Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein degraders enter the clinic — a new approach to cancer therapy

Abstract

Heterobifunctional protein degraders, such as PROteolysis TArgeting Chimera (PROTAC) protein degraders, constitute a novel therapeutic modality that harnesses the cell’s natural protein-degradation machinery — that is, the ubiquitin–proteasome system — to selectively target proteins involved in disease pathogenesis for elimination. Protein degraders have several potential advantages over small-molecule inhibitors that have traditionally been used for cancer treatment, including their event-driven (rather than occupancy-driven) pharmacology, which permits sub-stoichiometric drug concentrations for activity, their capacity to act iteratively and target multiple copies of a protein of interest, and their potential to target nonenzymatic proteins that were previously considered ‘undruggable’. Following numerous innovations in protein degrader design and rigorous evaluation in preclinical models, protein degraders entered clinical testing in 2019. Currently, 18 protein degraders are in phase I or phase I/II clinical trials that involve patients with various tumour types, with a phase III trial of one initiated in 2022. The first safety, efficacy and pharmacokinetic data from these studies are now materializing and, although considerably more evidence is needed, protein degraders are showing promising activity as cancer therapies. Herein, we review advances in protein degrader development, the preclinical research that supported their entry into clinical studies, the available data for protein degraders in patients and future directions for this new class of drugs.

Key points

  • The concept of harnessing the natural, intracellular protein-degradation machinery (that is, the ubiquitin–proteasome system) to eliminate disease-causing proteins was proposed more than two decades ago.

  • Since then, numerous primary papers and review articles have described the mechanistic development of protein degraders and their potential as a new therapeutic approach, including for patients with cancer.

  • As of 8 January 2023, 18 heterobifunctional protein degraders are under evaluation in clinical trials in patients with various solid tumours and haematological cancers, and the first clinical data on these molecules are now emerging.

  • Preclinical data that have been disclosed for the protein degraders currently in clinical development support their target specificity and their potency in inhibiting tumour growth compared with small-molecule inhibitors.

  • Preliminary data for protein degraders that target the androgen receptor, the oestrogen receptor and BTK have shown encouraging clinical activity in patients with prostate cancer, breast cancer and chronic lymphocytic leukaemia, respectively, and results from additional ongoing clinical studies are anticipated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting proteins involved in cancer pathogenesis with protein degraders versus small-molecule inhibitors.
Fig. 2: Timeline of key advances in protein degrader development.
Fig. 3: Clinical proof of concept for PROTAC protein degraders.

Similar content being viewed by others

References

  1. Savage, D. G. & Antman, K. H. Imatinib mesylate–a new oral targeted therapy. N. Engl. J. Med. 346, 683–693 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bedard, P. L., Hyman, D. M., Davids, M. S. & Siu, L. L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395, 1078–1088 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Zhong, L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 6, 201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neklesa, T. K., Winkler, J. D. & Crews, C. M. Targeted protein degradation by PROTACs. Pharmacol. Ther. 174, 138–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Cromm, P. M. & Crews, C. M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol. 24, 1181–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathijssen, R. H., Sparreboom, A. & Verweij, J. Determining the optimal dose in the development of anticancer agents. Nat. Rev. Clin. Oncol. 11, 272–281 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Lovly, C. M. & Shaw, A. T. Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin. Cancer Res. 20, 2249–2256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rotow, J. & Bivona, T. G. Understanding and targeting resistance mechanisms in NSCLC. Nat. Rev. Cancer 17, 637–658 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gebru, M. T. & Wang, H. G. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J. Hematol. Oncol. 13, 155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Braun, T. P., Eide, C. A. & Druker, B. J. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell 37, 530–542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stephens, D. M. & Byrd, J. C. Resistance to Bruton tyrosine kinase inhibitors: the Achilles heel of their success story in lymphoid malignancies. Blood 138, 1099–1109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomatou, G. et al. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol. Biol. Rep. 48, 915–925 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Ciechanover, A., Orian, A. & Schwartz, A. L. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Nandi, D., Tahiliani, P., Kumar, A. & Chandu, D. The ubiquitin–proteasome system. J. Biosci. 31, 137–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Kleiger, G. & Mayor, T. Perilous journey: a tour of the ubiquitin–proteasome system. Trends Cell Biol. 24, 352–359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alabi, S. Novel mechanisms of molecular glue-induced protein degradation. Biochemistry 60, 2371–2373 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Frere, G. A., de Araujo, E. D. & Gunning, P. T. Emerging mechanisms of targeted protein degradation by molecular glues. Methods Cell Biol. 169, 1–26 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Hua, L. et al. Beyond proteolysis-targeting chimeric molecules: designing heterobifunctional molecules based on functional effectors. J. Med. Chem. 65, 8091–8112 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87 e75 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Douglass, E. F. Jr, Miller, C. J., Sparer, G., Shapiro, H. & Spiegel, D. A. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc. 135, 6092–6099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buckley, D. L. et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of halotag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riching, K. M., Caine, E. A., Urh, M. & Daniels, D. L. The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Chem. Soc. Rev. 51, 6210–6221 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Schneekloth, A. R., Pucheault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904–5908 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug. Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bond, M. J., Chu, L., Nalawansha, D. A., Li, K. & Crews, C. M. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, H. et al. SD-91 as a potent and selective STAT3 degrader capable of achieving complete and long-lasting tumor regression. ACS Med. Chem. Lett. 12, 996–1004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burslem, G. M. et al. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res. 79, 4744–4753 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 57, 3564–3575 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Azad, A. A. et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 21, 2315–2324 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174, 758–769 e759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takeda, D. Y. et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174, 422–432 e413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, X. et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC) [Abstr.]. J. Clin. Oncol. 40 (Suppl. 6), 17 (2022).

    Article  Google Scholar 

  39. Neklesa, T. et al. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer [Abstr.]. J. Clin. Oncol. 37 (Suppl. 7S), 259 (2019).

    Article  Google Scholar 

  40. Petrylak, D. P. et al. First-in-human phase 1 study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients with metastatic castration-resistant prostate cancer following enzalutamide (ENZ) and/or abiraterone (ABI) [Abstr.]. J. Clin. Oncol. 38 (Suppl. 15), 3500 (2020).

    Article  Google Scholar 

  41. Snyder, L. B. et al. Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer [Abstr.]. Cancer Res. 81 (Suppl. 13), 43 (2021).

    Article  Google Scholar 

  42. Jiang, B. et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew. Chem. Int. Ed. Engl. 58, 6321–6326 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Degorce, S. L. et al. Discovery of proteolysis-targeting chimera molecules that selectively degrade the IRAK3 pseudokinase. J. Med. Chem. 63, 10460–10473 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Fang, Y. et al. Progress and challenges in targeted protein degradation for neurodegenerative disease therapy. J. Med. Chem. 65, 11454–11477 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Itoh, Y., Ishikawa, M., Naito, M. & Hashimoto, Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 132, 5820–5826 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zengerle, M., Chan, K. H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buckley, D. L. et al. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew. Chem. Int. Ed. Engl. 51, 11463–11467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galdeano, C. et al. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem. 57, 8657–8663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishida, T. & Ciulli, A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov. 26, 484–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell 39, 466–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Belcher, B. P., Ward, C. C. & Nomura, D. K. Ligandability of E3 ligases for targeted protein degradation applications. Biochemistry https://doi.org/10.1021/acs.biochem.1c00464 (2021).

    Article  PubMed  Google Scholar 

  58. Goodnow, R. A. Jr, Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug. Discov. 16, 131–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Disch, J. S. et al. Bispecific estrogen receptor alpha degraders incorporating novel binders identified using DNA-encoded chemical library screening. J. Med. Chem. 64, 5049–5066 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Chana, C. K. et al. Discovery and structural characterization of small molecule binders of the human CTLH E3 ligase subunit GID4. J. Med. Chem. 65, 12725–12746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mason, J. W. et al. DNA-encoded library (DEL)-enabled discovery of proximity-inducing small molecule. Preprint at https://doi.org/10.1101/2022.10.13.512184 (2022).

  62. Bemis, T. A., La Clair, J. J. & Burkart, M. D. Unraveling the role of linker design in proteolysis targeting chimeras. J. Med. Chem. 64, 8042–8052 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xiang, W. et al. Discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer. J. Med. Chem. 64, 13487–13509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Snyder, L. B. et al. The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer [Abstr.]. Cancer Res. 81 (Suppl. 13), 44 (2021).

    Article  Google Scholar 

  66. Smith, B. E. et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10, 131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bricelj, A. et al. Influence of linker attachment points on the stability and neosubstrate degradation of cereblon ligands. ACS Med. Chem. Lett. 12, 1733–1738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schiemer, J. et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat. Chem. Biol. 17, 152–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Zaidman, D., Prilusky, J. & London, N. PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J. Chem. Inf. Model. 60, 4894–4903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bai, N. et al. Rationalizing PROTAC-mediated ternary complex formation using Rosetta. J. Chem. Inf. Model. 61, 1368–1382 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weng, G., Li, D., Kang, Y. & Hou, T. Integrative modeling of PROTAC-mediated ternary complexes. J. Med. Chem. 64, 16271–16281 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Drummond, M. L., Henry, A., Li, H. & Williams, C. I. Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in silico methodologies. J. Chem. Inf. Model. 60, 5234–5254 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Poongavanam, V., Doak, B. C. & Kihlberg, J. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. Curr. Opin. Chem. Biol. 44, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. DeGoey, D. A., Chen, H. J., Cox, P. B. & Wendt, M. D. Beyond the rule of 5: lessons learned from AbbVie’s drugs and compound collection. J. Med. Chem. 61, 2636–2651 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Edmondson, S. D., Yang, B. & Fallan, C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: recent progress and future challenges. Bioorg. Med. Chem. Lett. 29, 1555–1564 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Pike, A., Williamson, B., Harlfinger, S., Martin, S. & McGinnity, D. F. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug. Discov. Today 25, 1793–1800 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Han, X. et al. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer. J. Med. Chem. 64, 12831–12854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Goracci, L. et al. Understanding the metabolism of proteolysis targeting chimeras (PROTACs): the next step toward pharmaceutical applications. J. Med. Chem. 63, 11615–11638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mares, A. et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun. Biol. 3, 140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miah, A. H. et al. Optimization of a series of RIPK2 PROTACs. J. Med. Chem. 64, 12978–13003 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Bartlett, D. W. & Gilbert, A. M. A kinetic proofreading model for bispecific protein degraders. J. Pharmacokinet. Pharmacodyn. 48, 149–163 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Bartlett, D. W. & Gilbert, A. M. Translational PK-PD for targeted protein degradation. Chem. Soc. Rev. 51, 3477–3486 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Sayegh, N., Swami, U. & Agarwal, N. Recent advances in the management of metastatic prostate cancer. JCO Oncol. Pract. 18, 45–55 (2022).

    Article  PubMed  Google Scholar 

  85. Shore, N. D. et al. Phase 1b study of bavdegalutamide, an androgen receptor PROTAC degrader, combined with abiraterone in patients with metastatic prostate cancer [Abstr.]. J. Clin. Oncol. 40 (Suppl. 16), TPS5106 (2022).

    Article  Google Scholar 

  86. Burstein, H. J. Systemic therapy for estrogen receptor-positive, HER2-negative breast cancer. N. Engl. J. Med. 383, 2557–2570 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Hanker, A. B., Sudhan, D. R. & Arteaga, C. L. Overcoming endocrine resistance in breast cancer. Cancer Cell 37, 496–513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nathan, M. R. & Schmid, P. A review of fulvestrant in breast cancer. Oncol. Ther. 5, 17–29 (2017).

    Article  PubMed  Google Scholar 

  89. Robertson, J. F. et al. A randomized trial to assess the biological activity of short-term (pre-surgical) fulvestrant 500 mg plus anastrozole versus fulvestrant 500 mg alone or anastrozole alone on primary breast cancer. Breast Cancer Res. 15, R18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuter, I. et al. Dose-dependent change in biomarkers during neoadjuvant endocrine therapy with fulvestrant: results from NEWEST, a randomized phase II study. Breast Cancer Res. Treat. 133, 237–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Toy, W. et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov. 7, 277–287 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Flanagan, J. J. et al. ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer Res. 79 (Suppl. 4), P5-04-18 (2019).

    Article  Google Scholar 

  93. Hamilton, E. P. et al. ARV-471, an estrogen receptor (ER) PROTAC degrader, combined with palbociclib in advanced ER+/human epidermal growth factor receptor 2 negative breast cancer: phase 1b cohort (part C) of a phase 1/2 study [Abstr.]. J. Clin. Oncol. 40 (Suppl. 16), TPS1120 (2022).

    Article  Google Scholar 

  94. He, W. et al. Novel chimeric small molecule AC682 potently degrades estrogen receptor with oral anti-tumor efficacy superior to fulvestrant [Abstr.]. Cancer Res. 81 (Suppl. 4), PS18-09 (2021).

    Article  Google Scholar 

  95. Tasso, B., Sparallarossa, A., Russo, E. & Brullo, C. The development of BTK inhibitors: a five-year update. Molecules 26, 7411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Robbins, D. W. et al. NX-2127, a degrader of BTK and IMiD neosubstrates, for the treatment of B-cell malignancies [Abstr.]. Blood 136 (Suppl. 1), 34 (2020).

    Article  Google Scholar 

  97. Noviski, M. et al. Concurrent degradation of BTK and IMiD neosubstrates by NX-2127 enhances multiple mechanisms of tumor killing. Cancer Res. 82 (Suppl. 12), 1128 (2022).

    Google Scholar 

  98. Montoya, S. et al. Kinase dead BTK mutations confer resistance to covalent and noncovalent BTK inhibitors but are susceptible to clinical stage BTK degraders. Blood 140 (Suppl. 1), 1811–1813 (2022).

    Article  Google Scholar 

  99. Robbins, D. W. et al. NX-5948, a selective degrader of BTK with activity in preclinical models of hematologic and brain malignancies. Blood 138 (Suppl. 1), 2251 (2021).

    Article  Google Scholar 

  100. Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jackson, K. L. et al. The discovery and characterization of CFT8634: a potent and selective degrader of BRD9 for the treatment of SMARCB1 perturbed cancers [Abstr.]. Cancer Res. 82 (Suppl. 12), ND09 (2022).

    Article  Google Scholar 

  102. Collins, M. et al. Preclinical validation of target engagement assays and investigation of mechanistic impacts of FHD-609, a clinical-stage BRD9 degrader being developed for the treatment of synovial sarcoma. Presented at the 2022 Connective Tissue Oncology Society Annual Meeting. P187 (2022).

  103. He, Y. et al. DT2216 — a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J. Hematol. Oncol. 13, 95 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kolb, R. et al. Proteolysis-targeting chimera against BCL-XL destroys tumor-infiltrating regulatory T cells. Nat. Commun. 12, 1281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Togashi, Y., Shitara, K. & Nishikawa, H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356–371 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Jaiswal, A. et al. Resistance to the BCL-XL degrader DT2216 in T-cell acute lymphoblastic leukemia is rare and correlates with decreased BCL-XL proteolysis. Cancer Chemother. Pharmacol. 91, 89–95 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Walker, D. et al. KTX-120, a novel IRAKIMiD degrader of IRAK4 and IMiD substrates, shows preferential activity and induces regressions in MYD88-mutant DLBCL cell and patient derived xenograft models. Blood 136 (Suppl. 1), 41 (2020).

    Article  Google Scholar 

  108. Klaus, C. et al. Mechanisms underlying synergistic activity in MYD88MTDLBCL of KT-413, a targeted degrader of IRAK4 and IMiD substrate [Abstr.]. Cancer Res. 81 (Suppl. 13), LB118 (2021).

    Article  Google Scholar 

  109. Liu, P. C. C. et al. A first-in-class STAT3 degrader KT-333 in development for treatment of hematologic cancers. Blood 138 (Suppl. 1), 1865 (2021).

    Article  Google Scholar 

  110. Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457–2467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nagashima, T. et al. ASP3082, a First-in-class novel KRAS G12D degrader, exhibits remarkable anti-tumor activity in KRAS G12D mutated cancer models. Eur. J. Cancer 174, S30 (2022).

    Article  Google Scholar 

  112. Poulikakos, P. I., Sullivan, R. J. & Yaeger, R. Molecular pathways and mechanisms of BRAF in cancer therapy. Clin. Cancer Res. 28, 4618–4628 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Sowa, M. E. et al. Preclinical evaluation of CFT1946 as a selective degrader of mutant BRAF for the treatment of BRAF driven cancers [Abstr.]. Cancer Res. 82 (Suppl. 12), 2158 (2022).

    Article  Google Scholar 

  114. Starodub, A. N. et al. Phase 1 study of KT-333, a targeted protein degrader of STAT3, in patients with relapsed or refractory lymphomas, large granular lymphocytic leukemia, and solid tumors [Abstr.]. J. Clin. Oncol. 40 (Suppl. 16), TPS3171 (2022).

    Article  Google Scholar 

  115. Stevens, D. A. et al. Phase 1 study of KT-413, a targeted protein degrader, in adult patients with relapsed or refractory B-cell non-Hodgkin lymphoma. J. Clin. Oncol. 40 (Suppl. 16), TPS3170 (2022).

    Article  Google Scholar 

  116. Mato, A. et al. A first-in-human phase 1 trial of NX-2127, a first-in-class oral BTK degrader with IMiD-like activity, in patients with relapsed and refractory B-cell malignancies [Poster P649]. HemaSphere 6, 547–548 (2022).

    Article  Google Scholar 

  117. Mato, A. et al. A first-in-human phase 1 trial of NX-2127, a first-in-class oral BTK degrader with IMiD-like activity, in patients with relapsed and refractory B-cell malignancies [Abstr.]. J. Clin. Oncol. 40 (Suppl. 16), TPS7581 (2022).

    Article  Google Scholar 

  118. Linton, K. et al. A first-in-human phase 1 trial of NX-5948, an oral BTK degrader, in patients with relapsed and refractory B-cell malignancies [Poster P650]. HemaSphere 6, 548–549 (2022).

    Article  Google Scholar 

  119. Romanel, A. et al. Plasma AR and abiraterone-resistant prostate cancer. Sci. Transl. Med. 7, 312re310 (2015).

    Article  Google Scholar 

  120. Lallous, N. et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 17, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wyatt, A. W. et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2, 1598–1606 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jernberg, E., Bergh, A. & Wikstrom, P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr. Connect. 6, R146–R161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hamilton, E. et al. First-in-human safety and activity of ARV-471, a novel PROTAC® estrogen receptor degrader, in ER+/HER2 locally advanced or metastatic breast cancer [Abstr.]. Cancer Res. 82 (Suppl. 4), PD13-08 (2022).

    Article  Google Scholar 

  124. Hurvitz, S. A. et al. ARV-471, a PROTAc® estrogen receptor (ER) degrader in advanced ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer: phase 2 expansion (VERITAC) of a phase 1/2 study. Abstr. GS3-03. Presented at San Antonio Breast Cancer Symposium (SABCS) (2022).

  125. Mato, A. R. et al. NX-2127-001, a first-in-human trial of NX-2127, a Bruton’s tyrosine kinase-targeted protein degrader, in patients with relapsed or refractory chronic lymphocytic leukemia and B-cell malignancies. Blood 140 (Suppl. 1), 2329–2332 (2022).

    Article  Google Scholar 

  126. Dragovich, P. S. Degrader-antibody conjugates. Chem. Soc. Rev. 51, 3886–3897 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Reynders, M. & Trauner, D. Optical control of targeted protein degradation. Cell Chem. Biol. 28, 969–986 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, J. et al. Cancer selective target degradation by folate-caged PROTACs. J. Am. Chem. Soc. 143, 7380–7387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, H., Liu, J., Kaniskan, H. U., Wei, W. & Jin, J. Folate-guided protein degradation by immunomodulatory imide drug-based molecular glues and proteolysis targeting chimeras. J. Med. Chem. 64, 12273–12285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi, S. et al. Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. J. Med. Chem. 65, 5057–5071 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, H. et al. Reactive oxygen species-responsive Pre-PROTAC for tumor-specific protein degradation. Chem. Commun. 58, 10072–10075 (2022).

    Article  CAS  Google Scholar 

  132. Mayor-Ruiz, C. et al. Plasticity of the Cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation. Mol. Cell 75, 849–858 e848 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Ottis, P. et al. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. ACS Chem. Biol. 14, 2215–2223 (2019).

    CAS  PubMed  Google Scholar 

  134. Zhang, L., Riley-Gillis, B., Vijay, P. & Shen, Y. Acquired resistance to BET-PROTACs (Proteolysis-Targeting Chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther. 18, 1302–1311 (2019).

    Article  PubMed  Google Scholar 

  135. Shirasaki, R. et al. Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins. Cell Rep. 34, 108532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kurimchak, A. M. et al. The drug efflux pump MDR1 promotes intrinsic and acquired resistance to PROTACs in cancer cells. Sci. Signal. 15, eabn2707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bloom, of Arvinas Operations, Inc. for research and editorial support. C.M.C. gratefully acknowledges NIH support (R35CA197589).

Author information

Authors and Affiliations

Authors

Contributions

K.R.H. wrote the manuscript. All authors researched data for the article, made substantial contributions to discussion of content, and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Deborah Chirnomas, Keith R. Hornberger or Craig M. Crews.

Ethics declarations

Competing interests

D.C. and K.R.H. are employees and shareholders of Arvinas Operations. C.M.C. is a founder and shareholder of Arvinas Operations, as well as a founder, shareholder and consultant of Halda Therapeutics and Siduma Therapeutics, which support research in his lab.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. Ciulli; M. Naito; G. Zheng, who co-reviewed with A. Smith; and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirnomas, D., Hornberger, K.R. & Crews, C.M. Protein degraders enter the clinic — a new approach to cancer therapy. Nat Rev Clin Oncol 20, 265–278 (2023). https://doi.org/10.1038/s41571-023-00736-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00736-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing