Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer-associated cachexia — understanding the tumour macroenvironment and microenvironment to improve management

Subjects

Abstract

Cachexia is a devastating, multifactorial and often irreversible systemic syndrome characterized by substantial weight loss (mainly of skeletal muscle and adipose tissue) that occurs in around 50–80% of patients with cancer. Although this condition mainly affects skeletal muscle (which accounts for approximately 40% of total body weight), cachexia is a multi-organ syndrome that also involves white and brown adipose tissue, and organs including the bones, brain, liver, gut and heart. Notably, cachexia accounts for up to 20% of cancer-related deaths. Cancer-associated cachexia is invariably associated with systemic inflammation, anorexia and increased energy expenditure. Understanding these mechanisms is essential, and the progress achieved in this area over the past decade could help to develop new therapeutic approaches. In this Review, we examine the currently available evidence on the roles of both the tumour macroenvironment and microenvironment in cancer-associated cachexia, and provide an overview of the novel therapeutic strategies developed to manage this syndrome.

Key points

  • Cachexia is a wasting syndrome characterized by weight loss (both skeletal muscle and adipose tissue), anorexia and inflammation that commonly occurs in patients with cancer and contributes substantially to cancer-related mortality.

  • Both the macroenvironment and the microenvironment contribute to the inflammatory process that characterizes cancer-associated cachexia; new therapeutic approaches must effectively target these mechanisms.

  • International guidelines for the management of patients with cancer-associated cachexia strongly recommend promoting anabolism and reducing catabolism through nutritional, physical and pharmacological interventions.

  • The development of new therapeutic approaches to the prevention of low skeletal muscle mass in patients with cancer-associated cachexia is an unmet need that can be addressed through multidisciplinary collaborations involving, among others, oncologists, radiologists, surgeons, nutritionists, dietitians and physiotherapists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The tumour macroenvironment and cachexia.
Fig. 2: Cachexia staging and treatment.
Fig. 3: The tumour microenvironment and cachexia.
Fig. 4: Investigational treatment options.
Fig. 5: Interactions between chemotherapy and cancer-associated cachexia.

Similar content being viewed by others

References

  1. European Commission. European Cancer Information System: 21% increase in new cancer cases by 2040. EU Science Hub https://joint-research-centre.ec.europa.eu/jrc-news/european-cancer-information-system-21-increase-new-cancer-cases-2040-2022-03-16_en (2022).

  2. Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–762 (2014).

    Article  PubMed  Google Scholar 

  3. Bossi, P., Delrio, P., Mascheroni, A. & Zanetti, M. The spectrum of malnutrition/cachexia/sarcopenia in oncology according to different cancer types and settings: a narrative review. Nutrients 13, 1980 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dewys, W. D. et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am. J. Med. 69, 491–497 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Teunissen, S. C. C. M. et al. Symptom prevalence in patients with incurable cancer: a systematic review. J. Pain. Symptom Manag. 34, 94–104 (2007).

    Article  Google Scholar 

  6. Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article  PubMed  Google Scholar 

  8. Argilés, J. M. et al. Consensus on cachexia definitions. J. Am. Med. Dir. Assoc. 11, 229–230 (2010).

    Article  PubMed  Google Scholar 

  9. Argilés, J. M., Stemmler, B., López-Soriano, F. J. & Busquets, S. Inter-tissue communication in cancer cachexia. Nat. Rev. Endocrinol. 15, 9–20 (2018).

    Article  PubMed  Google Scholar 

  10. Strasser, F. & Bruera, E. D. Update on anorexia and cachexia. Hematol. Oncol. Clin. North. Am. 16, 589–617 (2002).

    Article  PubMed  Google Scholar 

  11. Maltoni, M. et al. Successful validation of the palliative prognostic score in terminally ill cancer patients. J. Pain. Symptom Manag. 17, 240–247 (1999).

    Article  CAS  Google Scholar 

  12. Poisson, J. et al. Prevalence and prognostic impact of cachexia among older patients with cancer: a nationwide cross-sectional survey (NutriAgeCancer). J. Cachexia Sarcopenia Muscle 12, 1477–1488 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. von Haehling, S., Anker, M. S. & Anker, S. D. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J. Cachexia Sarcopenia Muscle 7, 507–509 (2016).

    Article  Google Scholar 

  14. Martin, L. et al. Diagnostic criteria for the classification of cancer-associated weight loss. J. Clin. Oncol. 33, 90–99 (2014).

    Article  PubMed  Google Scholar 

  15. Zhou, T. et al. Development and validation of a clinically applicable score to classify cachexia stages in advanced cancer patients. J. Cachexia Sarcopenia Muscle 9, 306–314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fu, X. et al. Comparing SARC-F with SARC-CalF for screening sarcopenia in advanced cancer patients. Clin. Nutr. 39, 3337–3345 (2020).

    Article  PubMed  Google Scholar 

  17. Arends, J. et al. Cancer cachexia in adult patients: ESMO clinical practice guidelines. ESMO Open. 6, i00092 (2021).

    Article  Google Scholar 

  18. Cederholm, T. et al. GLIM criteria for the diagnosis of malnutrition – a consensus report from the global clinical nutrition community. Clin. Nutr. 38, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Molfino, A., Imbimbo, G. & Laviano, A. Current screening methods for the risk or presence of malnutrition in cancer patients. Cancer Manag. Res. 14, 561–567 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Argilés, J. M. et al. The cachexia score (CASCO): a new tool for staging cachectic cancer patients. J. Cachexia Sarcopenia Muscle 2, 87–93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Argilés, J. M. et al. Validation of the CAchexia SCOre (CASCO). Staging cancer patients: the use of miniCASCO as a simplified tool. Front. Physiol. 8, 92 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Argilés, J. M. The 2015 ESPEN Sir David Cuthbertson lecture: Inflammation as the driving force of muscle wasting in cancer. Clin. Nutr. 36, 798–803 (2017).

    Article  PubMed  Google Scholar 

  23. Zhang, Q. et al. Association of systemic inflammation with survival in patients with cancer cachexia: results from a multicentre cohort study. J. Cachexia Sarcopenia Muscle 12, 1466–1476 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maurel, D. B. et al. Muscle-bone crosstalk: emerging opportunities for novel therapeutic approaches to treat musculoskeletal pathologies. Biomedicines 5, 62 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Argilés, J. M., Busquets, S. & López-Soriano, F. J. Cancer cachexia, a clinical challenge. Curr. Opin. Oncol. 31, 286–290 (2019).

    Article  PubMed  Google Scholar 

  26. Petruzzelli, M. & Wagner, E. F. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes. Dev. 30, 489–501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeom, E. & Yu, K. Understanding the molecular basis of anorexia and tissue wasting in cancer cachexia. Exp. Mol. Med. 54, 426–432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, W. G. et al. Ghrelin inhibits proinflammatory responses and nuclear factor-κB activation in human endothelial cells. Circulation 109, 2221–2226 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Nagaya, N. et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110, 3674–3679 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Tschöp, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  PubMed  Google Scholar 

  31. Mano-Otagiri, A. et al. Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regul. Pept. 160, 81–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Argilés, J. M. & Stemmler, B. The potential of ghrelin in the treatment of cancer cachexia. Expert. Opin. Biol. Ther. 13, 67–76 (2013).

    Article  PubMed  Google Scholar 

  33. Joshi, M. & Patel, B. M. The burning furnace: alteration in lipid metabolism in cancer-associated cachexia. Mol. Cell Biochem. 477, 1709–1723 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Kir, S. et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Xiao, J. et al. The association of medical and demographic characteristics with sarcopenia and low muscle radiodensity in patients with nonmetastatic colorectal cancer. Am. J. Clin. Nutr. 109, 626–634 (2019).

    Article  Google Scholar 

  37. van Amsterdam, W. A. C. et al. The association between muscle quantity and overall survival depends on muscle radiodensity: a cohort study in non-small-cell lung cancer patients. J. Pers. Med. 12, 1191 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Argilés, J. M., López-Soriano, F. J. & Busquets, S. Muscle wasting in cancer: the role of mitochondria. Curr. Opin. Clin. Nutr. Metab. Care 18, 221–225 (2015).

    Article  PubMed  Google Scholar 

  39. Barreto, R. et al. Cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. Front. Physiol. 7, 472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. van der Ende, M. et al. Mitochondrial dynamics in cancer-induced cachexia. Biochim. Biophys. Acta Rev. Cancer 1870, 137–150 (2018).

    Article  PubMed  Google Scholar 

  41. Penna, F. et al. Autophagy exacerbates muscle wasting in cancer cachexia and impairs mitochondrial function. J. Mol. Biol. 431, 2674–2686 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Molinari, F. et al. The mitochondrial metabolic reprogramming agent trimetazidine as an ‘exercise mimetic’ in cachectic C26-bearing mice. J. Cachexia Sarcopenia Muscle 8, 954–973 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ballarò, R. et al. Targeting mitochondria by SS-31 ameliorates the whole body energy status in cancer- and chemotherapy-induced cachexia. Cancers 13, 850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pin, F., Huot, J. R. & Bonetto, A. The mitochondria-targeting agent MitoQ improves muscle atrophy, weakness and oxidative metabolism in C26 tumor-bearing mice. Front. Cell Dev. Biol. 10, 861622 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5, 90 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Montero-Bullon, J. F. et al. Exercise training counteracts urothelial carcinoma-induced alterations in skeletal muscle mitochondria phospholipidome in an animal model. Sci. Rep. 9, 13423 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Castro, G. S. et al. Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle. Cancers 11, 1264 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee, C. M. & Kang, J. Prognostic impact of myosteatosis in patients with colorectal cancer: a systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 11, 1270–1282 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aleixo, G. F. P. et al. Myosteatosis and prognosis in cancer: systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 145, 1028390 (2020).

    Article  Google Scholar 

  50. Pötgens, S. A. et al. Multi-compartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. J. Cachexia Sarcopenia Muscle 12, 456–475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pötgens, S. A. et al. Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Sci. Rep. 8, 12321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ubachs, J. et al. Gut microbiota and short-chain fatty acid alterations in cachectic cancer patients. J. Cachexia Sarcopenia Muscle 12, 2007–2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bindels, L. B. et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J. 10, 1456–1470 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Argilés, J. M., Fontes-Oliveira, C. C., Toledo, M., López-Soriano, F. J. & Busquets, S. Cachexia: a problem of energetic inefficiency. J. Cachexia Sarcopenia Muscle 5, 279–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beck, S. A. & Tisdale, M. J. Effect of cancer cachexia on triacylglycerol/fatty acid substrate cycling in white adipose tissue. Lipids 39, 1187–1189 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Fontes-Oliveira, C. C. et al. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? Biochim. Biophys. Acta Gen. Subj. 1830, 2770–2778 (2013).

    Article  CAS  Google Scholar 

  57. Jouinot, A. et al. Hypermetabolism is an independent prognostic factor of survival in metastatic non-small cell lung cancer patients. Clin. Nutr. 39, 1893–1899 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Vazeille, C. et al. Relation between hypermetabolism, cachexia, and survival in cancer patients: a prospective study in 390 cancer patients before initiation of anticancer therapy. Am. J. Clin. Nutr. 105, 1139–1147 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Barcellos, P. S., Borges, N. & Torres, D. P. M. Resting energy expenditure in cancer patients: agreement between predictive equations and indirect calorimetry. Clin. Nutr. ESPEN 42, 286–291 (2021).

    Article  PubMed  Google Scholar 

  60. Argilés, J. M., López-Soriano, F. J. & Busquets, S. Mediators of cachexia in cancer patients. Nutrition 66, 11–15 (2019).

    Article  PubMed  Google Scholar 

  61. Devine, R. D., Bicer, S., Reiser, P. J., Velten, M. & Wold, L. E. Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia. Am. J. Physiol. Heart Circ. Physiol. 309, H685–H691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olson, B. et al. Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nat. Commun. 12, 2057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki, H. et al. Clinical and tumor characteristics of patients with high serum levels of growth differentiation factor 15 in advanced pancreatic cancer. Cancers 13, 4842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Prado, B. L. & Qian, Y. Anti-cytokines in the treatment of cancer cachexia. Ann. Palliat. Med. 8, 67–79 (2019).

    Article  PubMed  Google Scholar 

  65. Ando, K. et al. Tocilizumab, a proposed therapy for the cachexia of interleukin6-expressing lung cancer. PLoS ONE 9, e102436 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jatoi, A. et al. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68, 234–239 (2010).

    Article  PubMed  Google Scholar 

  67. Chasen, M., Hirschman, S. Z. & Bhargava, R. Phase II study of the novel peptide-nucleic acid OHR118 in the management of cancer-related anorexia/cachexia. J. Am. Med. Dir. Assoc. 12, 62–67 (2011).

    Article  PubMed  Google Scholar 

  68. Todorov, P. T., Wyke, S. M. & Tisdale, M. J. Identification and characterization of a membrane receptor for proteolysis-inducing factor on skeletal muscle. Cancer Res. 67, 11419–11427 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Russell, S. T., Zimmerman, T. P., Domin, B. A. & Tisdale, M. J. Induction of lipolysis in vitro and loss of body fat in vivo by zinc-α2-glycoprotein. Biochim. Biophys. Acta 1636, 59–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Kandarian, S. C. et al. Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice. J. Cachexia Sarcopenia Muscle 9, 1109–1120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Song, W. et al. Tumor-derived ligands trigger tumor growth and host wasting via differential MEK activation. Dev. Cell 48, 277–286.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding, G. et al. Coordination of tumor growth and host wasting by tumor-derived Upd3. Cell Rep. 36, 109553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. de Castro, G. S. et al. Myokines in treatment-naïve patients with cancer-associated cachexia. Clin. Nutr. 40, 2443–2455 (2021).

    Article  PubMed  Google Scholar 

  74. Pritt, M. I. et al. Fabp3 as a biomarker of skeletal muscle toxicity in the rat: comparison with conventional biomarkers. Toxicol. Sci. 103, 382–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Freire, P. P. et al. The expression landscape of cachexia-inducing factors in human cancers. J. Cachexia Sarcopenia Muscle 11, 947–961 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chitti, S. V., Fonseka, P. & Mathivanan, S. Emerging role of extracellular vesicles in mediating cancer cachexia. Biochem. Soc. Trans. 46, 1129–1136 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Pin, F. et al. Extracellular vesicles derived from tumour cells as a trigger of energy crisis in the skeletal muscle. J. Cachexia Sarcopenia Muscle 13, 481–494 (2022).

    Article  PubMed  Google Scholar 

  78. Zhang, G. et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat. Commun. 8, 589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vu, L. T., Gong, J., Pham, T. T., Kim, Y. & Le, M. T. N. microRNA exchange via extracellular vesicles in cancer. Cell Prolif. 53, e12877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, Q. et al. Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol. Cancer 17, 155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fan, M. et al. The critical role of STAT3 in biogenesis of tumor-derived exosomes with potency of inducing cancer cachexia in vitro and in vivo. Oncogene 41, 1050–1062 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Narasinhan, A. et al. Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia. J. Cachexia Sarcopenia Muscle 8, 405–416 (2017).

    Article  Google Scholar 

  83. He, W. A. et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc. Natl Acad. Sci. USA 111, 4525–4529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, Q. et al. Breast cancer-released exosomes trigger cancer-associated cachexia to promote tumour progression. Adipocyte 8, 31–45 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Gao, X. et al. Extracellular vesicles derived from oesophageal cancer containing P4HB promote muscle wasting via regulating PHGDH/Bcl-2/caspase-3 pathway. J. Extracell. Vesicles 10, e12060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu, W. et al. Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1091–1102 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, L. et al. Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release. Skelet. Muscle 11, 17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kasprzak, A. The role of tumor microenvironment cells in colorectal cancer (CRC) cachexia. Int. J. Mol. Sci. 22, 1565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. VanderVeen, B. N., Murphy, E. A. & Carson, J. A. The impact of immune cells on the skeletal muscle microenvironment during cancer cachexia. Front. Physiol. 11, 1037 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yuan, C. et al. Prediagnostic inflammation and pancreatic cancer survival. J. Natl Cancer Inst. 113, 1186–1193 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dolan, R. D., Lim, J., McSorley, S. T., Horgan, P. G. & McMillan, D. C. The role of the systemic inflammatory response in predicting outcomes in patients with operable cancer: systematic review and meta-analysis. Sci. Rep. 7, 16717 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Xiong, Y. et al. Hematopoietic stem cell-derived adipocytes and fibroblasts in the tumor microenvironment. World J. Stem Cell 7, 253–265 (2015).

    Article  Google Scholar 

  93. Masucci, M. T., Minopoli, M. & Carriero, M. V. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front. Oncol. 9, 1146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cuenca, A. G. et al. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. J. Immunol. 192, 6111–6119 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Arends, J. et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 36, 1187–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Mavropalias, G. et al. Exercise medicine for cancer cachexia: targeted exercise to counteract mechanisms and treatment side effects. J. Cancer Res. Clin. Oncol. 148, 1389–1406 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Allan, J., Buss, L. A., Draper, N. & Currie, M. J. Exercise in people with cancer: a spotlight on energy regulation and cachexia. Front. Physiol. 13, 836804 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mangano, G. D., Fouani, M., D’amico, D., di Felice, V. & Barone, R. Cancer-related cachexia: the vicious circle between inflammatory cytokines, skeletal muscle, lipid metabolism and the possible role of physical training. Int. J. Mol. Sci. 23, 3004 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Daou, H. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R296–R310 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Cereda, E. et al. Nutritional counseling with or without systematic use of oral nutritional supplements in head and neck cancer patients undergoing radiotherapy. Radiother. Oncol. 126, 81–88 (2018).

    Article  PubMed  Google Scholar 

  101. Gomes, F. et al. Association of nutritional support with clinical outcomes among medical inpatients who are malnourished or at nutritional risk: an updated systematic review and meta-analysis. JAMA Netw. Open. 2, e1915138 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gioulbasanis, I. et al. Nutritional assessment in overweight and obese patients with metastatic cancer: does it make sense? Ann. Oncol. 26, 217–221 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Blackwood, H. A. et al. A systematic review examining nutrition support interventions in patients with incurable cancer. Support. Care Cancer 28, 1877–1889 (2020).

    Article  PubMed  Google Scholar 

  104. Ravasco, P., Monteiro-Grillo, I., Vidal, P. M. & Camilo, M. E. Dietary counseling improves patient outcomes: a prospective, randomized, controlled trial in colorectal cancer patients undergoing radiotherapy. J. Clin. Oncol. 23, 1431–1438 (2005).

    Article  PubMed  Google Scholar 

  105. van der Werf, A. et al. The effect of nutritional counseling on muscle mass and treatment outcome in patients with metastatic colorectal cancer undergoing chemotherapy: a randomized controlled trial. Clin. Nutr. 39, 3005–3013 (2020).

    Article  PubMed  Google Scholar 

  106. Ravasco, P. Nutrition in cancer patients. J. Clin. Med. 8, 1211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Orsso, C. E. et al. Mapping ongoing nutrition intervention trials in muscle, sarcopenia, and cachexia: a scoping review of future research. J. Cachexia Sarcopenia Muscle 13, 1442–1459 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Muscaritoli, M. et al. ESPEN practical guideline: clinical nutrition in cancer. Clin. Nutr. 40, 2898–2913 (2021).

    Article  PubMed  Google Scholar 

  109. Murphy, R. A. et al. Nutritional intervention with fish oil provides a benefit over standard of care for weight and skeletal muscle mass in patients with nonsmall cell lung cancer receiving chemotherapy. Cancer 117, 1775–1782 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Wei, L., Wu, Z. & Chen, Y. Q. Multi-targeted therapy of cancer by omega-3 fatty acids–an update. Cancer Lett. 526, 193–204 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. de van der Schueren, M. A. E. et al. Systematic review and meta-analysis of the evidence for oral nutritional intervention on nutritional and clinical outcomes during chemo(radio)therapy: current evidence and guidance for design of future trials. Ann. Oncol. 29, 1141–1153 (2018).

    Article  Google Scholar 

  112. Aredes, M. A. et al. Efficacy of ω-3 supplementation on nutritional status, skeletal muscle, and chemoradiotherapy toxicity in cervical cancer patients: a randomized, triple-blind, clinical trial conducted in a middle-income country. Nutrition 67–68, 110528 (2019).

    Article  PubMed  Google Scholar 

  113. Busquets, S. et al. L-Carnitine: an adequate supplement for a multi-targeted anti-wasting therapy in cancer. Clin. Nutr. 31, 889–895 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Wu, C. et al. L-carnitine ameliorates the muscle wasting of cancer cachexia through the AKT/FOXO3a/MaFbx axis. Nutr. Metab. 18, 98 (2021).

    Article  CAS  Google Scholar 

  115. Esfahani, M., Sahafi, S., Derakhshandeh, A. & Moghaddas, A. The anti-wasting effects of L-carnitine supplementation on cancer: experimental data and clinical studies. Asia Pac. J. Clin. Nutr. 27, 503–511 (2018).

    CAS  PubMed  Google Scholar 

  116. Kraft, M. et al. L-Carnitine-supplementation in advanced pancreatic cancer (CARPAN)–a randomized multicentre trial. Nutr. J. 11, 52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pascoe, J. et al. Beta-hydroxy beta-methylbutyrate/arginine/glutamine (HMB/Arg/Gln) supplementation to improve the management of cachexia in patients with advanced lung cancer: an open-label, multicentre, randomised, controlled phase II trial (NOURISH). BMC Cancer 21, 800 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Prado, C. M., Orsso, C. E., Pereira, S. L., Atherton, P. J. & Deutz, N. E. P. Effects of β-hydroxy β-methylbutyrate (HMB) supplementation on muscle mass, function, and other outcomes in patients with cancer: a systematic review. J. Cachexia Sarcopenia Muscle 13, 1623–1641 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wyart, E. et al. Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Rep. 23, e53746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van Dijk, D. P. J. et al. Effects of oral meal feeding on whole body protein breakdown and protein synthesis in cachectic pancreatic cancer patients. J. Cachexia Sarcopenia Muscle 6, 212–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Engelen, M. P. K. J., Safar, A. M., Bartter, T., Koeman, F. & Deutz, N. E. P. High anabolic potential of essential amino acid mixtures in advanced nonsmall cell lung cancer. Ann. Oncol. 26, 1960–1966 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lira, F. S., Antunes, B., de, M. M., Seelaender, M. & Neto, J. C. R. The therapeutic potential of exercise to treat cachexia. Curr. Opin. Support. Palliat. Care 9, 317–324 (2015).

    Article  PubMed  Google Scholar 

  123. Wood, L. J. et al. Does muscle-derived interleukin-6 mediate some of the beneficial effects of exercise on cancer treatment-related fatigue? Oncol. Nurs. Forum 36, 519–524 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Alves, C. R. R., da Cunha, T. F., da Paixão, N. A. & Brum, P. C. Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci. 125, 9–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Lønbro, S. et al. Progressive resistance training rebuilds lean body mass in head and neck cancer patients after radiotherapy – results from the randomized DAHANCA 25B trial. Radiother. Oncol. 108, 314–319 (2013).

    Article  PubMed  Google Scholar 

  126. Peddle-McIntyre, C. J., Bell, G., Fenton, D., McCargar, L. & Courneya, K. S. Feasibility and preliminary efficacy of progressive resistance exercise training in lung cancer survivors. Lung Cancer 75, 126–132 (2012).

    Article  PubMed  Google Scholar 

  127. Segura, A. et al. An epidemiological evaluation of the prevalence of malnutrition in Spanish patients with locally advanced or metastatic cancer. Clin. Nutr. 24, 801–814 (2005).

    Article  PubMed  Google Scholar 

  128. Argilés, J. M., Anguera, A. & Stemmler, B. A new look at an old drug for the treatment of cancer cachexia: megestrol acetate. Clin. Nutr. 32, 319–324 (2013).

    Article  PubMed  Google Scholar 

  129. Bruera, E., Macmillan, K., Kuehn, N., Hanson, J. & MacDonald, R. N. A controlled trial of megestrol acetate on appetite, caloric intake, nutritional status, and other symptoms in patients with advanced cancer. Cancer 66, 1279–1282 (1990).

    Article  CAS  PubMed  Google Scholar 

  130. Busquets, S. et al. Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. Clin. Nutr. 29, 733–737 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Simon, L., Baldwin, C., Kalea, A. Z. & Slee, A. Cannabinoid interventions for improving cachexia outcomes in cancer: a systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 13, 23–41 (2022).

    Article  PubMed  Google Scholar 

  132. Garcia, J. M. et al. Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol. 16, 108–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Temel, J. S. et al. Anamorelin in patients with advanced non-small cell lung cancer and cachexia: results from the phase III studies ROMANA 1 and 2. J. Clin. Oncol. 33, 175–175 (2015).

    Article  Google Scholar 

  134. Temel, J. S. et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 17, 519–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Hamauchi, S. et al. A multicenter, open-label, single-arm study of anamorelin (ONO-7643) in advanced gastrointestinal cancer patients with cancer cachexia. Cancer 125, 4294–4302 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Wakabayashi, H., Arai, H. & Inui, A. The regulatory approval of anamorelin for treatment of cachexia in patients with non-small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: facts and numbers. J. Cachexia Sarcopenia Muscle 12, 14–16 (2021).

    Article  PubMed  Google Scholar 

  137. Naito, T. et al. A multicenter, open-label, single-arm study of anamorelin (ONO-7643) in patients with cancer cachexia and low body mass index. Cancer 128, 2025–2035 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Yennurajalingam, S. et al. Anamorelin combined with physical activity, and nutritional counseling for cancer-related fatigue: a preliminary study. Support. Care Cancer 30, 497–509 (2022).

    Article  PubMed  Google Scholar 

  139. Argilés, J. M., López-Soriano, F. J., Stemmler, B. & Busquets, S. Therapeutic strategies against cancer cachexia. Eur. J. Transl. Myol. 29, 4–13 (2019).

    Article  Google Scholar 

  140. Bayliss, T. J., Smith, J. T., Schuster, M., Dragnev, K. H. & Rigas, J. R. A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert. Opin. Biol. Ther. 11, 1663–1668 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Mesa, R. A. et al. Effects of ruxolitinib treatment on metabolic and nutritional parameters in patients with myelofibrosis from COMFORT-I. Clin. Lymphoma Myeloma Leuk. 15, 214–221.e1 (2015).

    Article  PubMed  Google Scholar 

  142. Figueras, M. et al. Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Lett. 569, 201–206 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Argilés, J. M., López-Soriano, F. J. & Busquets, S. Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. Drug. Discov. Today 14, 208–213 (2009).

    Article  PubMed  Google Scholar 

  144. Argilés, J. M., Busquets, S. & López-Soriano, F. J. The role of uncoupling proteins in pathophysiological states. Biochem. Biophys. Res. Commun. 293, 1145–1152 (2002).

    Article  PubMed  Google Scholar 

  145. Busquets, S. et al. Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. Int. J. Mol. Med. 16, 471–476 (2005).

    CAS  PubMed  Google Scholar 

  146. Carbó, N. et al. Interleukin-15 antagonizes muscle protein waste in tumour-bearing rats. Br. J. Cancer 83, 526–531 (2020).

    Article  Google Scholar 

  147. Martínez-Hernández, P. L. et al. Serum interleukin-15 levels in cancer patients with cachexia. Oncol. Rep. 28, 1443–1452 (2012).

    Article  PubMed  Google Scholar 

  148. Reid, J., Hughes, C. M., Murray, L. J., Parsons, C. & Cantwell, M. M. Non-steroidal anti-inflammatory drugs for the treatment of cancer cachexia: a systematic review. Palliat. Med 27, 295–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Lainscak, M. & Laviano, A. ACT-ONE - ACTION at last on cancer cachexia by adapting a novel action beta-blocker. J. Cachexia Sarcopenia Muscle 7, 400–402 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Stewart Coats, A. J. et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J. Cachexia Sarcopenia Muscle 7, 355–365 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Toledo, M. et al. Formoterol in the treatment of experimental cancer cachexia: effects on heart function. J. Cachexia Sarcopenia Muscle 5, 315–320 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Busquets, S. et al. Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res. 64, 6725–6731 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Wang, Q. & McPherron, A. C. Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation. J. Physiol. 590, 2151–2165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Smith, R. C. & Lin, B. K. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr. Opin. Support. Palliat. Care 7, 352–360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Toledo, M. et al. Complete reversal of muscle wasting in experimental cancer cachexia: additive effects of activin type II receptor inhibition and β-2 agonist. Int. J. Cancer 138, 2021–2029 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Greig, C. A. et al. Phase I/II trial of formoterol fumarate combined with megestrol acetate in cachectic patients with advanced malignancy. Support. Care Cancer 22, 1269–1275 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Morimoto, M., Aikawa, K., Hara, T. & Yamaoka, M. Prevention of body weight loss and sarcopenia by a novel selective androgen receptor modulator in cancer cachexia models. Oncol. Lett. 14, 8066–8071 (2017).

    PubMed  PubMed Central  Google Scholar 

  158. Dobs, A. S. et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 14, 335–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Crawford, J. et al. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER trials). Curr. Oncol. Rep. 18, 37 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Crawford, J., Johnston, M. A., Taylor, R. P., Dalton, J. T. & Steiner, M. S. Enobosarm and lean body mass in patients with non-small cell lung cancer [abstract]. J. Clin. Oncol. 32 (Suppl. 15), 9618 (2014).

    Article  Google Scholar 

  161. Amato, A. A. et al. Efficacy and safety of bimagrumab in sporadic inclusion body myositis: long-term extension of RESILIENT. Neurology 96, E1595–E1607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lach-Trifilieff, E. et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol. Cell Biol. 34, 606–618 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Golan, T. et al. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J. Cachexia Sarcopenia Muscle 9, 871–879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Prado, C. M. M. et al. Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br. J. Cancer 106, 1583–1586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Finn, R. S. et al. Phase 1b investigation of the MEK inhibitor binimetinib in patients with advanced or metastatic biliary tract cancer. Invest. New Drugs 36, 1037–1043 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, Q. et al. Combined treatment of carfilzomib and z-VAD-fmk inhibits skeletal proteolysis and apoptosis and ameliorates cancer cachexia. Med. Oncol. 32, 100 (2015).

    Article  PubMed  Google Scholar 

  167. Penna, F. et al. Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. J. Cachexia Sarcopenia Muscle 7, 345–354 (2016).

    Article  PubMed  Google Scholar 

  168. Murphy, K. T., Chee, A., Trieu, J., Naim, T. & Lynch, G. S. Inhibition of the renin-angiotensin system improves physiological outcomes in mice with mild or severe cancer cachexia. Int. J. Cancer 133, 1234–1246 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. di Felice, V. et al. Physiactisome: a new nanovesicle drug containing heat shock protein 60 for treating muscle wasting and cachexia. Cells 11, 1406 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Palus, S. et al. The erythropoietin-derived peptide ARA 284 reduces tissue wasting and improves survival in a rat model of cancer cachexia. J. Cachexia Sarcopenia Muscle 13, 2202–2210 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Pin, F. et al. Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations. Oncotarget 6, 43202–43215 (2014).

    Article  Google Scholar 

  172. Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Rohm, M. & Herzig, S. An antibody attack against body wasting in cancer. Cell Metab. 32, 331–333 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Suriben, R. et al. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice. Nat. Med. 26, 1264–1270 (2020).

    Article  PubMed  Google Scholar 

  176. Hong, D. S. et al. MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol. 15, 656–666 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Muscaritoli, M., Molfino, A., Lucia, S. & Rossi Fanelli, F. Cachexia: a preventable comorbidity of cancer. A T.A.R.G.E.T. approach. Crit. Rev. Oncol. Hematol. 94, 251–259 (2015).

    Article  PubMed  Google Scholar 

  178. Maeng, C. H. et al. Effect of multimodal intervention care on cachexia in patients with advanced cancer compared to conventional management (MIRACLE): an open-label, parallel, randomized, phase 2 trial. Trials 23, 281 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Khorasanchi, A., Nemani, S., Pandey, S. & del Fabbro, E. Managing nutrition impact symptoms in cancer cachexia: a case series and mini review. Front. Nutr. 9, 831934 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cavaliere, R. & Schiff, D. Neurologic toxicities of cancer therapies. Curr. Neurol. Neurosci. Rep. 6, 218–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Newton, H. B. Neurological complications of chemotherapy to the central nervous system. Handb. Clin. Neurol. 105, 903–916 (2012).

    Article  PubMed  Google Scholar 

  182. Hain, B. A., Xu, H. & Waning, D. L. Loss of REDD1 prevents chemotherapy-induced muscle atrophy and weakness in mice. J. Cachexia Sarcopenia Muscle 12, 1597–1612 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zhidkova, E. M. et al. Nutritional sensor REDD1 in cancer and inflammation: friend or foe? Int. J. Mol. Sci. 23, 9686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Huot, J. R., Pin, F. & Bonetto, A. Muscle weakness caused by cancer and chemotherapy is associated with loss of motor unit connectivity. Am. J. Cancer Res. 11, 2990–3001 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Mora, S. & Adegoke, O. A. J. The effect of a chemotherapy drug cocktail on myotube morphology, myofibrillar protein abundance, and substrate availability. Physiol. Rep. 9, e14927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gilliam, L. A. A. et al. Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am. J. Physiol. Cell Physiol. 302, C195–C202 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Rybalka, E. et al. Chemotherapeutic agents induce mitochondrial superoxide production and toxicity but do not alter respiration in skeletal muscle in vitro. Mitochondrion 42, 33–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Beltrà, M., Pin, F., Ballarò, R., Costelli, P. & Penna, F. Mitochondrial dysfunction in cancer cachexia: impact on muscle health and regeneration. Cells 10, 3150 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Guigni, B. A. et al. Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. Am. J. Physiol. Cell Physiol. 315, C744–C756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mallard, J. et al. Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients. J. Cachexia Sarcopenia Muscle 13, 1896–1907 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Sorensen, J. C. et al. Mitochondria: inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting? Cancer Chemother. Pharmacol. 78, 673–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. D’Lugos, A. C. et al. Chronic doxorubicin administration impacts satellite cell and capillary abundance in a muscle-specific manner. Physiol. Rep. 7, e14052 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Amrute-Nayak, M. et al. Chemotherapy triggers cachexia by deregulating synergetic function of histone-modifying enzymes. J. Cachexia Sarcopenia Muscle 12, 159–176 (2021).

    Article  PubMed  Google Scholar 

  194. Courneya, K. S. et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J. Clin. Oncol. 25, 4396–4404 (2007).

    Article  PubMed  Google Scholar 

  195. Battaglini, C. et al. The effects of an individualized exercise intervention on body composition in breast cancer patients undergoing treatment. Sao Paulo Med. J. 125, 22–28 (2007).

    Article  PubMed  Google Scholar 

  196. Campbell, K. L. et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med. Sci. Sports Exerc. 51, 2375–2390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Ichiki, T., Tian, Q., Imayama, I. & Sunagawa, K. Telmisartan manifests powerful anti-inflammatory effects beyond class effects of angiotensin II type 1 blocker by inhibiting tumor necrosis factor α-induced interleukin 6 expressions through peroxisome proliferator activated receptorγ activation [abstract 5249]. Circulation 118 (Suppl. 18), 513 (2008).

    Google Scholar 

  198. Sukumaran, S., Patel, H. J. & Patel, B. M. Evaluation of role of telmisartan in combination with 5-fluorouracil in gastric cancer cachexia. Life Sci. 154, 15–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Patel, B. M. & Damle, D. Combination of telmisartan with cisplatin controls oral cancer cachexia in rats. Biomed. Res. Int. 2013, 642848 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Kim, G. T. et al. PLAG alleviates cisplatin-induced cachexia in lung cancer implanted mice. Transl. Oncol. 20, 10398 (2022).

    Article  Google Scholar 

  201. Choi, S. et al. 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol ameliorates chemoradiation-induced oral mucositis. Oral. Dis. 26, 111–121 (2020).

    Article  PubMed  Google Scholar 

  202. Go, S., Park, M. J. & Lee, G. W. Clinical significance of the cachexia index in patients with small cell lung cancer. BMC Cancer 21, 563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Go, S. et al. Cachexia index as a potential biomarker for cancer cachexia and a prognostic indicator in diffuse large B-cell lymphoma. J. Cachexia Sarcopenia Muscle 12, 2211–2219 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Yang, Q. J. et al. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J. Cachexia Sarcopenia Muscle 9, 71–85 (2018).

    Article  PubMed  Google Scholar 

  205. Roma-Rodrigues, C., Mendes, R., Baptista, P. V. & Fernandes, A. R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20, 840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.M.A. researched data and wrote the article. All the other authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Josep M. Argilés.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks B. Laird, T. Naito, C. Prado, who co-reviewed with C. Orsso, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argilés, J.M., López-Soriano, F.J., Stemmler, B. et al. Cancer-associated cachexia — understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol 20, 250–264 (2023). https://doi.org/10.1038/s41571-023-00734-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00734-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer