechanisms by which m6A modifiers determine the fate of target RNAs and thereby influence protein expression, molecular pathways and cell phenotypes. We also describe the state-of-the-art methodologies for mapping global m6A epitranscriptomes in cancer. We further summarize discoveries regarding the dysregulation of m6A modifiers and modifications in cancer, their pathological roles, and the underlying molecular mechanisms. Finally, we discuss m6A-related prognostic and predictive molecular biomarkers in cancer as well as the development of small-molecule inhibitors targeting oncogenic m6A modifiers and their activity in preclinical models.

Key points

  • Epitranscriptomics relates to the post-transcriptional regulation of RNAs involving >170 chemical modifications, constituting one of several regulatory layers controlling gene expression. N6-Methyladenosine (m6A) is a major epitranscriptomic modification that contributes to the dynamic regulation of every biological process.

  • m6A marks are reversibly added by writers and removed by erasers, and are recognized by readers; this machinery modulates RNA splicing, nuclear export, stability and translation to determine the fate of RNAs and thus ensure tight control over gene expression.

  • Advanced global characterization and mapping techniques that provide information on locus-specific changes in m6A modification are key to a deeper understanding of the wide-ranging roles of m6A in the regulation of gene expression.

  • Dysregulation of m6A modifiers (writers, erasers and readers) is common across cancer types and has essential roles in cancer initiation, progression, metastasis, metabolism, drug resistance and immune evasion as well as in the tumour microenvironment.

  • Aberrant expression of m6A modifiers in cancer has been associated with a poor prognosis, therapy resistance and impaired antitumour immunity, and might therefore provide biomarkers with independent predictive value for use in diagnosis, prognostication and treatment selection.

  • Preclinical data underscore the potential of small-molecule inhibitors of oncogenic m6A modifiers in the treatment of cancer, either alone or in combination with conventional chemotherapy or immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: m6A machinery and the RNA fates regulated by m6A methylation.
Fig. 2: Oncogenic roles of m6A modifiers.
Fig. 3: m6A modifiers with tumour-suppressor activity.
Fig. 4: m6A-dependent regulation of cancer metabolism and immune cells in the tumour microenvironment.
Fig. 5: Mechanisms underlying the dysregulation of RNA m6A modification and m6A-dependent processes in cancer.
Fig. 6: Potential applications of RNA m6A modifications as biomarkers in oncology.
Fig. 7: Small-molecule inhibitors targeting m6A modifiers.

Similar content being viewed by others

References

  1. Huang, H., Weng, H. & Chen, J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37, 270–288 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Qing, Y., Su, R. & Chen, J. RNA modifications in hematopoietic malignancies: a new research frontier. Blood 138, 637–648 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hsu, P. J. et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27, 1115–1127 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6, e31311 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    PubMed  Google Scholar 

  7. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    CAS  PubMed  Google Scholar 

  9. Huang, H. et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567, 414–419 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    CAS  PubMed  Google Scholar 

  11. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 534, 575–578 (2016).

    CAS  PubMed  Google Scholar 

  12. Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8, 284–296 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wen, J. et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028–1038.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yue, Y. et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4, 10 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Knuckles, P. et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32, 415–429 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Ma, H. et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).

    CAS  PubMed  Google Scholar 

  20. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    CAS  PubMed  Google Scholar 

  23. Huang, H. et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weng, H. et al. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell 40, 1566–1582.e10 (2022).

    CAS  PubMed  Google Scholar 

  25. Müller, S. et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 47, 375–390 (2018).

    PubMed Central  Google Scholar 

  26. Degrauwe, N. et al. The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 15, 1634–1647 (2016).

    CAS  PubMed  Google Scholar 

  27. Ennajdaoui, H. et al. IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC. Cell Rep. 15, 1876–1883 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, F. et al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum. Mol. Genet. 27, 3936–3950 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Alarcon, C. R. et al. HNRNPA2B1 Is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Arguello, A. E., DeLiberto, A. N. & Kleiner, R. E. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein-RNA interactome. J. Am. Chem. Soc. 139, 17249–17252 (2017).

    CAS  PubMed  Google Scholar 

  34. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS  PubMed  Google Scholar 

  35. Ke, S. et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes. Dev. 31, 990–1006 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bertero, A. et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555, 256–259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fish, L. et al. Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and decay. Mol. Cell 75, 967–981.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, L. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40, 1210–1219 (2022).

    CAS  PubMed  Google Scholar 

  40. Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

    CAS  PubMed  Google Scholar 

  41. Xiao, Y. L. et al. Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01587-6 (2023).

    Article  PubMed  Google Scholar 

  42. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, K. et al. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Ed. Engl. 54, 1587–1590 (2015).

    CAS  PubMed  Google Scholar 

  44. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Molinie, B. et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods 13, 692–698 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Koh, C. W. Q., Goh, Y. T. & Goh, W. S. S. Atlas of quantitative single-base-resolution N6-methyl-adenine methylomes. Nat. Commun. 10, 5636 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dierks, D. et al. Multiplexed profiling facilitates robust m6A quantification at site, gene and sample resolution. Nat. Methods 18, 1060–1067 (2021).

    CAS  PubMed  Google Scholar 

  49. Yin, R. et al. Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. Cell Stem Cell 29, 149–159.e7 (2022).

    CAS  PubMed  Google Scholar 

  50. Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia-Campos, M. A. et al. Deciphering the “m6A code” via antibody-independent quantitative profiling. Cell 178, 731–747.e16 (2019).

    CAS  PubMed  Google Scholar 

  52. Zhang, Z. et al. Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5, eaax0250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y., Xiao, Y., Dong, S., Yu, Q. & Jia, G. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat. Chem. Biol. 16, 896–903 (2020).

    CAS  PubMed  Google Scholar 

  54. Shu, X. et al. A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat. Chem. Biol. 16, 887–895 (2020).

    CAS  PubMed  Google Scholar 

  55. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    CAS  PubMed  Google Scholar 

  57. Deng, X. et al. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res. 28, 507–517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, H. L., Weng, H. Y., Deng, X. L. & Chen, J. J. RNA modifications in cancer: functions, mechanisms, and therapeutic implications. Annu. Rev. Cancer Biol. 4, 221–240 (2020).

    Google Scholar 

  59. Dong, S., Wu, Y., Liu, Y., Weng, H. & Huang, H. N6-methyladenosine steers RNA metabolism and regulation in cancer. Cancer Commun. 41, 538–559 (2021).

    Google Scholar 

  60. Zeng, C., Huang, W., Li, Y. & Weng, H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J. Hematol. Oncol. 13, 117 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Peng, W. et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway. J. Exp. Clin. Cancer Res. 38, 393 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Wang, Q. et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 69, 1193–1205 (2020).

    CAS  PubMed  Google Scholar 

  63. Choe, J. et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, Y. et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat. Commun. 13, 6350 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, M. et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67, 2254–2270 (2018).

    CAS  PubMed  Google Scholar 

  66. Xiong, J. et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol. Cell 82, 1660–1677.e10 (2022).

    CAS  PubMed  Google Scholar 

  67. Du, Y. et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 46, 5195–5208 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vu, L. P. et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62, 335–345 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wei, X. et al. METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis. Nat. Cell Biol. 24, 1278–1290 (2022).

    CAS  PubMed  Google Scholar 

  72. Sorci, M. et al. METTL3 regulates WTAP protein homeostasis. Cell Death Dis. 9, 796 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Weng, H. et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22, 191–205.e9 (2018).

    CAS  PubMed  Google Scholar 

  74. Wang, M. et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol. Cancer 19, 130 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, H., Yin, K., Zhang, Y., Tian, J. & Wang, S. The RNA m6A writer METTL14 in cancers: roles, structures, and applications. Biochim. Biophys. Acta Rev. Cancer 1876, 188609 (2021).

    CAS  PubMed  Google Scholar 

  76. Lang, F. et al. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog. 15, e1007796 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bansal, H. et al. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia 28, 1171–1174 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu, C. et al. miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway. Int. J. Biol. Sci. 16, 2853–2867 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Naren, D. et al. High Wilms’ tumor 1 associating protein expression predicts poor prognosis in acute myeloid leukemia and regulates m6A methylation of MYC mRNA. J. Cancer Res. Clin. Oncol. 147, 33–47 (2021).

    CAS  PubMed  Google Scholar 

  80. Chen, Y. et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol. Cancer 18, 127 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Lyu, Y. et al. HIF-1α regulated WTAP overexpression promoting the Warburg effect of ovarian cancer by m6A-dependent manner. J. Immunol. Res. 2022, 6130806 (2022).

    PubMed  PubMed Central  Google Scholar 

  82. Li, Z. X. et al. WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ. 29, 1137–1151 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Villa, E. et al. mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis. Mol. Cell 81, 2076–2093.e9 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cho, S. et al. mTORC1 promotes cell growth via m6A-dependent mRNA degradation. Mol. Cell 81, 2064–2075.e8 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zeng, X. et al. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma. Nat. Cancer 3, 1088–1104 (2022).

    CAS  PubMed  Google Scholar 

  86. Su, R. et al. METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nat. Cell Biol. 24, 205–216 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, X. K. et al. METTL16 promotes cell proliferation by up-regulating cyclin D1 expression in gastric cancer. J. Cell Mol. Med. 25, 6602–6617 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dai, Y. Z. et al. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an m6A-dependent manner. Cell Mol. Biol. Lett. 27, 41 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Han, L. et al. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell 30, 52–68.e13 (2023).

    CAS  PubMed  Google Scholar 

  90. Li, Y., Su, R., Deng, X., Chen, Y. & Chen, J. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8, 598–614 (2022).

    PubMed  Google Scholar 

  91. Weng, H., Huang, H. & Chen, J. RNA N6-methyladenosine modification in normal and malignant hematopoiesis. Adv. Exp. Med. Biol. 1143, 75–93 (2019).

    CAS  PubMed  Google Scholar 

  92. Su, R. et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38, 79–96.e11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).

    PubMed  Google Scholar 

  94. Qing, Y. et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Mol. Cell 81, 922–939.e9 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 172, 90–105.e23 (2018).

    CAS  PubMed  Google Scholar 

  96. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691.e10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cui, Y. H. et al. Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat. Commun. 12, 2183 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, S. et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat. Commun. 10, 2782 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Zhang, C. et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc. Natl Acad. Sci. USA 113, E2047–E2056 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, S. et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591–606.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shen, C. et al. RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell 27, 64–80.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, J. et al. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell 27, 81–97.e8 (2020).

    PubMed  Google Scholar 

  103. Chen, G. et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis 9, 81 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dong, F. et al. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 81, 5876–5888 (2021).

    CAS  PubMed  Google Scholar 

  105. Paris, J. et al. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25, 137–148.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Cheng, Y. et al. N6-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 39, 958–972.e8 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sheng, Y. et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication. Blood 138, 2838–2852 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, Z. H. et al. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis. 11, 566 (2020).

    PubMed  PubMed Central  Google Scholar 

  109. Li, Z. et al. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 28, 904–917 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yao, X. et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death Dis. 13, 258 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chang, G. et al. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell 38, 857–871.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dixit, D. et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 11, 480–499 (2021).

    CAS  PubMed  Google Scholar 

  113. Fang, R. et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat. Commun. 12, 177 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 181, 1582–1595.e18 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lasman, L. et al. Context-dependent functional compensation between Ythdf m6A reader proteins. Genes Dev. 34, 1373–1391 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kontur, C., Jeong, M., Cifuentes, D. & Giraldez, A. J. Ythdf m6A readers function redundantly during zebrafish development. Cell Rep. 33, 108598 (2020).

    CAS  PubMed  Google Scholar 

  117. Ni, W. et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol. Cancer 18, 143 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Li, H. et al. Downregulation of microRNA-6125 promotes colorectal cancer growth through YTHDF2-dependent recognition of N6-methyladenosine-modified GSK3β. Clin. Transl. Med. 11, e602 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, S. et al. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology 162, 1183–1196 (2022).

    CAS  PubMed  Google Scholar 

  120. Wang, Z. L. et al. Comprehensive genomic characterization of RNA-binding proteins across human cancers. Cell Rep. 22, 286–298 (2018).

    CAS  PubMed  Google Scholar 

  121. Bell, J. L. et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol. Life Sci. 70, 2657–2675 (2013).

    CAS  PubMed  Google Scholar 

  122. Ramesh-Kumar, D. & Guil, S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin. Cancer Biol. 86, 18–31 (2022).

    CAS  PubMed  Google Scholar 

  123. Wallis, N. et al. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. RNA Biol. 19, 26–43 (2022).

    CAS  PubMed  Google Scholar 

  124. Weidensdorfer, D. et al. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 15, 104–115 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, Y. et al. m6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol. Cancer 18, 185 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. An, M. X. et al. BAG3 directly stabilizes Hexokinase 2 mRNA and promotes aerobic glycolysis in pancreatic cancer cells. J. Cell Biol. 216, 4091–4105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, Z. et al. N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat. Commun. 11, 2578 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lu, S. et al. N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: implication in colorectal cancer. J. Hematol. Oncol. 14, 188 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, R. X. et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun. 10, 4695 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. Du, A. et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol. Cancer 21, 109 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Oliveira-Mateos, C. et al. The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat. Commun. 10, 3979 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. Li, B. et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat. Commun. 12, 295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Jiang, F. et al. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J. Hematol. Oncol. 14, 54 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu, H. et al. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol. Cancer 21, 74 (2022).

    PubMed  PubMed Central  Google Scholar 

  135. Ma, J. Z. et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology 65, 529–543 (2017).

    CAS  PubMed  Google Scholar 

  136. Shi, Y., Zhuang, Y., Zhang, J., Chen, M. & Wu, S. METTL14 inhibits hepatocellular carcinoma metastasis through regulating EGFR/PI3K/AKT signaling pathway in an m6A-dependent manner. Cancer Manag. Res. 12, 13173–13184 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, J. et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20, 1074–1083 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, C. et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics 11, 3676–3693 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, T. et al. Methyltransferase-like 14 suppresses growth and metastasis of renal cell carcinoma by decreasing long noncoding RNA NEAT1. Cancer Sci. 113, 446–458 (2022).

    CAS  PubMed  Google Scholar 

  140. Zhang, L., Luo, X. & Qiao, S. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br. J. Cancer 127, 30–42 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, X. et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol. Cancer 19, 106 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, H. et al. TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRDC4. Cell Death Dis. 13, 3 (2021).

    PubMed  PubMed Central  Google Scholar 

  143. Yang, X. et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol. Cancer 19, 46 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gu, C. et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1. Mol. Cancer 18, 168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Guo, X. et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol. Cancer 19, 91 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Huang, R. et al. RNA m6A demethylase ALKBH5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism. Front. Cell Dev. Biol. 9, 724282 (2021).

    PubMed  PubMed Central  Google Scholar 

  147. Ma, L. et al. The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J. Exp. Clin. Cancer Res. 41, 36 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Jin, D. et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol. Cancer 19, 40 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen, Y. et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol. Cancer 19, 123 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu, H. et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2alpha-mediated glycolysis. Mol. Ther. Nucleic Acids 23, 27–41 (2021).

    CAS  PubMed  Google Scholar 

  151. Yuan, Y. et al. ALKBH5 suppresses tumor progression via an m6A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma. Cell Death Dis. 12, 60 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. He, Y. et al. ALKBH5-mediated m6A demethylation of KCNK15-AS1 inhibits pancreatic cancer progression via regulating KCNK15 and PTEN/AKT signaling. Cell Death Dis. 12, 1121 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tang, B. et al. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol. Cancer 19, 3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, X. et al. SIRT1 Regulates N6-methyladenosine RNA modification in hepatocarcinogenesis by inducing RANBP2-dependent FTO SUMOylation. Hepatology 72, 2029–2050 (2020).

    CAS  PubMed  Google Scholar 

  155. Liu, L. et al. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol. Cancer 21, 149 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Huang, H. et al. FTO-Dependent N6-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Res. 80, 3200–3214 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Huang, J. et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J. Exp. Clin. Cancer Res. 41, 42 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hou, J. et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol. Cancer 18, 163 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Zhong, L. et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 442, 252–261 (2019).

    CAS  PubMed  Google Scholar 

  160. Wang, J. et al. Downregulation of m6A reader YTHDC2 promotes the proliferation and migration of malignant lung cells via CYLD/NF-κB pathway. Int. J. Biol. Sci. 17, 2633–2651 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hou, Y. et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ. 28, 3105–3124 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    PubMed  Google Scholar 

  164. Shen, C. et al. m6A-dependent glycolysis enhances colorectal cancer progression. Mol. Cancer 19, 72 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, W. et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nat. Commun. 12, 3803 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, Q. et al. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 11, 911 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Du, L. et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Cancer Res. 81, 3822–3834 (2021).

    CAS  PubMed  Google Scholar 

  168. Lin, J. X. et al. m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer. Cell Death Dis. 13, 463 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu, Y. et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 33, 1221–1233.e11 (2021).

    CAS  PubMed  Google Scholar 

  170. Liu, H. et al. ALKBH5-mediated m6A demethylation of GLUT4 mRNA promotes glycolysis and resistance to HER2-targeted therapy in breast cancer. Cancer Res. 82, 3974–3986 (2022).

    CAS  PubMed  Google Scholar 

  171. Xiao, Y. et al. The m6A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proc. Natl Acad. Sci. USA 117, 21441–21449 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zuo, X. et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J. Hematol. Oncol. 13, 5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu, P. et al. m6A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics 12, 6291–6307 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sepich-Poore, C. et al. The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. J. Biol. Chem. 298, 101590 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, L. et al. NADP modulates RNA m6A methylation and adipogenesis via enhancing FTO activity. Nat. Chem. Biol. 16, 1394–1402 (2020).

    CAS  PubMed  Google Scholar 

  176. Li, N. et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc. Natl Acad. Sci. USA 117, 20159–20170 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Qiu, X. et al. M6A demethylase ALKBH5 regulates PD-L1 expression and tumor immunoenvironment in intrahepatic cholangiocarcinoma. Cancer Res. 81, 4778–4793 (2021).

    CAS  PubMed  Google Scholar 

  178. Liu, Y. et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment. ACS Cent. Sci. 8, 1102–1115 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Bai, X. et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J. Immunother. Cancer 10, e003663 (2022).

    PubMed  PubMed Central  Google Scholar 

  180. Li, H. B. et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Tong, J. et al. m6A mRNA methylation sustains Treg suppressive functions. Cell Res. 28, 253–256 (2018).

    PubMed  PubMed Central  Google Scholar 

  182. Yao, Y. et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nat. Commun. 12, 1333 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhou, J. et al. m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity. Sci. Adv. 7, eabg0470 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Song, H. et al. METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat. Commun. 12, 5522 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, H. et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat. Commun. 10, 1898 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Yin, H. et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat. Commun. 12, 1394 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Tong, J. et al. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation. Sci. Adv. 7, eabd4742 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Dong, L. et al. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth. Cancer Cell 39, 945–957.e10 (2021).

    CAS  PubMed  Google Scholar 

  189. Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu, J. et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50, 600–615.e15 (2019).

    CAS  PubMed  Google Scholar 

  191. Ma, S. et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J. Exp. Med. 218, e20210279 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Feinberg, A. P., Koldobskiy, M. A. & Gondor, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Xiao, Q. et al. Mutant NPM1-regulated FTO-mediated m6A demethylation promotes leukemic cell survival via PDGFRB/ERK signaling axis. Front. Oncol. 12, 817584 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, P., Doxtader, K. A. & Nam, Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63, 306–317 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Tang, Y. et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 49, D134–D143 (2021).

    CAS  PubMed  Google Scholar 

  196. Uddin, M. B. et al. An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem. Pharmacol. 160, 134–145 (2019).

    CAS  PubMed  Google Scholar 

  197. Tian, J. et al. ANKLE1 N6-methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int. J. Cancer 146, 3281–3293 (2020).

    CAS  PubMed  Google Scholar 

  198. Li, Q. et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal. Transduct. Target. Ther. 6, 76 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhu, L. et al. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis. 10, 383 (2019).

    PubMed  PubMed Central  Google Scholar 

  200. Cai, X. et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 415, 11–19 (2018).

    CAS  PubMed  Google Scholar 

  201. Yang, Z. et al. MicroRNA-145 modulates N6-methyladenosine levels by targeting the 3′-untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein. J. Biol. Chem. 292, 3614–3623 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Scholler, E. et al. Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA 24, 499–512 (2018).

    PubMed  PubMed Central  Google Scholar 

  203. Yu, F. et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 49, 5779–5797 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, J. et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun. 10, 1858 (2019).

    PubMed  PubMed Central  Google Scholar 

  205. Xia, T. L. et al. N6-Methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep. 22, e50128 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Li, T. et al. Methionine deficiency facilitates antitumour immunity by altering m6A methylation of immune checkpoint transcripts. Gut 72, 501–511 (2023).

    CAS  PubMed  Google Scholar 

  207. Chen, H. et al. RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology 160, 1284–1300.e16 (2021).

    CAS  PubMed  Google Scholar 

  208. Cai, C. et al. M6A “Writer” Gene METTL14: a favorable prognostic biomarker and correlated with immune infiltrates in rectal cancer. Front. Oncol. 11, 615296 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Yue, B. et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol. Cancer 18, 142 (2019).

    PubMed  PubMed Central  Google Scholar 

  210. Du, Y. et al. An m6A-related prognostic biomarker associated with the hepatocellular carcinoma immune microenvironment. Front. Pharmacol. 12, 707930 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, H., Zhao, X. & Lu, Z. m6a RNA methylation regulators Act as potential prognostic biomarkers in lung adenocarcinoma. Front. Genet. 12, 622233 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Lin, S. et al. Prognosis analysis and validation of m6A signature and tumor immune microenvironment in glioma. Front. Oncol. 10, 541401 (2020).

    PubMed  PubMed Central  Google Scholar 

  213. Guan, K. et al. Expression status and prognostic value of m6A-associated genes in gastric cancer. J. Cancer 11, 3027–3040 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Xu, C., He, T., Shao, X., Gao, L. & Cao, L. m6A-related lncRNAs are potential biomarkers for the prognosis of COAD patients. Front. Oncol. 12, 920023 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Tu, Z. et al. N6-Methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients. Front. Cell Dev. Biol. 8, 642 (2020).

    PubMed  PubMed Central  Google Scholar 

  216. Lv, W. et al. Identification and validation of m6A-related lncRNA signature as potential predictive biomarkers in breast cancer. Front. Oncol. 11, 745719 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhang, B. et al. m6A target microRNAs in serum for cancer detection. Mol. Cancer 20, 170 (2021).

    PubMed  PubMed Central  Google Scholar 

  218. Xu, X. et al. METTL3-mediated m6A mRNA contributes to the resistance of carbon-ion radiotherapy in non-small-cell lung cancer. Cancer Sci. 114, 105–114 (2023).

    CAS  PubMed  Google Scholar 

  219. Visvanathan, A. et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37, 522–533 (2018).

    CAS  PubMed  Google Scholar 

  220. Wu, P. et al. N6-methyladenosine modification of circCUX1 confers radioresistance of hypopharyngeal squamous cell carcinoma through caspase1 pathway. Cell Death Dis. 12, 298 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhou, S. et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation. Mol. Carcinog. 57, 590–597 (2018).

    CAS  PubMed  Google Scholar 

  222. Kowalski-Chauvel, A. et al. The m6A RNA demethylase ALKBH5 promotes radioresistance and invasion capability of glioma stem cells. Cancers 13, 40 (2020).

    PubMed  PubMed Central  Google Scholar 

  223. Zhang, K. et al. N6-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics 12, 4802–4817 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Taketo, K. et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int. J. Oncol. 52, 621–629 (2018).

    PubMed  Google Scholar 

  225. Wen, L., Pan, X., Yu, Y. & Yang, B. Down-regulation of FTO promotes proliferation and migration, and protects bladder cancer cells from cisplatin-induced cytotoxicity. BMC Urol. 20, 39 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhang, Z. et al. m6A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer. J. Hematol. Oncol. 14, 190 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhang, Z. et al. m6A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer. BMC Med. 19, 284 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Cai, Z. et al. Identification of an N6-methyladenosine (m6A)-related signature associated with clinical prognosis, immune response, and chemotherapy in primary glioblastomas. Ann. Transl. Med. 9, 1241 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, X. et al. The prognostic value and multiomic features of m6A-related risk signature in lung adenocarcinoma. Am. J. Transl. Res. 14, 5379–5393 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Yan, F. et al. A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res. 28, 1062–1076 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Bhattarai, P. Y., Kim, G., Poudel, M., Lim, S. C. & Choi, H. S. METTL3 induces PLX4032 resistance in melanoma by promoting m6A-dependent EGFR translation. Cancer Lett. 522, 44–56 (2021).

    CAS  PubMed  Google Scholar 

  232. Fukumoto, T. et al. N(6)-Methylation of adenosine of FZD10 mRNA contributes to PARP inhibitor resistance. Cancer Res. 79, 2812–2820 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Li, X., Ma, S., Deng, Y., Yi, P. & Yu, J. Targeting the RNA m6A modification for cancer immunotherapy. Mol. Cancer 21, 76 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Zou, C., He, Q., Feng, Y., Chen, M. & Zhang, D. A m6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy response. NAR Cancer 4, zcac010 (2022).

    PubMed  PubMed Central  Google Scholar 

  235. Zhang, Z. et al. m6A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer. BMC Med. 19, 284 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Yu, M. et al. Comprehensive evaluation of the m6A regulator prognostic risk score in the prediction of immunotherapy response in clear cell renal cell carcinoma. Front. Immunol. 13, 818120 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Wang, L. et al. m6 A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 39, e104514 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Han, Z. et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464, 1205–1209 (2010).

    CAS  PubMed  Google Scholar 

  239. Zhou, L. L., Xu, H., Huang, Y. & Yang, C. G. Targeting the RNA demethylase FTO for cancer therapy. RSC Chem. Biol. 2, 1352–1369 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Chen, B. et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J. Am. Chem. Soc. 134, 17963–17971 (2012).

    CAS  PubMed  Google Scholar 

  241. Huang, Y. et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43, 373–384 (2015).

    CAS  PubMed  Google Scholar 

  242. Cui, Q. et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18, 2622–2634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Xiao, L. et al. FTO inhibition enhances the antitumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in glioma. Cancer Res. 80, 3945–3958 (2020).

    CAS  PubMed  Google Scholar 

  244. Dong, L. et al. Relaxed initiation pausing of ribosomes drives oncogenic translation. Sci. Adv. 7, eabd6927 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Huff, S., Tiwari, S. K., Gonzalez, G. M., Wang, Y. & Rana, T. M. m6A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem. Biol. 16, 324–333 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Huff, S. et al. Rational design and optimization of m6A-RNA demethylase FTO inhibitors as anticancer agents. J. Med. Chem. 65, 10920–10937 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Zheng, G. et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem. Neurosci. 5, 658–665 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Singh, B. et al. Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS ONE 11, e0159072 (2016).

    PubMed  PubMed Central  Google Scholar 

  249. Fang, Z. et al. Discovery of a potent, selective and cell active inhibitor of m6A demethylase ALKBH5. Eur. J. Med. Chem. 238, 114446 (2022).

    CAS  PubMed  Google Scholar 

  250. Selberg, S., Seli, N., Kankuri, E. & Karelson, M. Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors. ACS Omega 6, 13310–13320 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Malacrida, A. et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg. Med. Chem. 28, 115300 (2020).

    CAS  PubMed  Google Scholar 

  252. Bedi, R. K. et al. Small-molecule inhibitors of METTL3, the major human epitranscriptomic writer. ChemMedChem 15, 744–748 (2020).

    CAS  PubMed  Google Scholar 

  253. Moroz-Omori, E. V. et al. METTL3 inhibitors for epitranscriptomic modulation of cellular processes. ChemMedChem 16, 3035–3043 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Dolbois, A. et al. 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J. Med. Chem. 64, 12738–12760 (2021).

    CAS  PubMed  Google Scholar 

  255. Mahapatra, L., Andruska, N., Mao, C., Le, J. & Shapiro, D. J. A novel IMP1 inhibitor, BTYNB, targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation. Transl. Oncol. 10, 818–827 (2017).

    PubMed  PubMed Central  Google Scholar 

  256. Feng, P. et al. Inhibition of the m6A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia 36, 2180–2188 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Liu, J. et al. N6-Methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Wei, J. et al. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science 376, 968–973 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is partly supported by the US National Institutes of Health (NIH) grants R01 CA271497 and R01 CA 243386 (to J.C.), and a grant from the National Natural Science Foundation of China (82173058, to H.H.). We apologize to the researchers whose work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

J.C. researched data for the article and organized the content. X.D., H.H. and J.C. made substantial contributions to the discussion of content. X.D., Y.Q., H.H. and J.C. wrote the manuscript. All the authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Xiaolan Deng, Huilin Huang or Jianjun Chen.

Ethics declarations

Competing interests

J.C. is a scientific advisory board member of Race Oncology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks Stefan Hüttelmaier and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Qing, Y., Horne, D. et al. The roles and implications of RNA m6A modification in cancer. Nat Rev Clin Oncol 20, 507–526 (2023). https://doi.org/10.1038/s41571-023-00774-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00774-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer