Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional precision oncology using patient-derived assays: bridging genotype and phenotype

Abstract

Genomics-based precision medicine has revolutionized oncology but also has inherent limitations. Functional precision oncology is emerging as a complementary approach that aims to bridge the gap between genotype and phenotype by modelling individual tumours in vitro. These patient-derived ex vivo models largely preserve several tumour characteristics that are not captured by genomics approaches and enable the functional dissection of tumour vulnerabilities in a personalized manner. In this Review, we discuss several examples of personalized functional assays involving tumour organoids, spheroids and explants and their potential to predict treatment responses and drug-induced toxicities in individual patients. These developments have opened exciting new avenues for precision oncology, with the potential for successful clinical applications in contexts in which genomic data alone are not informative. To implement these assays into clinical practice, we outline four key barriers that need to be overcome: assay success rates, turnaround times, the need for standardized conditions and the definition of in vitro responders. Furthermore, we discuss novel technological advances such as microfluidics that might reduce sample requirements, assay times and labour intensity and thereby enable functional precision oncology to be implemented in routine clinical practice.

Key points

  • The use of personalized tumour models as patient avatars has the potential to individualize cancer care.

  • Different personalized tumour models have been established, including organoids, spheroids and explants. These models have key differences that need to be considered when designing a functional assay.

  • Early studies have identified important factors that impede clinical implementation; technological developments such as microfluidics technology might also help to overcome these hurdles.

  • Further prospective clinical trials will be needed to enable the clinical implementation of personalized functional assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: From genotype to phenotype.
Fig. 2: Patient-derived ex vivo tumour models.

Similar content being viewed by others

References

  1. Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 21, 271–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirsch, F. R. et al. Lung cancer: current therapies and new targeted treatments. Lancet 389, 299–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Flaherty, K. T. et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). J. Clin. Oncol. 38, 3883–3894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conley, B. A. & Doroshow, J. H. Molecular analysis for therapy choice: NCI MATCH. Semin. Oncol. 41, 297–299 (2014).

    Article  PubMed  Google Scholar 

  8. Sicklick, J. K. et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat. Med. 25, 744–750 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Massard, C. et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 7, 586–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Hoes, L. R. et al. Patients with rare cancers in the drug rediscovery protocol (DRUP) benefit from genomics-guided treatment. Clin. Cancer Res. 28, 1402–1411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Velden, D. L. et al. The Drug Rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 574, 127–131 (2019).

    Article  PubMed  Google Scholar 

  12. Mangat, P. K. et al. Rationale and design of the targeted agent and profiling utilization registry (TAPUR) study. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00122 (2018).

  13. Cobain, E. F. et al. Assessment of clinical benefit of integrative genomic profiling in advanced solid tumors. JAMA Oncol. 7, 525–533 (2021).

    PubMed  Google Scholar 

  14. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weeber, F. et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl Acad. Sci. USA 112, 13308–13311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huo, K. G., D’Arcangelo, E. & Tsao, M. S. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl. Lung Cancer Res. 9, 2214–2232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kodack, D. P. et al. Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Rep. 21, 3298–3309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gazdar, A. F., Gao, B. & Minna, J. D. Lung cancer cell lines: useless artifacts or invaluable tools for medical science? Lung Cancer 68, 309–318 (2010).

    Article  PubMed  Google Scholar 

  24. Wilding, J. L. & Bodmer, W. F. Cancer cell lines for drug discovery and development. Cancer Res. 74, 2377–2384 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Zanella, E. R., Grassi, E. & Trusolino, L. Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-022-00682-6 (2022).

    Article  PubMed  Google Scholar 

  26. Zitvogel, L., Pitt, J. M., Daillere, R., Smyth, M. J. & Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer 16, 759–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Ireson, C. R., Alavijeh, M. S., Palmer, A. M., Fowler, E. R. & Jones, H. J. The role of mouse tumour models in the discovery and development of anticancer drugs. Br. J. Cancer 121, 101–108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Olson, B., Li, Y., Lin, Y., Liu, E. T. & Patnaik, A. Mouse models for cancer immunotherapy research. Cancer Discov. 8, 1358–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J.-K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet. 50, 1399–1411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15, 3380–3409 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136.e6 (2015).

    Article  PubMed  Google Scholar 

  39. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sachs, N. et al. A Living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article  PubMed  Google Scholar 

  46. Nagle, P. W. & Coppes, R. P. Current and future perspectives of the use of organoids in radiobiology. Cells 9, 2649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, P. et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer. Adv. Sci. 8, e2101176 (2021).

    Article  Google Scholar 

  48. Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay2574 (2019).

    Article  PubMed  Google Scholar 

  49. Narasimhan, V. et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin. Cancer Res. 26, 3662–3670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Pasch, C. A. et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin. Cancer Res. 25, 5376–5387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Steele, N. G. et al. An organoid-based preclinical model of human gastric cancer. Cell Mol. Gastroenterol. Hepatol. 7, 161–184 (2019).

    Article  PubMed  Google Scholar 

  56. Karakasheva, T. A. et al. Patient-derived organoids as a platform for modeling a patient’s response to chemoradiotherapy in esophageal cancer. Sci. Rep. 11, 21304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188–204.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Mazzocchi, A. R., Rajan, S. A. P., Votanopoulos, K. I., Hall, A. R. & Skardal, A. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Sci. Rep. 8, 2886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kopper, O. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25, 838–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. de Witte, C. J. et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep. 31, 107762 (2020).

    Article  PubMed  Google Scholar 

  61. Phan, N. et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun. Biol. 2, 78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seppala, T. T. et al. Precision medicine in pancreatic cancer: patient-derived organoid pharmacotyping is a predictive biomarker of clinical treatment response. Clin. Cancer Res. 28, 3296–3307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Driehuis, E. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl Acad. Sci. USA 116, 26580–26590 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beutel, A. K. et al. A prospective feasibility trial to challenge patient-derived pancreatic cancer organoids in predicting treatment response. Cancers https://doi.org/10.3390/cancers13112539 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu, Y. H. et al. Correlation between drug sensitivity profiles of circulating tumour cell-derived organoids and clinical treatment response in patients with pancreatic ductal adenocarcinoma. Eur. J. Cancer 166, 208–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, J. H. et al. Establishment of patient-derived pancreatic cancer organoids from endoscopic ultrasound-guided fine-needle aspiration biopsies. Gut Liver 16, 625–636 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Dijkstra, K. K. et al. Patient-derived organoid models of human neuroendocrine carcinoma. Front. Endocrinol. 12, 627819 (2021).

    Article  Google Scholar 

  69. Puca, L. et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat. Commun. 9, 2404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kim, S. Y. et al. Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin. Cancer Res. 27, 4397–4409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin, K. C. et al. Ex vivo expanded circulating tumor cells for clinical anti-cancer drug prediction in patients with head and neck cancer. Cancers https://doi.org/10.3390/cancers13236076 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Veninga, V. & Voest, E. E. Tumor organoids: opportunities and challenges to guide precision medicine. Cancer Cell 39, 1190–1201 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ooft, S. N. et al. Prospective experimental treatment of colorectal cancer patients based on organoid drug responses. ESMO Open https://doi.org/10.1016/j.esmoop.2021.100103 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lenos, K. J. et al. Molecular characterization of colorectal cancer related peritoneal metastatic disease. Nat. Commun. 13, 4443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ryter, A. & Whitehouse, R. Uracil incorporation in the forespore and the mother cell during spore development in Bacillus subtilis. Autoradiographic electron microscopic study. Arch. Microbiol. 118, 27–34 (1978).

    Article  CAS  PubMed  Google Scholar 

  77. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Votanopoulos, K. I. et al. Model of patient-specific immune-enhanced organoids for immunotherapy screening: feasibility study. Ann. Surg. Oncol. 27, 1956–1967 (2020).

    Article  PubMed  Google Scholar 

  79. Forsythe, S. D. et al. Organoid platform in preclinical investigation of personalized immunotherapy efficacy in appendiceal cancer: feasibility study. Clin. Cancer Res. 27, 5141–5150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sutherland, R. M., McCredie, J. A. & Inch, W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl Cancer Inst. 46, 113–120 (1971).

    CAS  PubMed  Google Scholar 

  82. Lee, J. M. et al. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci. Rep. 8, 17145 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu, D., Chen, S. & Win Naing, M. A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol. Bioeng. 118, 542–554 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Aref, A. R. et al. 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab Chip 18, 3129–3143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yin, S. et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz1723 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ding, S. et al. Patient-derived micro-organospheres recapitulate tumor microenvironment and heterogeneity for precision oncology. J. Clin. Oncol. 39, 3076–3076 (2021).

    Article  Google Scholar 

  87. Linxweiler, J. et al. Patient-derived, three-dimensional spheroid cultures provide a versatile translational model for the study of organ-confined prostate cancer. J. Cancer Res. Clin. Oncol. 145, 551–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Mukundan, S. et al. Automated assessment of cancer drug efficacy on breast tumor spheroids in Aggrewell400 plates using image cytometry. J. Fluoresc. 32, 521–531 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Della Corte, C. M. et al. Antitumor activity of dual blockade of PD-L1 and MEK in NSCLC patients derived three-dimensional spheroid cultures. J. Exp. Clin. Cancer Res. 38, 253 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yamamoto, T. et al. Chemosensitivity of patient-derived cancer stem cells identifies colorectal cancer patients with potential benefit from FGFR inhibitor therapy. Cancers https://doi.org/10.3390/cancers12082010 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Banda, M., McKim, K. L., Myers, M. B., Inoue, M. & Parsons, B. L. Outgrowth of erlotinib-resistant subpopulations recapitulated in patient-derived lung tumor spheroids and organoids. PLoS ONE 15, e0238862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, H. et al. Short-term organoid culture for drug sensitivity testing of high-grade serous carcinoma. Gynecol. Oncol. 157, 783–792 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hofmann, S., Cohen-Harazi, R., Maizels, Y. & Koman, I. Patient-derived tumor spheroid cultures as a promising tool to assist personalized therapeutic decisions in breast cancer. Transl. Cancer Res. 11, 134–147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Di Liello, R. et al. Ex vivo lung cancer spheroids resemble treatment response of a patient with NSCLC to chemotherapy and immunotherapy: case report and translational study. ESMO Open 4, e000536 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee, H. L. et al. Ex vivo expansion and drug sensitivity profiling of circulating tumor cells from patients with small cell lung cancer. Cancers https://doi.org/10.3390/cancers12113394 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Halfter, K. et al. Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy — the SpheroNEO study. BMC Cancer 15, 519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Shuford, S. et al. Prospective validation of an ex vivo, patient-derived 3D spheroid model for response predictions in newly diagnosed ovarian cancer. Sci. Rep. 9, 11153 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gupta, D., Lammersfeld, C. A., Vashi, P. G. & Braun, D. P. Longitudinal monitoring of CA125 levels provides additional information about survival in ovarian cancer. J. Ovarian Res. 3, 22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gupta, D. & Lis, C. G. Role of CA125 in predicting ovarian cancer survival — a review of the epidemiological literature. J. Ovarian Res. 2, 13 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Reed, M. R. et al. A functional precision medicine pipeline combines comparative transcriptomics and tumor organoid modeling to identify bespoke treatment strategies for glioblastoma. Cells 10, 3400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Powley, I. R. et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br. J. Cancer 122, 735–744 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shafi, A. A. et al. Patient-derived models reveal impact of the tumor microenvironment on therapeutic response. Eur. Urol. Oncol. 1, 325–337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Templeton, A. R. et al. Patient-derived explants as a precision medicine patient-proximal testing platform informing cancer management. Front. Oncol. 11, 767697 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Furukawa, T., Kubota, T. & Hoffman, R. M. Clinical applications of the histoculture drug response assay. Clin. Cancer Res. 1, 305–311 (1995).

    CAS  PubMed  Google Scholar 

  106. Yoshimasu, T. et al. [Histoculture drug response assay (HDRA) guided induction concurrent chemoradiotherapy for mediastinal node-positive non-small cell lung cancer]. Gan Kagaku Ryoho 30, 231–235 (2003).

    Google Scholar 

  107. Hayashi, Y. et al. Class III beta-tubulin expression in tumor cells is correlated with resistance to docetaxel in patients with completely resected non-small-cell lung cancer. Intern. Med. 48, 203–208 (2009).

    Article  PubMed  Google Scholar 

  108. Tanahashi, M., Yamada, T., Moriyama, S., Suzuki, E. & Niwa, H. [The effect of the histoculture drug response assay (HDRA) based perioperative chemotherapy for non-small cell lung cancer]. Kyobu Geka 61, 26–30 (2008).

    PubMed  Google Scholar 

  109. Cai, H. et al. Cancer chemoprevention: evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci. Transl. Med. 7, 298ra117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Busacca, S. et al. Resistance to HSP90 inhibition involving loss of MCL1 addiction. Oncogene 35, 1483–1492 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Kolluri, K. K. et al. Loss of functional BAP1 augments sensitivity to TRAIL in cancer cells. eLife 7, e30224 (2018).

    Google Scholar 

  112. Kokkinos, J. et al. Ex vivo culture of intact human patient derived pancreatic tumour tissue. Sci. Rep. 11, 1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Karekla, E. et al. Ex vivo explant cultures of non-small cell lung carcinoma enable evaluation of primary tumor responses to anticancer therapy. Cancer Res. 77, 2029–2039 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Ricciardelli, C. et al. Novel ex vivo ovarian cancer tissue explant assay for prediction of chemosensitivity and response to novel therapeutics. Cancer Lett. 421, 51–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Majumder, B. et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 6, 6169 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Pages, F. et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27, 5944–5951 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Mlecnik, B. et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 29, 610–618 (2011).

    Article  PubMed  Google Scholar 

  118. Galon, J., Angell, H. K., Bedognetti, D. & Marincola, F. M. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39, 11–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Cottrell, T. R. et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann. Oncol. 29, 1853–1860 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Van Oekelen, O. & Laganà, A. in Computational Methods for Precision Oncology (ed. Laganà, A.) 283–326 (Springer International Publishing, 2022).

  125. Kamer, I. et al. Immunotherapy response modeling by ex-vivo organ culture for lung cancer. Cancer Immunol. Immunother. 70, 2223–2234 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Ribas, A. et al. PD-1 blockade expands intratumoral memory T cells. Cancer Immunol. Res. 4, 194–203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dijkstra, K. K. et al. Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep. 31, 107588 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Aisenbrey, E. A. & Murphy, W. L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5, 539–551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schumacher, D. et al. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. PLoS Genet. 15, e1008076 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jiang, S. et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep. Med. 1, 100161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ayuso, J. M., Virumbrales-Muñoz, M., Lang, J. M. & Beebe, D. J. A role for microfluidic systems in precision medicine. Nat. Commun. 13, 3086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schuster, B. et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat. Commun. 11, 5271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Briones, J. et al. The future of microfluidics in immune checkpoint blockade. Cancer Gene Ther. 28, 895–910 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Duncombe, T. A., Tentori, A. M. & Herr, A. E. Microfluidics: reframing biological enquiry. Nat. Rev. Mol. Cell Biol. 16, 554–567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hong, H. K. et al. Establishment of patient-derived organotypic tumor spheroid models for tumor microenvironment modeling. Cancer Med. 10, 5589–5598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hsu, C. et al. Microorganospheres as a novel precision oncology platform in colorectal cancer. J. Clin. Oncol. 40, 149–149 (2022).

    Article  Google Scholar 

  139. Sart, S., Tomasi, R. F., Amselem, G. & Baroud, C. N. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat. Commun. 8, 469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Niraula, S. et al. The price we pay for progress: a meta-analysis of harms of newly approved anticancer drugs. J. Clin. Oncol. 30, 3012–3019 (2012).

    Article  PubMed  Google Scholar 

  141. Schnalzger, T. E. et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. https://doi.org/10.15252/embj.2018100928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Esch, M. B., King, T. L. & Shuler, M. L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13, 55–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Wikswo, J. P. et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13, 3496–3511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sharma, A., Sances, S., Workman, M. J. & Svendsen, C. N. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell 26, 309–329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hoang, P., Wang, J., Conklin, B. R., Healy, K. E. & Ma, Z. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat. Protoc. 13, 723–737 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mills, R. J. et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24, 895–907.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl Acad. Sci. USA 114, E8372–E8381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Voges, H. K. et al. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 144, 1118–1127 (2017).

    CAS  PubMed  Google Scholar 

  149. Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife https://doi.org/10.7554/eLife.05098 (2015).

    Article  Google Scholar 

  150. Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3, 394–403 (2014).

    Article  CAS  Google Scholar 

  151. Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Strikoudis, A. et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 27, 3709–3723.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wilkinson, D. C. et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cell Transl. Med. 6, 622–633 (2017).

    Article  Google Scholar 

  154. Hohwieler, M. et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 66, 473–486 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Pagliuca, F. W. et al. Generation of functional human pancreatic beta. Cell Vitr. Cell 159, 428–439 (2014).

    CAS  Google Scholar 

  156. Raikwar, S. P. et al. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PLoS ONE 10, e0116582 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Guan, Y. et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight https://doi.org/10.1172/jci.insight.94954 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Trisno, S. L. et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell 23, 501–515.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, Y. et al. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for notch signaling. Cell Stem Cell 23, 516–529.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Crespo, M. et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med. 23, 878–884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Múnera, J. O. et al. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 21, 51–64.e6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Broda, T. R., McCracken, K. W. & Wells, J. M. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat. Protoc. 14, 28–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ramme, A. P. et al. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci. OA 5, FSO413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mehta, P., Rahman, Z., ten Dijke, P. & Boukany, P. E. Microfluidics meets 3D cancer cell migration. Trends Cancer 8, 683–697 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Papapetrou, E. P. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat. Med. 22, 1392–1401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Images for Fig. 2 were kindly provided by O. Kranenburg of Utrecht University, B. L. Emmink of Utrecht University and V. Veninga of Netherlands Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Emile E. Voest.

Ethics declarations

Competing interests

E.E.V. is a founding adviser of Mosaic Therapeutics. A.W.J.v.R. and J.v.d.H. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. Kleger, F. Baenke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Renterghem, A.W.J., van de Haar, J. & Voest, E.E. Functional precision oncology using patient-derived assays: bridging genotype and phenotype. Nat Rev Clin Oncol 20, 305–317 (2023). https://doi.org/10.1038/s41571-023-00745-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00745-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer