Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapy with oncolytic viruses: progress and challenges

Abstract

Oncolytic viruses (OVs) are an emerging class of cancer therapeutics that offer the benefits of selective replication in tumour cells, delivery of multiple eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumour immunity, and a tolerable safety profile that largely does not overlap with that of other cancer therapeutics. To date, four OVs and one non-oncolytic virus have been approved for the treatment of cancer globally although talimogene laherparepvec (T-VEC) remains the only widely approved therapy. T-VEC is indicated for the treatment of patients with recurrent melanoma after initial surgery and was initially approved in 2015. An expanding body of data on the clinical experience of patients receiving T-VEC is now becoming available as are data from clinical trials of various other OVs in a range of other cancers. Despite increasing research interest, a better understanding of the underlying biology and pharmacology of OVs is needed to enable the full therapeutic potential of these agents in patients with cancer. In this Review, we summarize the available data and provide guidance on optimizing the use of OVs in clinical practice, with a focus on the clinical experience with T-VEC. We describe data on selected novel OVs that are currently in clinical development, either as monotherapies or as part of combination regimens. We also discuss some of the preclinical, clinical and regulatory hurdles that have thus far limited the development of OVs.

Key points

  • Talimogene laherparepvec (T-VEC) for patients with melanoma is the first widely approved oncolytic virus, and real-world data from the past 7 years have optimized the role of T-VEC, including identifying patients who are most likely to derive benefit.

  • Research involving T-VEC has since been expanded to clinical trials involving patients with other cancers, earlier administration including in the neoadjuvant setting and combination with other therapeutic agents.

  • Three other oncolytic viruses have been approved in one or a few countries; one non-oncolytic virus was FDA approved for non-muscle invasive bladder cancer in December 2022 and other oncolytic viruses are in clinical development for a variety of cancer indications.

  • Novel oncolytic viruses typically have a tolerable safety profile and several have encouraging levels of activity in early phase clinical studies; nonetheless, challenges remain in optimizing appropriate clinical end points, regulatory pathways and clinical logistics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential OV combination strategies in clinical development.
Fig. 2: The balance between antiviral and antitumour immunity.
Fig. 3: Biomarker discovery for OVs.

Similar content being viewed by others

References

  1. Ilkow, C. S., Swift, S. L., Bell, J. C. & Diallo, J. S. From scourge to cure: tumour-selective viral pathogenesis as a new strategy against cancer. PLoS Pathog. 10, e1003836 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Macedo, N., Miller, D. M., Haq, R. & Kaufman, H. L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Russell, S. J., Peng, K. W. & Bell, J. C. Oncolytic virotherapy. Nat. Biotechnol. 30, 658–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu, J. C. et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 12, 6737–6747 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, B. L. et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 10, 292–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Roberts, M. S., Groene, W. S., Lorence, R. M. & Bamat, M. K. Naturally occurring viruses for the treatment of cancer. Discov. Med. 6, 217–222 (2006).

    PubMed  Google Scholar 

  9. Bommareddy, P. K., Aspromonte, S., Zloza, A., Rabkin, S. D. & Kaufman, H. L. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aau0417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Filley, A. C. & Dey, M. Immune system, friend or foe of oncolytic virotherapy. Front. Oncol. 7, 106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hu, J. C. et al. A novel HSV-1 virus, JS1/34.5-/47-, purges contaminating breast cancer cells from bone marrow. Clin. Cancer Res. 12, 6853–6862 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Senzer, N. N. et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 27, 5763–5771 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spitler, L. E. et al. Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF, sargramostim) administered for 3 years as adjuvant therapy of stages II(T4), III, and IV melanoma. J. Immunother. 32, 632–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kaufman, H. L. et al. Durable response rate as an endpoint in cancer immunotherapy: insights from oncolytic virus clinical trials. J. Immunother. Cancer 5, 72 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andtbacka, R. H. I. et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J. Immunother. Cancer 7, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Louie, R. J. et al. Real-world outcomes of talimogene laherparepvec therapy: a multi-institutional experience. J. Am. Coll. Surg. 228, 644–649 (2019).

    Article  PubMed  Google Scholar 

  19. Perez, M. C. et al. Observational study of talimogene laherparepvec use for melanoma in clinical practice in the United States (COSMUS-1). Melanoma Manag. 6, MMT19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Louie, K. S. et al. Real-world use of talimogene laherparepvec in Germany: a retrospective observational study using a prescription database. Future Oncol. 16, 317–328 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, J. et al. Observational study of talimogene laherparepvec use in the anti-PD-1 era for melanoma in the US (COSMUS-2). Melanoma Manag. 7, MMT41 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kleemann, J. et al. Real-world experience of talimogene laherparepvec (T-VEC) in old and oldest-old patients with melanoma: a retrospective single center study. Cancer Manag. Res. 13, 5699–5709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Akkooi, A. C. J. et al. A retrospective chart review study of real-world use of talimogene laherparepvec in unresectable stage IIIB-IVM1a melanoma in four European countries. Adv. Ther. 38, 1245–1262 (2021).

    Article  PubMed  Google Scholar 

  24. Carr, M. J. et al. Talimogene laherparepvec (T-VEC) for the treatment of advanced locoregional melanoma after failure of immunotherapy: an international multi-institutional experience. Ann. Surg. Oncol. 29, 791–801 (2022).

    Article  PubMed  Google Scholar 

  25. Stahlie, E. H. A. et al. Single agent talimogene laherparepvec for stage IIIB-IVM1c melanoma patients: a systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 175, 103705 (2022).

    Article  PubMed  Google Scholar 

  26. Andtbacka, R. H. et al. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 38, 1752–1758 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Harrington, K. J. et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin. Cancer Res. 16, 4005–4015 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Chang, K. J., Senzer, N. N., Binmoeller, K., Goldsweig, H. & Coffin, R. Phase I dose-escalation study of talimogene laherparepvec (T-VEC) for advanced pancreatic cancer (ca). J. Clin. Oncol. 30 (Suppl. 15), e14546 (2012).

    Article  Google Scholar 

  29. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science https://doi.org/10.1126/science.aax0182 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Gross, N. D. et al. Neoadjuvant cemiplimab for stage II to IV cutaneous squamous-cell carcinoma. N. Engl. J. Med. 387, 1557–1568 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel, S. et al. Neoadjuvant versus adjuvant pembrolizumab for resected stage III-IV melanoma (SWOG 1801). Ann. Oncol. 33 (Suppl. 7), S808–S869 (2022).

    Google Scholar 

  35. Dummer, R. et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: a randomized, open-label, phase 2 trial. Nat. Med. 27, 1789–1796 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Aghi, M., Rabkin, S. & Martuza, R. L. Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J. Natl Cancer Inst. 98, 38–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Muthana, M. et al. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res. 73, 490–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Toyoizumi, T. et al. Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer. Hum. Gene Ther. 10, 3013–3029 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Puzanov, I. et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 34, 2619–2626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Chesney, J. et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 36, 1658–1667 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chesney, J. A. et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.22.00343 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chiocca, E. A. et al. Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: an open-label, multi-institutional phase I trial. Neuro-Oncology 24, 951–963 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Passaro, C. et al. Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Clin. Cancer Res. 25, 290–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe, N., McKenna, M. K., Rosewell Shaw, A. & Suzuki, M. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment. Mol. Ther. 29, 505–520 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Huang, J. et al. Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma. Cancer Immunol. Immunother. 70, 2453–2465 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Li, Y. et al. Oncolytic adenovirus targeting TGF-β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer. Cell Immunol. 348, 104041 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Feist, M. et al. Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther. 28, 98–111 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. O’Cathail, S. M. et al. Combining oncolytic adenovirus with radiation — a paradigm for the future of radiosensitization. Front. Oncol. 7, 153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kyula, J. N. et al. Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-α signaling. Oncogene 33, 1700–1712 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, H. et al. Synergistic suppression effect on tumor growth of colorectal cancer by combining radiotherapy with a TRAIL-armed oncolytic adenovirus. Technol. Cancer Res. Treat. 18, 1533033819853290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shirakawa, Y. et al. Phase I dose-escalation study of endoscopic intratumoral injection of OBP-301 (Telomelysin) with radiotherapy in oesophageal cancer patients unfit for standard treatments. Eur. J. Cancer 153, 98–108 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Mao, L. J. et al. Oncolytic adenovirus harboring Interleukin-24 improves chemotherapy for advanced prostate cancer. J. Cancer 9, 4391–4397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dhar, D., Spencer, J. F., Toth, K. & Wold, W. S. Effect of preexisting immunity on oncolytic adenovirus vector INGN 007 antitumor efficacy in immunocompetent and immunosuppressed Syrian hamsters. J. Virol. 83, 2130–2139 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Qiao, J. et al. Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus. Clin. Cancer Res. 14, 259–269 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peng, K. W. et al. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther. 20, 255–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Rizvi, N. A. et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 2969–2979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Long, G. V. et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 371, 1877–1888 (2014).

    Article  PubMed  Google Scholar 

  60. Luke, J. J., Flaherty, K. T., Ribas, A. & Long, G. V. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 14, 463–482 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Crespo-Rodriguez, E. et al. Combining BRAF inhibition with oncolytic herpes simplex virus enhances the immune-mediated antitumor therapy of BRAF-mutant thyroid cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-000698 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gartrell, R. D. et al. Combination immunotherapy including OncoVEX(mGMCSF) creates a favorable tumor immune micro-environment in transgenic BRAF murine melanoma. Cancer Immunol. Immunother. 71, 1837–1849 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Yamamura, K. et al. Combination treatment of human pancreatic cancer xenograft models with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib and oncolytic herpes simplex virus HF10. Ann. Surg. Oncol. 21, 691–698 (2014).

    Article  PubMed  Google Scholar 

  64. Wu, Z. et al. Combination of cetuximab and oncolytic virus canerpaturev synergistically inhibits human colorectal cancer growth. Mol. Ther. Oncolytics 13, 107–115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liang, M. et al. Targeting matrix metalloproteinase MMP3 greatly enhances oncolytic virus mediated tumor therapy. Transl. Oncol. 14, 101221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zou, J. et al. Establishment and genomic characterizations of patient-derived esophageal squamous cell carcinoma xenograft models using biopsies for treatment optimization. J. Transl. Med. 16, 15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ott, P. A., Hodi, F. S., Kaufman, H. L., Wigginton, J. M. & Wolchok, J. D. Combination immunotherapy: a road map. J. Immunother. Cancer 5, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Riera Romo, M. Cell death as part of innate immunity: cause or consequence. Immunology 163, 399–415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Wakimoto, H. et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol. Ther. 5, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Ikeda, K. et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J. Virol. 74, 4765–4775 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nosaki, K. et al. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity. Mol. Ther. Oncolytics 3, 16022 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xia, M. et al. Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy. J. Exp. Clin. Cancer Res. 38, 408 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lv, P. et al. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano Lett. 19, 2993–3001 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Muthana, M. et al. Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res. 71, 1805–1815 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Mader, E. K. et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin. Cancer Res. 15, 7246–7255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Power, A. T. et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol. Ther. 15, 123–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Martinez-Quintanilla, J., He, D., Wakimoto, H., Alemany, R. & Shah, K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol. Ther. 23, 108–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, S. R., Chen, M. M., Ene, C., Lang, F. F. & Kan, P. Perfusion-guided endovascular super-selective intra-arterial infusion for treatment of malignant brain tumors. J. Neurointerv. Surg. 14, 533–538 (2022).

    PubMed  Google Scholar 

  82. Nguyen, T. T. et al. Mutations in the IFNgamma-JAK-STAT pathway causing resistance to immune checkpoint inhibitors in melanoma increase sensitivity to oncolytic virus treatment. Clin. Cancer Res. 27, 3432–3442 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Bommareddy, P. K., Zloza, A., Rabkin, S. D. & Kaufman, H. L. Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncoimmunology 8, 1591875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kaufman, H. L. Can biomarkers guide oncolytic virus immunotherapy. Clin. Cancer Res. 27, 3278–3279 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Harrington, K. J. et al. A practical guide to the handling and administration of talimogene laherparepvec in Europe. OncoTargets Ther. 10, 3867–3880 (2017).

    Article  Google Scholar 

  86. McBride, A., Valgus, J., Parsad, S., Sommermann, E. M. & Nunan, R. Pharmacy operationalization of the intralesional oncolytic immunotherapy talimogene laherparepvec. Hosp. Pharm. 53, 296–302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hom, V., Karonis, E., Sigidi, T. & Cawley, K. Development of a nursing policy for the administration of an oncolytic virus in the outpatient setting. Semin. Oncol. Nurs. 35, 150928 (2019).

    Article  PubMed  Google Scholar 

  88. Gutzmer, R. et al. Practical clinical guide on the use of talimogene laherparepvec monotherapy in patients with unresectable melanoma in Europe. Eur. J. Dermatol. 28, 736–749 (2018).

    CAS  PubMed  Google Scholar 

  89. Kaufman, H. L., Shalhout, S. Z. & Iodice, G. Talimogene laherparepvec: moving from first-in-class to best-in-class. Front. Mol. Biosci. 9, 834841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robilotti, E. V., Kumar, A., Glickman, M. S. & Kamboj, M. Viral oncolytic immunotherapy in the war on cancer: Infection control considerations. Infect. Control Hosp. Epidemiol. 40, 350–354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Garcia-Carbonero, R. et al. Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J. Immunother. Cancer 5, 71 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Samson, A. et al. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients. Cancer Immunol. Res. 10, 745–756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goldmacher, G. V. et al. Response criteria for intratumoral immunotherapy in solid tumors: itRECIST. J. Clin. Oncol. 38, 2667–2676 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ramelyte, E. et al. Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39, 394–406.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Harrington, K., Freeman, D. J., Kelly, B., Harper, J. & Soria, J. C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov. 18, 689–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Fukuhara, H., Ino, Y. & Todo, T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 107, 1373–1379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Todo, T. et al. Intratumoral oncolytic herpes virus G47 for residual or recurrent glioblastoma: a phase 2 trial. Nat. Med. 28, 1630–1639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karrasch, M. et al. Treatment of recurrent malignant glioma with G207, a genetically engineered herpes simplex virus-1, followed by irradiation: phase I study results. J. Clin. Oncol. 27 (Suppl. 15), 2042 (2009).

    Article  Google Scholar 

  100. Markert, J. M. et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol. Ther. 22, 1048–1055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Friedman, G. K. et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N. Engl. J. Med. 384, 1613–1622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Otani, Y. et al. NOTCH-induced MDSC recruitment after oHSV virotherapy in CNS cancer models modulates antitumor immunotherapy. Clin. Cancer Res. 28, 1460–1473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gallego Perez-Larraya, J. et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N. Engl. J. Med. 386, 2471–2481 (2022).

    Article  PubMed  Google Scholar 

  104. Lang, F. F. et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 36, 1419–1427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Merrill, M. K. & Gromeier, M. The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J. Virol. 80, 6936–6942 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gromeier, M., Lachmann, S., Rosenfeld, M. R., Gutin, P. H. & Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl Acad. Sci. USA 97, 6803–6808 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chandramohan, V. et al. Validation of an immunohistochemistry assay for detection of CD155, the poliovirus receptor, in malignant gliomas. Arch. Pathol. Lab. Med. 141, 1697–1704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Beasley, G. M. et al. Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-002203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Burke, J. M. et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J. Urol. 188, 2391–2397 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Packiam, V. T. et al. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: interim results. Urol. Oncol. 36, 440–447 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Li, R. et al. CORE1: phase 2, single-arm study of CG0070 combined with pembrolizumab in patients with nonmuscle-invasive bladder cancer (NMIBC) unresponsive to bacillus Calmette-Guerin (BCG). J. Clin. Oncol. 40 (Suppl. 16), 4597 (2022).

    Article  Google Scholar 

  113. Boorjian, S. A. et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 22, 107–117 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Streby, K. A. et al. First-in-human intravenous seprehvir in young cancer patients: a phase 1 clinical trial. Mol. Ther. 27, 1930–1938 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Andtbacka, R. H. I. et al. Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB-IV unresectable or metastatic melanoma. J. Clin. Oncol. 35 (Suppl. 15), 9510 (2017).

    Article  Google Scholar 

  116. Ferris, R. L. et al. Phase I trial of intratumoral therapy using HF10, an oncolytic HSV-1, demonstrates safety in HSV+/HSV- patients with refractory and superficial cancers. J. Clin. Oncol. 32 (Suppl. 15), 6082 (2014).

    Article  Google Scholar 

  117. Middleton, M. R. et al. An open-label, single-arm, phase II clinical trial of RP1, an enhanced potency oncolytic herpes virus, combined with nivolumab in four solid tumor types: initial results from the skin cancer cohorts. J. Clin. Oncol. 38 (Suppl. 15), e22050 (2020).

    Article  Google Scholar 

  118. Gong, J. & Mita, M. M. Activated ras signaling pathways and reovirus oncolysis: an update on the mechanism of preferential reovirus replication in cancer cells. Front. Oncol. 4, 167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Maitra, R., Ghalib, M. H. & Goel, S. Reovirus: a targeted therapeutic–progress and potential. Mol. Cancer Res. 10, 1514–1525 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Harrington, K. J., Vile, R. G., Melcher, A., Chester, J. & Pandha, H. S. Clinical trials with oncolytic reovirus: moving beyond phase I into combinations with standard therapeutics. Cytokine Growth Factor. Rev. 21, 91–98 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sborov, D. W. et al. A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin. Cancer Res. 20, 5946–5955 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kolb, E. A. et al. A phase I trial and viral clearance study of reovirus (Reolysin) in children with relapsed or refractory extra-cranial solid tumors: a Children’s Oncology Group Phase I Consortium report. Pediatr. Blood Cancer 62, 751–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Parakrama, R. et al. Immune characterization of metastatic colorectal cancer patients post reovirus administration. BMC Cancer 20, 569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Morris, D. G. et al. REO-001: a phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin(R)) in patients with advanced solid tumors. Invest. New Drugs 31, 696–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Villalona-Calero, M. A. et al. Oncolytic reovirus in combination with chemotherapy in metastatic or recurrent non-small cell lung cancer patients with KRAS-activated tumors. Cancer 122, 875–883 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Mahalingam, D. et al. A phase II study of pelareorep (REOLYSIN((R))) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers https://doi.org/10.3390/cancers10060160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mahalingam, D. et al. Pembrolizumab in combination with the oncolytic virus pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: a phase Ib study. Clin. Cancer Res. 26, 71–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Hamid, O., Ismail, R. & Puzanov, I. Intratumoral immunotherapy — update 2019. Oncologist 25, e423–e438 (2020).

    Article  PubMed  Google Scholar 

  129. Xia, Z. J. et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus [Chinese]. Ai Zheng. 23, 1666–1670 (2004).

    PubMed  Google Scholar 

  130. Liang, M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr. Cancer Drug. Targets 18, 171–176 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Alberts, P., Tilgase, A., Rasa, A., Bandere, K. & Venskus, D. The advent of oncolytic virotherapy in oncology: the Rigvir(R) story. Eur. J. Pharmacol. 837, 117–126 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Taguchi, S., Fukuhara, H. & Todo, T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn. J. Clin. Oncol. 49, 201–209 (2019).

    Article  PubMed  Google Scholar 

  133. U.S. Department of Health and Human Services. Food and Drug Administration Center for Biologics Evaluation and Research. Design and Analysis of Shedding Studies for Virus or Bacteria-Based Gene Therapy and Oncolytic Products — Guidance for Industry, https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Design-and-Analysis-of-Shedding-Studies-for-Virus-or-Bacteria-Based-Gene-Therapy-and-Oncolytic-Products--Guidance-for-Industry.pdf (2015).

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.Z.S. and H.L.K. researched data for this manuscript and made a substantial contribution to discussions of content. All authors wrote and edited and/or reviewed this manuscript prior to submission.

Corresponding author

Correspondence to Howard L. Kaufman.

Ethics declarations

Competing interests

H.L.K. is an employee of Ankyra Therapeutics and has received honoraria for participating on advisory boards for Castle Biosciences and Marengo Therapeutics. D.M.M. has received honoraria for participating on advisory boards for Checkpoint Therapeutics, EMD Serono, Pfizer, Merck, Regeneron and Sanofi Genzyme. K.S.E. and S.Z.S. report no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. van Akkooi, J. Bell, E. A. Chiocca, G. Friedman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalhout, S.Z., Miller, D.M., Emerick, K.S. et al. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol 20, 160–177 (2023). https://doi.org/10.1038/s41571-022-00719-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00719-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing