Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging roles of γδ T cells in cancer immunotherapy

Abstract

Current cancer immunotherapies are primarily predicated on αβ T cells, with a stringent dependence on MHC-mediated presentation of tumour-enriched peptides or unique neoantigens that can limit their efficacy and applicability in various contexts. After two decades of preclinical research and preliminary clinical studies involving very small numbers of patients, γδ T cells are now being explored as a viable and promising approach for cancer immunotherapy. The unique features of γδ T cells, including their tissue tropisms, antitumour activity that is independent of neoantigen burden and conventional MHC-dependent antigen presentation, and combination of typical properties of T cells and natural killer cells, make them very appealing effectors in multiple cancer settings. Herein, we review the main functions of γδ T cells in antitumour immunity, focusing on human γδ T cell subsets, with a particular emphasis on the differences between Vδ1+ and Vδ2+ γδ T cells, to discuss their prognostic value in patients with cancer and the key therapeutic strategies that are being developed in an attempt to improve the outcomes of these patients.

Key points

  • Human γδ T cells comprise subsets with distinct tissue tropisms: Vδ1+ cells are enriched in mucosal tissues (and often predominate within carcinomas), whereas Vδ2+ cells are most abundant in the blood and lymphoid organs.

  • Most human γδ T cells have antitumour functions, but have also been reported to have pro-tumour properties in specific contexts.

  • γδ T cells have prognostic value in patients with cancer, being associated with favourable outcomes for most tumour types, especially when focusing on Vδ1+ cells.

  • γδ T cells are endowed with antitumour mechanisms of both αβ T cells and natural killer (NK) cells, mediated not only by T cell receptor (TCR) and co-stimulatory signals but also by activating NK cell receptors.

  • γδ T cells mostly act in a manner independent of MHC class I-mediated antigen presentation, making them suitable for treatment of MHC class I-deficient tumours, as well as for application in allogeneic settings.

  • Emerging therapeutic approaches based on γδ T cells comprise cell engagers, adoptive transfer of expanded Vδ1+ or Vδ2+ T cell subsets, and genetic engineering of γδ T cells to express chimeric antigen receptors (CARs) or αβ T cells to express specific γδTCRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antitumour versus pro-tumour roles of γδ T cells.
Fig. 2: γδ T cell-based therapeutic concepts and approaches.

Similar content being viewed by others

References

  1. Hayday, A. C. et al. Structure, organization, and somatic rearrangement of T cell gamma genes. Cell 40, 259–269 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Bank, I. et al. A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322, 179–181 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Brenner, M. B. et al. Identification of a putative second T-cell receptor. Nature 322, 145–149 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Born, W. et al. Peptide sequences of T-cell receptor δ and γ chains are identical to predicted X and γ proteins. Nature 330, 572–574 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ribot, J. C., Lopes, N. & Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Silva-Santos, B., Mensurado, S. & Coffelt, S. B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Sebestyen, Z., Prinz, I., Déchanet-Merville, J., Silva-Santos, B. & Kuball, J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Dolgin, E. Unconventional γδ T cells ‘the new black’ in cancer therapy. Nat. Biotechnol. 40, 805–808 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Saura-Esteller, J. et al. Gamma delta T-cell based cancer immunotherapy: past-present-future. Front. Immunol. 13, 915837 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kabelitz, D., Serrano, R., Kouakanou, L., Peters, C. & Kalyan, S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell. Mol. Immunol. 17, 925–939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bigby, M. et al. Most gamma delta T cells develop normally in the absence of MHC class II molecules. J. Immunol. 151, 4465–4475 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Deseke, M. & Prinz, I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell. Mol. Immunol. 17, 914–924 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silva-Santos, B., Serre, K. & Norell, H. γδ T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Mokuno, Y. et al. Expression of toll-like receptor 2 on γδ T cells bearing invariant Vγ6/Vδ1 induced by Escherichia coli infection in mice. J. Immunol. 165, 931–940 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Sheridan, B. S. et al. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39, 184–195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lefranc, M. P. IMGT, the international ImMunoGeneTics information system. Cold Spring Harb. Protoc. 6, 595–603 (2011).

    Google Scholar 

  18. Kabelitz, D., Kalyan, S., Oberg, H. H. & Wesch, D. Human Vδ2 versus non-Vδ2 γδ T cells in antitumor immunity. Oncoimmunology 2, 37–41 (2013).

    Article  Google Scholar 

  19. Holtmeier, W. et al. The TCR δ repertoire in normal human skin is restricted and distinct from the TCR δ repertoire in the peripheral blood. J. Invest. Dermatol. 116, 275–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kalyan, S. & Kabelitz, D. Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic. Cell. Mol. Immunol. 10, 21–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Krangel, M. S., Yssel, H., Brocklehurst, C. & Spits, H. A distinct wave of human T cell receptor γ/δ lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J. Exp. Med. 172, 847–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Willcox, C. R., Davey, M. S. & Willcox, B. E. Development and selection of the human Vγ9Vδ2+ T-cell repertoire. Front. Immunol. 9, 1501 (2018).

    Article  PubMed  Google Scholar 

  23. McVay, L. D. & Carding, S. R. Extrathymic origin of human gamma delta T cells during fetal development. J. Immunol. 157, 2873–2882 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Sherwood, A. M. et al. Deep sequencing of the human TCRγ and TCRβ repertoires suggests that TCRβ rearranges after αβ and γδ T cell commitment. Sci. Transl. Med. 3, 90ra61 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, H., Fang, Z. & Morita, C. T. Vγ2Vδ2 T cell receptor recognition of prenyl pyrophosphates is dependent on all CDRs. J. Immunol. 184, 6209–6222 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Hintz, M. et al. Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett. 509, 317–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka, Y., Morita, C. T., Nieves, E., Brenner, M. B. & Bloom, B. R. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Gober, H. J. et al. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197, 163–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Benzaïd, I. et al. High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vγ9Vδ2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Res. 71, 4562–4572 (2011).

    Article  PubMed  Google Scholar 

  30. Ashihara, E. et al. Isopentenyl pyrophosphate secreted from zoledronate-stimulated myeloma cells, activates the chemotaxis of γδT cells. Biochem. Biophys. Res. Commun. 463, 650–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2T cells. Immunity 40, 490–500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peigné, C.-M. et al. The juxtamembrane domain of butyrophilin BTN3A1 controls phosphoantigen-mediated activation of human Vγ9Vδ2 T cells. J. Immunol. 198, 4228–4234 (2017).

    Article  PubMed  Google Scholar 

  34. Gu, S. et al. Phosphoantigen-induced conformational change of butyrophilin 3A1 (BTN3A1) and its implication on Vγ9Vδ2 T cell activation. Proc. Natl Acad. Sci. USA 114, E7311–E7320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, Y. et al. A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated Vγ9Vδ2 T cell activation. Immunity 50, 1043–1053.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Hsiao, C.-H. C., Nguyen, K., Jin, Y., Vinogradova, O. & Wiemer, A. J. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chem. Biol. 29, 985–995.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 367, eaay5516 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka, Y. et al. Synthesis of pyrophosphate-containing compounds that stimulate Vγ2Vδ2 T cells: application to cancer immunotherapy. Med. Chem. 3, 85–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, R. N. et al. Optimized protocols for γδ T cell expansion and lentiviral transduction. Mol. Med. Rep. 19, 1471–1480 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Burjanadzé, M. et al. In vitro expansion of gamma delta T cells with anti-myeloma cell activity by phosphostim and IL-2 in patients with multiple myeloma. Br. J. Haematol. 139, 206–216 (2007).

    Article  PubMed  Google Scholar 

  41. Hoeres, T., Smetak, M., Pretscher, D. & Wilhelm, M. Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer. Front. Immunol. 9, 800 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Starick, L. et al. Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur. J. Immunol. 47, 982–992 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Payne, K. K. et al. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells. Science 369, 942–949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Gassart, A. et al. Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9Vδ2 T cell-mediated antitumor immune response. Sci. Transl. Med. 13, eabj0835 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Melandri, D. et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19, 1352–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rincon-Orozco, B. et al. Activation of Vγ9Vδ2 T cells by NKG2D. J. Immunol. 175, 2144–2151 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Wrobel, P. et al. Lysis of a broad range of epithelial tumour cells by human γδ T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand. J. Immunol. 66, 320–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Toutirais, O. et al. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9Vδ2 T cells. Eur. J. Immunol. 39, 1361–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Angelini, D. F. et al. FcγRIII discriminates between 2 subsets of Vγ9Vδ2 effector cells with different responses and activation pathways. Blood 104, 1801–1807 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Gertner-Dardenne, J. et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood 113, 4875–4884 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Tokuyama, H. et al. Vγ9Vδ2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int. J. Cancer 122, 2526–2534 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Brandes, M. et al. Cross-presenting human γδ T cells induce robust CD8+ αβ T cell responses. Proc. Natl Acad. Sci. USA 106, 2307–2312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carding, S. R. & Egan, P. J. γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Pitard, V. et al. Long-term expansion of effector/memory Vδ2 γδ T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khairallah, C., Déchanet-Merville, J. & Capone, M. γδ T cell-mediated immunity to cytomegalovirus infection. Front. Immunol. 8, 105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Farnault, L. et al. Clinical evidence implicating gamma-delta T cells in EBV control following cord blood transplantation. Bone Marrow Transpl. 48, 1478–1479 (2013).

    Article  CAS  Google Scholar 

  57. Fujishima, N. et al. Skewed T cell receptor repertoire of Vδ1+ γδ T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction. Clin. Exp. Immunol. 149, 70–79 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ravens, S. et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Di Lorenzo, B., Ravens, S. & Silva-Santos, B. High-throughput analysis of the human thymic Vδ1+ T cell receptor repertoire. Sci. Data 6, 115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Spada, F. M. et al. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uldrich, A. P. et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14, 1137–1145 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Luoma, A. M. et al. Crystal structure of Vδ1T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39, 1032–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-lnducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Poggi, A. et al. Vδ1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res. 64, 9172–9179 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Knight, A., MacKinnon, S. & Lowdell, M. W. Human Vδ1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy 14, 1110–1118 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Almeida, A. R. et al. Delta one T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof-of-concept. Clin. Cancer Res. 22, 5795–5804 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Mikulak, J. et al. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. J. Clin. Invest. 4, e125884 (2019).

    Google Scholar 

  69. Correia, D. V. et al. Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118, 992–1001 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. De Vries, N. L. et al. γδ T cells are effectors of immune checkpoint blockade in mismatch repair-deficient colon cancers with antigen presentation defects. Preprint at https://doi.org/10.1101/2021.10.14.464229 (2021).

  71. Dunne, M. R. et al. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS ONE 8, 2–11 (2013).

    Article  Google Scholar 

  72. Kenna, T. et al. Distinct subpopulations of γδ T cells are present in normal and tumor-bearing human liver. Clin. Immunol. 113, 56–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Déchanet, J. et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Invest. 103, 1437–1449 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bartkowiak, J., Kulczyck-Wojdala, D., Blonski, J. Z. & Robak, T. Molecular diversity of gammadelta T cells in peripheral blood from patients with B-cell chronic lymphocytic leukaemia. Neoplasma 49, 86–90 (2002).

    CAS  PubMed  Google Scholar 

  75. Mangan, B. A. et al. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. J. Immunol. 191, 30–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Marlin, R. et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl Acad. Sci. USA 114, 3163–3168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Le Nours, J. et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science 366, 1522–1527 (2019).

    Article  PubMed  Google Scholar 

  78. Rice, M. T. et al. Recognition of the antigen-presenting molecule MR1 by a Vδ3+ γδ T cell receptor. Proc. Natl Acad. Sci. USA 118, e2110288118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chitadze, G., Oberg, H. H., Wesch, D. & Kabelitz, D. The ambiguous role of γδ T lymphocytes in antitumor immunity. Trends Immunol. 38, 668–678 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Foulkes, W., Smith, I. & Reis-Filho, J. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Reis, B. S. et al. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 377, 276–284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mensurado, S. & Silva-Santos, B. Battle of the γδ T cell subsets in the gut. Trends Cancer 8, 881–883 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Papotto, P. H., Ribot, J. C. & Silva-Santos, B. IL-17+ γδ T cells as kick-starters of inflammation. Nat. Immunol. 18, 604–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rei, M., Pennington, D. J. & Silva-Santos, B. The emerging protumor role of γδ T lymphocytes: implications for cancer immunotherapy. Cancer Res 75, 798–802 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Ribot, J. C., Silva-Santos, B., Correia, D. V., Sousa, A. E. & Ribeiro, S. T. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J. Immunol. 192, 2237–2243 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Gao, Y. et al. γδ T cells provide an early source of interferon γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Street, S. E. A. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, Z. et al. Protective immunosurveillance and therapeutic antitumor activity of γδ T cells demonstrated in a mouse model of prostate cancer. J. Immunol. 180, 6044–6053 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Kunzmann, V. et al. Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Hematology 96, 384–392 (2000).

    CAS  Google Scholar 

  92. Viey, E. et al. Phosphostim-activated γδ T cells kill autologous metastatic renal cell carcinoma. J. Immunol. 174, 1338–1347 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Mattarollo, S. R., Kenna, T., Nieda, M. & Nicol, A. J. Chemotherapy and zoledronate sensitize solid tumour cells to Vγ9Vδ2 T cell cytotoxicity. Cancer Immunol. Immunother. 56, 1285–1297 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. D’Asaro, M. et al. Vγ9Vδ2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J. Immunol. 184, 3260–3268 (2010).

    Article  PubMed  Google Scholar 

  95. Simões, A. E., Di Lorenzo, B. & Silva-Santos, B. Molecular determinants of target cell recognition by human γδ T cells. Front. Immunol. 9, 929 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Alexander, A. A. Z. et al. Isopentenyl pyrophosphate-activated CD56+ γδ T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin. Cancer Res. 14, 4232–4240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Todaro, M. et al. Efficient killing of human colon cancer stem cells by γδ T lymphocytes. J. Immunol. 182, 7287–7296 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Dokouhaki, P. et al. NKG2D regulates production of soluble TRAIL by ex vivo expanded human γδ T cells. Eur. J. Immunol. 43, 3175–3182 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Capietto, A.-H., Martinet, L. & Fournie, J.-J. Stimulated γδ T cells increase the in vivo efficacy of trastuzumab in HER-2+ breast cancer. J. Immunol. 187, 1031–1038 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Fisher, J. P. H. et al. Neuroblastoma killing properties of Vδ2 and Vδ2-negative γδT cells following expansion by artificial antigen presenting cells. Clin. Cancer Res. 20, 5720–5732 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Riond, J., Rodriguez, S., Nicolau, M., Saati, T. & Gairin, J. E. In vivo major histocompatibility complex class I (MHCI) expression on MHCIlow tumor cells is regulated by γδ T and NK cells during the early steps of tumor growth. Cancer Immun. 9, 10 (2009).

    PubMed  Google Scholar 

  102. Maniar, A. et al. Human γδ T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 116, 1726–1733 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Altvater, B., Pscherer, S., Landmeier, S. & Kailayangiri, S. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol. Immunother. 61, 385–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Holmen Olofsson, G. et al. Vγ9Vδ2 T cells concurrently kill cancer cells and cross-present tumor antigens. Front. Immunol. 12, 645131 (2021).

    Article  PubMed  Google Scholar 

  106. Himoudi, N. et al. Human γδ T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J. Immunol. 188, 1708–1716 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Rampoldi, F., Ullrich, L. & Prinz, I. Revisiting the interaction of γδ T-cells and B-cells. Cells 9, 743 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Wen, L., Peng, Q. & Kelsoe, G. Germinal center formation, immunoglobulin class switching, and autoantibody production driven by “non α/β” T cells. J. Exp. Med. 183, 2271–2282 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Rezende, R. M. et al. γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat. Commun. 9, 3151 (2018).

    Article  PubMed  Google Scholar 

  110. Caccamo, N. et al. CXCR5 identifies a subset of Vγ9Vδ2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J. Immunol. 177, 5290–5295 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Bansal, R. R., Mackay, C. R., Moser, B. & Eberl, M. IL-21 enhances the potential of human γδ T cells to provide B-cell help. Eur. J. Immunol. 42, 110–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Rei, M. et al. Murine CD27(−) Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl Acad. Sci. USA 111, E3562–E3570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gentles, A. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu, P. et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Meraviglia, S. et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology 6, e1347742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lo Presti, E. et al. Squamous cell tumors recruit γδ T cells producing either IL17 or IFNγ depending on the tumor stage. Cancer Immunol. Res. 5, 397–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, X. et al. Distribution and functions of γδ T cells infiltrated in the ovarian cancer microenvironment. J. Transl. Med. 17, 144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Patil, R. S. et al. IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int. J. Cancer 139, 869–881 (2016).

    Article  PubMed  Google Scholar 

  119. Van Hede, D. et al. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. Proc. Natl Acad. Sci. USA 114, E9056–E9065 (2017).

    PubMed  Google Scholar 

  120. Hu, Z. et al. IL-17 activates the IL-6/STAT3 signal pathway in the proliferation of hepatitis B virus-related hepatocellular carcinoma. Cell. Physiol. Biochem. 43, 2379–2390 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Guo, N. et al. Interleukin-17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression. Front. Oncol. 9, 546 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Benevides, L. et al. IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75, 3788–3799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wakita, D. et al. Tumor-infiltrating IL-17-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur. J. Immunol. 40, 1927–1937 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Kulig, P. et al. IL17A-mediated endothelial breach promotes metastasis formation. Cancer Immunol. Res. 4, 26–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Ma, S. et al. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res. 74, 1969–1982 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Sacchi, A. et al. Myeloid-derived suppressor cells specifically suppress IFN-γ production and antitumor cytotoxic activity of Vδ2 T cells. Front. Immunol. 9, 1271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Papotto, P. H., Yilmaz, B. & Silva-Santos, B. Crosstalk between γδ T cells and the microbiota. Nat. Microbiol. 6, 1110–1117 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Jin, C. et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176, 998–1013.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kalyan, S. & Kabelitz, D. When neutrophils meet T cells: beginnings of a tumultuous relationship with underappreciated potential. Eur. J. Immunol. 44, 627–633 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Mensurado, S. et al. Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through induction of oxidative stress. PLoS Biol. 16, e2004990 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang, Z. et al. “γδT cell-IL17A-neutrophil” axis drives immunosuppression and confers breast cancer resistance to high-dose anti-VEGFR2 therapy. Front. Immunol. 12, 699478 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rutkowski, M. R. et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27, 27–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Daley, D. et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166, 1485–1499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hao, J. et al. Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production. J. Immunol. 187, 4979–4986 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Mao, Y. et al. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells. Cell. Mol. Immunol. 13, 217–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Peng, G. et al. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Ye, J. et al. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J. Immunol. 190, 2403–2414 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Chabab, G. et al. Identification of a regulatory Vδ1 gamma delta T cell subpopulation expressing CD73 in human breast cancer. J. Leukoc. Biol. 107, 1057–1067 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Wu, Y. et al. An innate-like Vδ1+ γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci. Transl. Med. 11, eaax9364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ma, C. et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J. Immunol. 189, 5029–5036 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Bruni, E. et al. Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression. J. Immunother. Cancer 10, e004579 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zakeri, N. et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat. Commun. 13, 1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, J. et al. Tumor-infiltrating γδT cells predict prognosis and adjuvant chemotherapeutic benefit in patients with gastric cancer. Oncoimmunology 6, e1353858 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lu, H. et al. High abundance of intratumoral γδ T cells favors a better prognosis in head and neck squamous cell carcinoma: a bioinformatic analysis. Front. Immunol. 11, 573920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nguyen, S. et al. Vδ2 T cells are associated with favorable clinical outcomes in patients with bladder cancer and their tumor reactivity can be boosted by BCG and zoledronate treatments. J. Immunother. Cancer 10, e004880 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gherardin, N. A. et al. γδ T cells in Merkel cell carcinomas have a proinflammatory profile prognostic of patient survival. Cancer Immunol. Res. 9, 612–623 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Wu, Y. et al. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat. Cancer 3, 696–709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Buccheri, S., Guggino, G., Caccamo, N., Li Donni, P. & Dieli, F. Efficacy and safety of γδT cell-based tumor immunotherapy: a meta-analysis. J. Biol. Regul. Homeost. Agents 28, 81–90 (2014).

    CAS  PubMed  Google Scholar 

  149. Wilhelm, M. et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 102, 200–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Dieli, F. et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 67, 7450–7457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N. & Tanabe, K. Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol. Immunother. 60, 1075–1084 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Dong, T. et al. CD277 agonist enhances the immunogenicity of relapsed/refractory acute myeloid leukemia towards Vδ2+ T cell cytotoxicity. Ann. Hematol. 101, 2195–2208 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Oberg, H. H. et al. Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. de Weerdt, I. et al. A bispecific antibody antagonizes prosurvival CD40 signaling and promotes Vγ9Vδ2 T cell-mediated antitumor responses in human B-cell malignancies. Cancer Immunol. Res. 9, 50–61 (2021).

    Article  PubMed  Google Scholar 

  155. de Weerdt, I. et al. A bispecific single-domain antibody boosts autologous Vγ9Vδ2-T cell responses toward CD1d in chronic lymphocytic leukemia. Clin. Cancer Res. 27, 1744–1755 (2021).

    Article  PubMed  Google Scholar 

  156. Ganesan, R. et al. Selective recruitment of γδ T cells by a bispecific antibody for the treatment of acute myeloid leukemia. Leukemia 35, 2274–2284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. de Bruin, R. C. G. et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 7, e1375641 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Van Diest, E. et al. Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J. Immunother. Cancer 9, e003850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schiller, C. B. et al. CD19-specific triplebody SPM-1 engages NK and γδ T cells for rapid and efficient lysis of malignant B-lymphoid cells. Oncotarget 7, 83392–83408 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Xu, Y. et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell. Mol. Immunol. 18, 427–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Di Lorenzo, B. et al. Broad cytotoxic targeting of acute myeloid leukemia by polyclonal delta one T cells. Cancer Immunol. Res. 7, 552–558 (2019).

    Article  PubMed  Google Scholar 

  162. Sánchez Martínez, D. et al. Generation and proof-of-concept for allogeneic CD123 CAR-delta one T (DOT) cells in acute myeloid leukemia. J. Immunother. Cancer 10, e005400 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lamb, L. S. et al. A combined treatment regimen of MGMT-modified γδ T cells and temozolomide chemotherapy is effective against primary high grade gliomas. Sci. Rep. 11, 21133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Benjamin, R. et al. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial. Lancet Haematol. 9, e833–e843 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shah, B. D. et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 138, 11–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Rischer, M. et al. Human γδ T cells as mediators of chimaeric-receptor redirected anti-tumour immunity. Br. J. Haematol. 126, 583–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Deniger, D. C. et al. Bispecific T-cells expressing polyclonal repertoire of endogenous γδ T-cell receptors and introduced CD19-specific chimeric antigen receptor. Mol. Ther. 21, 638–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Capsomidis, A. et al. Chimeric antigen receptor-engineered human gamma delta T cells: enhanced cytotoxicity with retention of cross presentation. Mol. Ther. 26, 354–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Zhai, X. et al. MUC1-Tn-targeting chimeric antigen receptor-modified Vγ9Vδ2 T cells with enhanced antigen-specific anti-tumor activity. Am. J. Cancer Res. 11, 79–91 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ang, W. X. et al. Electroporation of NKG2D RNA CAR improves Vγ9Vδ2 T cell responses against human solid tumor xenografts. Mol. Ther. Oncolytics 17, 421–430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ferry, G. M. et al. A simple and robust single-step method for CAR-Vδ1 γδT cell expansion and transduction for cancer immunotherapy. Front. Immunol. 13, 863155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nishimoto, K. P. et al. Allogeneic CD20-targeted γδ T cells exhibit innate and adaptive antitumor activities in preclinical B-cell lymphoma models. Clin. Transl. Immunol. 11, e1373 (2022).

    Article  CAS  Google Scholar 

  175. Neelapu, S. S. et al. A phase 1 study of ADI-001: anti-CD20 CAR-engineered allogeneic gamma delta (γδ) T cells in adults with B-cell malignancies [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 7509 (2022).

    Article  Google Scholar 

  176. Makkouk, A. et al. Off-the-shelf Vδ 1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J. Immunother. Cancer 9, e003441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Marcu-Malina, V. et al. Redirecting αβT cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood 118, 50–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Straetemans, T. et al. GMP-grade manufacturing of T cells engineered to express a defined γδTCR. Front. Immunol. 9, 1062 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Johanna, I. et al. Evaluating in vivo efficacy–toxicity profile of TEG001 in humanized mice xenografts against primary human AML disease and healthy hematopoietic cells. J. Immunother. Cancer 7, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Xu, Y. et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4, 62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Nicolas, L. et al. Human γδ T cells express a higher TCR/CD3 complex density than αβ T cells. Clin. Immunol. 98, 358–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, C. et al. Validation and promise of a TCR mimic antibody for cancer immunotherapy of hepatocellular carcinoma. Sci. Rep. 12, 12068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Hayday (King’s College London) for insightful discussions on this topic, and acknowledge funding from the Fundação para a Ciência e Tecnologia of the Portuguese Ministério da Ciência, Tecnologia e Ensino Superior (PTDC/MED-ONC/6829/2020 to B.S.-S. and 2021.01953.CEECIND to S.M.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Bruno Silva-Santos.

Ethics declarations

Competing interest

The authors receive funding from a sponsored research agreement with Takeda Development Center Americas, Inc, Lexington, MA.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks S. Coffelt, R. Lopez, Y. Tanaka and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensurado, S., Blanco-Domínguez, R. & Silva-Santos, B. The emerging roles of γδ T cells in cancer immunotherapy. Nat Rev Clin Oncol 20, 178–191 (2023). https://doi.org/10.1038/s41571-022-00722-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00722-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer