Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Predicting tumour radiosensitivity to deliver precision radiotherapy

Abstract

Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.

Key points

  • The biological effects of radiation are mediated by a complex network of signalling pathways, and assessing these effects can help to classify tumours as radiosensitive or radioresistant.

  • Advances in genomics could be used to guide the delivery of radiotherapy alone and in combination; the commercialization of genomic-based tools will be important to drive their implementation.

  • Developments from the past 20 years have enabled unprecedented high-throughput analyses and rapid profiling of RNA and DNA that are currently embedded in clinical laboratories.

  • The community needs to learn from past failures to translate radiobiology biomarkers into the clinic and improve collaborations, focusing on standardizing methods and performing multicentre validation.

  • RNA-based signatures are among the most advanced tools currently available: a ten-gene signature of cellular radiosensitivity should be available soon, and hypoxia-related signatures need further testing in clinical trials.

  • The development of DNA-based signatures is currently in progress, and areas that need further study include the role of somatic mutations in DNA damage response genes that affect radiosensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of action of ionizing radiation.
Fig. 2: Immune pathways affected by ionizing radiation.

Similar content being viewed by others

References

  1. Ringborg, U. et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001 – Summary and conclusions. Acta Oncol. 42, 357–365 (2003).

    Article  Google Scholar 

  2. Mackie, T. R. et al. Image guidance for precise conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 89–105 (2003).

    Article  Google Scholar 

  3. Li, G. et al. Advances in 4D medical imaging and 4D radiation therapy. Technol. Cancer Res. Treat. 7, 67–81 (2008).

    Article  CAS  Google Scholar 

  4. Otto, K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med. Phys. 35, 310–317 (2008).

    Article  Google Scholar 

  5. Teoh, M., Clark, C. H., Wood, K., Whitaker, S. & Nisbet, A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br. J. Radiol. 84, 967–996 (2011).

    Article  CAS  Google Scholar 

  6. Yu, C. X. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys. Med. Biol. 40, 1435–1449 (1995).

    Article  CAS  Google Scholar 

  7. Rivera, A. L. et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 12, 116–121 (2010).

    Article  CAS  Google Scholar 

  8. Rouzier, R. et al. Multigene assays and molecular markers in breast cancer: systematic review of health economic analyses. Breast Cancer Res. Treat. 139, 621–637 (2013).

    Article  CAS  Google Scholar 

  9. Redza-Dutordoir, M. & Averill-Bates, D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 1863, 2977–2992 (2016).

    Article  CAS  Google Scholar 

  10. Maier, P., Hartmann, L., Wenz, F. & Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci. 17, 102 (2016).

    Article  Google Scholar 

  11. Ouellette, M. M., Zhou, S. & Yan, Y. Cell signaling pathways that promote radioresistance of cancer cells. Diagnostics 12, 656 (2022).

    Article  CAS  Google Scholar 

  12. Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  CAS  Google Scholar 

  13. Kumari, S. et al. Immunomodulatory effects of radiotherapy. Int. J. Mol. Sci. 21, 8151 (2020).

    Article  CAS  Google Scholar 

  14. Ghasemi, Z. et al. Fractionated radiation promotes proliferation and radioresistance in bystander A549 cells but not in bystander HT29 cells. Life Sci. 257, 118087 (2020).

    Article  CAS  Google Scholar 

  15. Chalmers, A. J. & Carruthers, R. D. Radiobiology summaries: DNA damage and repair. Clin. Oncol. 33, 275–278 (2021).

    Article  CAS  Google Scholar 

  16. Feng, W., Smith, C. M., Simpson, D. A. & Gupta, G. P. Targeting non-homologous and alternative end joining repair to enhance cancer radiosensitivity. Semin. Radiat. Oncol. 32, 29–41 (2022).

    Article  Google Scholar 

  17. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    Article  CAS  Google Scholar 

  18. Wyatt, D. W. et al. Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol. Cell 63, 662–673 (2016).

    Article  CAS  Google Scholar 

  19. Li, X. & Heyer, W. D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

    Article  CAS  Google Scholar 

  20. Weber, A. M. & Ryan, A. J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124–138 (2015).

    Article  CAS  Google Scholar 

  21. Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J. & Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression. Cell Death Differ. 25, 104–113 (2018).

    Article  CAS  Google Scholar 

  22. Engeland, K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25, 114–132 (2018).

    Article  CAS  Google Scholar 

  23. Baumann, M. et al. EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother. Oncol. 83, 238–248 (2007).

    Article  CAS  Google Scholar 

  24. Thiruthaneeswaran, N. et al. Lost in application: measuring hypoxia for radiotherapy optimisation. Eur. J. Cancer 148, 260–276 (2021).

    Article  CAS  Google Scholar 

  25. West, C. M. & Slevin, F. Tumour hypoxia. Clin. Oncol. 31, 595–599 (2019).

    Article  CAS  Google Scholar 

  26. Wouters, B. G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8, 851–864 (2008).

    Article  CAS  Google Scholar 

  27. Bolland, H., Ma, T. S., Ramlee, S., Ramadan, K. & Hammond, E. M. Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem. Soc. Trans. 49, 1251–1263 (2021).

    Article  CAS  Google Scholar 

  28. Yaromina, A. et al. Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother. Oncol. 96, 116–122 (2010).

    Article  Google Scholar 

  29. Tang, M., Bolderson, E., O’Byrne, K. J. & Richard, D. J. Tumor hypoxia drives genomic instability. Front. Cell Dev. Biol. 9, 626229 (2021).

    Article  Google Scholar 

  30. Semenza, G. L. Heritable disorders of oxygen sensing. Am. J. Med. Genet. A 185, 3334–3339 (2021).

    Article  CAS  Google Scholar 

  31. Semenza, G. L. The genomics and genetics of oxygen homeostasis. Annu. Rev. Genomics Hum. Genet. 21, 183–206. (2020).

    Article  CAS  Google Scholar 

  32. Vadysirisack, D. & Ellisen, L. W. mTOR activity under hypoxia. Methods Mol. Biol. 821, 44–58 (2012).

    Google Scholar 

  33. Liu, K. X., Everdell, E., Pal, S., Haas-Kogan, D. A. & Milligan, M. G. Harnessing lactate metabolism for radiosensitization. Front. Oncol. 11, 672339 (2021).

    Article  Google Scholar 

  34. Peitzsch, C., Kurth, I., Ebert, N., Dubrovska, A. & Baumann, M. Cancer stem cells in radiation response: current views and future perspectives in radiation oncology. Int. J. Radiat. Biol. 95, 900–911 (2019).

    Article  CAS  Google Scholar 

  35. Linge, A. et al. HPV status, cancer stem cell marker expression, hypoxia gene signatures and tumour volume identify good prognosis subgroups in patients with HNSCC after primary radiochemotherapy: a multicentre retrospective study of the German Cancer Consortium Radiation. Radiother. Oncol. 121, 364–373 (2016).

    Article  Google Scholar 

  36. Vlashi, E. & Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol. 31, 28–35 (2015).

    Article  CAS  Google Scholar 

  37. Lee, S. Y. et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer 16, 10 (2017).

    Article  Google Scholar 

  38. Quail, D. F., Taylor, M. J. & Postovit, L. M. Microenvironmental regulation of cancer stem cell phenotypes. Curr. Stem Cell Res. Ther. 7, 197–216 (2012).

    Article  CAS  Google Scholar 

  39. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  Google Scholar 

  40. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  Google Scholar 

  41. Peitzsch, C., Kurth, I., Kunz-Schughart, L., Baumann, M. & Dubrovska, A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother. Oncol. 108, 378–387 (2013).

    Article  Google Scholar 

  42. Zhong, J. T. et al. GLUT-1 siRNA enhances radiosensitization of laryngeal cancer stem cells via enhanced DNA damage, cell cycle redistribution, and promotion of apoptosis in vitro and in vivo. Onco Targets Ther. 12, 9129–9142 (2019).

    Article  CAS  Google Scholar 

  43. Kaseb, H. O., Fohrer-Ting, H. F., Lewis, D. W., Lagasse, E. & Gollin, S. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Exp. Cell Res. 348, 75–86 (2016).

    Article  CAS  Google Scholar 

  44. Emami Nejad, A. et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 21, 1–26 (2021).

    Article  Google Scholar 

  45. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  Google Scholar 

  46. Kachikwu, E. L. et al. Radiation enhances regulatory T cell representation. Int. J. Radiat. Oncol. Biol. Phys. 81, 1128–1135 (2011).

    Article  Google Scholar 

  47. Honeychurch, J. & Illidge, T. M. The influence of radiation in the context of developing combination immunotherapies in cancer. Ther. Adv. Vaccines Immunother. 5, 115–122 (2017).

    Article  CAS  Google Scholar 

  48. Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y. X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  CAS  Google Scholar 

  49. Colton, M., Cheadle, E. J., Honeychurch, J. & Illidge, T. M. Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiat. Oncol. 15, 254 (2020).

    Article  Google Scholar 

  50. De Martino, M., Daviaud, C. & Vanpouille-Box, C. Radiotherapy: an immune response modifier for immuno-oncology. Semin. Immunol. 52, 101474 (2021).

    Article  Google Scholar 

  51. Krombach, J. et al. Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 8, e1523097 (2018).

    Article  Google Scholar 

  52. Fridman, W. H., Pagès, F., Saut̀s-Fridman, C. & Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  Google Scholar 

  53. Anitei, M. G. et al. Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin. Cancer Res. 20, 1891–1899 (2014).

    Article  Google Scholar 

  54. Gupta, A. et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J. Immunol. 189, 558–566 (2012).

    Article  CAS  Google Scholar 

  55. Vanpouille-Box, C. et al. TGFβ is a master regulator of radiation therapy-induced anti- tumor immunity. Cancer Res. 75, 2232–2242 (2015).

    Article  CAS  Google Scholar 

  56. Dovedi, S. J. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74, 5458–5468 (2014).

    Article  CAS  Google Scholar 

  57. Withers HR. The Four R’s of Radiotherapy. vol. 5 (Academic Press, 1975).

  58. Spiotto, M. T. et al. Biology of the radio- and chemo-responsiveness in HPV malignancies. Semin. Radiat. Oncol. 31, 274–285 (2021).

    Article  Google Scholar 

  59. Lee, J. M. & Bernstein, A. p53 mutations increase resistance to ionizing radiation (y radiation/DNA damage/transgenic mice/cardnogenesis). Proc. Natl Acad. Sci. USA 90, 5742–5746 (1993).

    Article  CAS  Google Scholar 

  60. Thariat, J. et al. Avoidance or adaptation of radiotherapy in patients with cancer with Li-Fraumeni and heritable TP53-related cancer syndromes. Lancet Oncol. 22, e562–e574 (2021).

    Article  CAS  Google Scholar 

  61. Avril, D. et al. Biomarkers of radioresistance in head and neck squamous cell carcinomas. Int. J. Radiat. Biol. https://doi.org/10.1080/09553002.2022.2110301 (2022).

    Article  Google Scholar 

  62. Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021).

    Article  CAS  Google Scholar 

  63. Fertil, B. & Malaise, E. P. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 7, 621–629 (1981).

    Article  CAS  Google Scholar 

  64. Fertil, B. & Malaise, E. P. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int. J. Radiat. Oncol. Biol. Phys. 11, 1699–1707 (1985).

    Article  CAS  Google Scholar 

  65. Bristow, R. G. & Hill, R. P. Comparison between in vitro radiosensitivity and in vivo radioresponse in murine tumor cell lines. II: in vivo radioresponse following fractionated treatment and in vitro/in vivo correlations. Int. J. Radiat. Oncol. Biol. Phys. 18, 331–345 (1990).

    Article  CAS  Google Scholar 

  66. Deacon, J., Peckham, M. J. & Steel, G. G. The radioresponsiveness of human tumours and the initial slope ofthe cell survival curve. Radiother. Oncol. 2, 317–323 (1984).

    Article  CAS  Google Scholar 

  67. Dale, RG; Jones B. Radiobiological Modelling in Radiation Oncology (BIR, 2007).

  68. De-Colle, C. et al. Ex vivo γH2AX radiation sensitivity assay in prostate cancer: inter-patient and intra-patient heterogeneity. Radiother. Oncol. 124, 386–394 (2017).

    Article  CAS  Google Scholar 

  69. Ho, V. et al. Overexpression of the MRE11-RAD50-NBS1 (MRN) complex in rectal cancer correlates with poor response to neoadjuvant radiotherapy and prognosis. BMC Cancer 18, 869 (2018).

    Article  Google Scholar 

  70. Hasegawa, T. et al. Ku70-Expression prognostiziert Ergebnisse der Strahlentherapie beim Prostatakarzinom. Strahlentherapie Und Onkol. 193, 29–37 (2017).

    Article  Google Scholar 

  71. Wilson, C. R. et al. Expression of Ku70 correlates with survival in carcinoma of the cervix. Br. J. Cancer 83, 1702–1706 (2000).

    Article  CAS  Google Scholar 

  72. Choudhury, A. et al. MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res. 70, 7017–7026 (2010).

    Article  CAS  Google Scholar 

  73. Laurberg, J. R. et al. Expression of TIP60 (tat-interactive protein) and MRE11 (meiotic recombination 11 homolog) predict treatment-specific outcome of localised invasive bladder cancer. BJU Int. 110, E1228–E1236 (2012).

    Article  CAS  Google Scholar 

  74. Walker, A. K. et al. MRE11 as a predictive biomarker of outcome after radiation therapy in bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 104, 809–818 (2019).

    Article  CAS  Google Scholar 

  75. Söderlund, K. et al. Intact Mre11/Rad50/Nbs1 complex predicts good response to radiotherapy in early breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 50–58 (2007).

    Article  Google Scholar 

  76. Söderlund, K., Skoog, L., Fornander, T. & Askmalm, M. S. The BRCA1/BRCA2/Rad51 complex is a prognostic and predictive factor in early breast cancer. Radiother. Oncol. 84, 242–251 (2007).

    Article  Google Scholar 

  77. Torres-Roca, J. F. et al. Prediction of radiation sensitivity using a gene expression classifier. Cancer Res. 65, 7169–7176 (2005).

    Article  CAS  Google Scholar 

  78. Eschrich, S. A. et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 489–496 (2009).

    Article  CAS  Google Scholar 

  79. Eschrich, S. et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int. J. Radiat. Oncol. Biol. Phys. 75, 497–505 (2009).

    Article  CAS  Google Scholar 

  80. Scott, J. G. et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 18, 202–211 (2017).

    Article  Google Scholar 

  81. Speers, C. et al. Development and validation of a novel radiosensitivity signature in human breast cancer. Clin. Cancer Res. 21, 3667–3677 (2015).

    Article  CAS  Google Scholar 

  82. Tramm, T. et al. Development and validation of a gene profile predicting benefit of postmastectomy radiotherapy in patients with high-risk breast cancer: a study of gene expression in the DBCG82bc cohort. Clin. Cancer Res. 20, 5272–5280 (2014).

    Article  CAS  Google Scholar 

  83. Sjöström, M. et al. Clinicogenomic radiotherapy classifier predicting the need for intensified locoregional treatment after breast-conserving surgery for early-stage breast cancer. J. Clin. Oncol. 37, 3340–3349 (2019).

    Article  Google Scholar 

  84. Sparano, J. A. et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N. Engl. J. Med. 379, 111–121 (2018).

    Article  CAS  Google Scholar 

  85. Cardoso, F. et al. 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 375, 717–729 (2016).

    Article  CAS  Google Scholar 

  86. Krug, D. et al. Commercially available gene expression assays as predictive tools for adjuvant radiotherapy? A critical review. Breast Care 15, 118–126 (2020).

    Article  Google Scholar 

  87. Zhao, S. G. et al. Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis. Lancet Oncol. 17, 1612–1620 (2016).

    Article  Google Scholar 

  88. Feng, F. Y. et al. Validation of a 22-gene genomic classifier in patients with recurrent prostate cancer: an ancillary study of the NRG/RTOG 9601 randomized clinical trial. JAMA Oncol. 7, 544–552 (2021).

    Article  Google Scholar 

  89. Pra, A. D. et al. Validation of the Decipher genomic classifier in patients receiving salvage radiotherapy without hormone therapy after radical prostatectomy–an ancillary study of the SAKK 09/10 randomized clinical trial 5. Ann. Oncol. 33, 950–958 (2022).

    Article  CAS  Google Scholar 

  90. Pollard, J. M. & Gatti, R. Clinical radiation sensitivity with DNA repair disorders: an overview. Int. J. Radiat. Oncol. Biol. Phys. 74, 1323–1331 (2009).

    Article  CAS  Google Scholar 

  91. DeWire, M. D. et al. Radiation therapy and adjuvant chemotherapy in a patient with a malignant glioneuronal tumor and underlying ataxia telangiectasia: a case report and review of the literature. J. Clin. Oncol. 31, e12–e14 (2013).

    Article  Google Scholar 

  92. Hart, R. M., Kimler, B. F., Evans, R. G. & Park, C. H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 13, 1237–1240 (1987).

    Article  CAS  Google Scholar 

  93. Bergom, C. et al. The implications of genetic testing on radiation therapy decisions: a guide for radiation oncologists. Int. J. Radiat. Oncol. Biol. Phys. 105, 698–712 (2019).

    Article  CAS  Google Scholar 

  94. Chapman, B. V. et al. Breast radiation therapy-related treatment outcomes in patients with or without germline mutations on multigene panel testing. Int. J. Radiat. Oncol. Biol. Phys. 112, 437–444 (2022).

    Article  Google Scholar 

  95. Ma, J. et al. Genomic analysis of exceptional responders to radiotherapy reveals somatic mutations in ATM. Oncotarget 8, 10312–10323 (2017).

    Article  Google Scholar 

  96. Pitter, K. L. et al. Pathogenic ATM mutations in cancer and a genetic basis for radiotherapeutic efficacy. J. Natl Cancer Inst. 113, 266–273 (2021).

    Article  CAS  Google Scholar 

  97. Berlin, A. et al. NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer. Oncotarget 5, 11081–11090 (2014).

    Article  Google Scholar 

  98. Nogueira, A. et al. Role of the RAD51 G172T polymorphism in the clinical outcome of cervical cancer patients under concomitant chemoradiotherapy. Gene 504, 279–283 (2012).

    Article  CAS  Google Scholar 

  99. Bassi, C. et al. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341, 395–399 (2013).

    Article  CAS  Google Scholar 

  100. Tatebe, K., Chmura, S. J. & Connell, P. P. Elevated radiotherapy toxicity in the setting of germline PTEN mutation. Pract. Radiat. Oncol. 9, 492–495 (2019).

    Article  Google Scholar 

  101. Munro, A. J., Lain, S. & Lane, D. P. p53 abnormalities and outcomes in colorectal cancer: a systematic review. Br. J. Cancer 92, 434–444 (2005).

    Article  CAS  Google Scholar 

  102. Jameel, J. K. A., Rao, V. S. R., Cawkwell, L. & Drew, P. J. Radioresistance in carcinoma of the breast. Breast 13, 452–460 (2004).

    Article  CAS  Google Scholar 

  103. Pacelli, F. P. et al. Radioresistance in head and neck squamous cell carcinoma: biological bases and therapeutic implications. Head. Neck 37, 763–770 (2015).

    Article  Google Scholar 

  104. Ribeiro, U. et al. p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma. Cancer 83, 7–18 (1998).

    Article  CAS  Google Scholar 

  105. Makino, T. et al. p53 mutation status predicts pathological response to chemoradiotherapy in locally advanced esophageal cancer. Ann. Surg. Oncol. 17, 804–811 (2010).

    Article  Google Scholar 

  106. Werbrouck, C. et al. TP53 pathway alterations drive radioresistance in diffuse intrinsic pontine gliomas (DIPG). Clin. Cancer Res. 25, 6788–6800 (2019).

    Article  CAS  Google Scholar 

  107. Casey, D. L. et al. TP53 mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma. Br. J. Cancer 125, 576–581 (2021).

    Article  CAS  Google Scholar 

  108. Abazeed, M. E. et al. Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Res. 73, 6289–6298 (2013).

    Article  CAS  Google Scholar 

  109. Jeong, Y. et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiotherapy response prediction. Cancer Discov. 7, 86–101 (2017).

    Article  CAS  Google Scholar 

  110. Sheth, S. et al. Correlation of alterations in the KEAP1/CUL3/NFE2L2 pathway with radiation failure in larynx squamous cell carcinoma. Laryngoscope Investig. Otolaryngol. 6, 699–707 (2021).

    Article  Google Scholar 

  111. Oike, T. et al. Mutation analysis of radioresistant early-stage cervical cancer. Int. J. Mol. Sci. 23, 51–12 (2021).

    Article  Google Scholar 

  112. Kim, K. H. et al. Increased radiosensitivity of solid tumors harboring ATM and BRCA1/2 mutations. Cancer Res. Treat. 54, 54–64 (2022).

    Article  Google Scholar 

  113. Luo, L. Y. et al. Genomic analyses for predictors of response to chemoradiation in stage III non-small cell lung cancer. Adv. Radiat. Oncol. 6, 100615 (2021).

    Article  Google Scholar 

  114. Shaverdian, N. et al. Effects of tumor mutational burden and gene alterations associated with radiation response on outcomes of postoperative radiation therapy in non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 113, 335–344 (2022).

    Article  Google Scholar 

  115. Mei, P. et al. High tumor mutation burden is associated with DNA damage repair gene mutation in breast carcinomas. Diagn. Pathol. 15, 50 (2020).

    Article  CAS  Google Scholar 

  116. Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

    Article  Google Scholar 

  117. Harris, B. H. L., Barberis, A., West, C. M. L. & Buffa, F. M. Gene expression signatures as biomarkers of tumour hypoxia. Clin. Oncol. 27, 547–560 (2015).

    Article  CAS  Google Scholar 

  118. Yang, L. & West, C. Hypoxia gene expression signatures as predictive biomarkers for personalising radiotherapy. Br. J. Radiol. 92, 20180036 (2019).

    Google Scholar 

  119. Irlam, J. & West, C. M. L. Time to rethink commercialisation: spin out or lose out? Clin. Oncol. 34, 439–441 (2022).

    Article  CAS  Google Scholar 

  120. Grégoire, V. et al. OC-0278 Accelerated CH-RT with/without nimorazole for p16- HNSCC: the randomized DAHANCA 29-EORTC 1219 trial. Radiother. Oncol. 161, S187–S188 (2021).

    Article  Google Scholar 

  121. Busk, M., Overgaard, J. & Horsman, M. R. Imaging of tumor hypoxia for radiotherapy: current status and future directions. Semin. Nucl. Med. 50, 562–583 (2020).

    Article  Google Scholar 

  122. O’Connor, J. P. B., Robinson, S. P. & Waterton, J. C. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br. J. Radiol. 92, 20180642 (2019).

    Article  Google Scholar 

  123. Welz, S. et al. Dose escalation to hypoxic subvolumes in head and neck cancer: a randomized phase II study using dynamic [18F]FMISO PET/CT. Radiother. Oncol. 171, 30–36 (2022).

    Article  CAS  Google Scholar 

  124. Kim, J. J. & Tannock, I. F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat. Rev. Cancer 5, 516–525 (2005).

    Article  CAS  Google Scholar 

  125. Withers, H. R., Taylor, J. M. G. & Maciejewski, B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 27, 131–146 (1988).

    Article  CAS  Google Scholar 

  126. Buffa, F. M. et al. Molecular marker profiles predict locoregional control of head and neck squamous cell carcinoma in a randomized trial of continuous hyperfractionated accelerated radiotherapy. Clin. Cancer Res. 10, 3745–3754 (2004).

    Article  CAS  Google Scholar 

  127. Xu, Y. et al. Prediction of response to radiotherapy by characterizing the transcriptomic features in clinical tumor samples across 15 cancer types. Comput. Intell. Neurosci. 2022, 5443709 (2022).

    Google Scholar 

  128. de Mey, S., Dufait, I. & De Ridder, M. Radioresistance of human cancers: clinical implications of genetic expression signatures. Front. Oncol. 11, 761901 (2021).

    Article  Google Scholar 

  129. Baumann, M. et al. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 16, 234–249 (2016).

    Article  CAS  Google Scholar 

  130. Arnold, C. R., Mangesius, J., Skvortsova, I. I. & Ganswindt, U. The role of cancer stem cells in radiation resistance. Front. Oncol. 10, 164 (2020).

    Article  Google Scholar 

  131. Gaedicke, S. et al. Noninvasive positron emission tomography and fluorescence imaging of CD133+ tumor stem cells. Proc. Natl Acad. Sci. USA 111, E692–E701 (2014).

    Article  CAS  Google Scholar 

  132. Ghaffari, H., Beik, J., Talebi, A., Mahdavi, S. R. & Abdollahi, H. New physical approaches to treat cancer stem cells: a review. Clin. Transl. Oncol. 20, 1502–1521 (2018).

    Article  CAS  Google Scholar 

  133. Wang, J. et al. Notch promotes radioresistance of glioma stem cells. Stem Cell 28, 17–28 (2010).

    Article  CAS  Google Scholar 

  134. Thippu Jayaprakash, K. & Michael, A. Notch inhibition: a promising strategy to improve radiosensitivity and curability of radiotherapy. Clin. Oncol. 33, e44–e49 (2021).

    Article  CAS  Google Scholar 

  135. Wang, K. et al. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett. 505, 37–48 (2021).

    Article  CAS  Google Scholar 

  136. Abhold, E. L. et al. EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells. PLoS ONE 7, e32459 (2012).

    Article  CAS  Google Scholar 

  137. van der Heijden, M. et al. Biological determinants of chemo-radiotherapy response in HPV-negative head and neck cancer: a multicentric external validation. Front. Oncol. 9, 1470 (2020).

    Article  Google Scholar 

  138. Efstathiou, J. A. et al. Impact of immune and stromal infiltration on outcomes following bladder-sparing trimodality therapy for muscle-invasive bladder cancer. Eur. Urol. 76, 59–68 (2019).

    Article  Google Scholar 

  139. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  Google Scholar 

  140. Eder, T. et al. Interference of tumour mutational burden with outcome of patients with head and neck cancer treated with definitive chemoradiation: a multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group. Eur. J. Cancer 116, 67–76 (2019).

    Article  CAS  Google Scholar 

  141. De Courcy, L., Bezak, E. & Marcu, L. G. Gender-dependent radiotherapy: the next step in personalised medicine? Crit. Rev. Oncol. Hematol. 147, 102881 (2020).

    Article  Google Scholar 

  142. Pointer, K. B., Pitroda, S. P. & Weichselbaum, R. R. Radiotherapy and immunotherapy: open questions and future strategies. Trends Cancer 8, 9–20 (2021).

    Article  Google Scholar 

  143. Parker, C. C. et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet 392, 2353–2366 (2018).

    Article  Google Scholar 

  144. You, R. et al. Efficacy and safety of locoregional radiotherapy with chemotherapy vs chemotherapy alone in de novo metastatic nasopharyngeal carcinoma: a multicenter phase 3 randomized clinical trial. JAMA Oncol. 6, 1345–1352 (2020).

    Article  Google Scholar 

  145. Spina, C. S. & Drake, C. G. Mechanisms of immune modulation by radiation. Semin. Radiat. Oncol. 31, 205–216 (2021).

    Article  Google Scholar 

  146. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

    Article  CAS  Google Scholar 

  147. Kelly, R. J. et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 384, 1191–1203 (2021).

    Article  CAS  Google Scholar 

  148. Lee, N. Y. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22, 450–462 (2021).

    Article  CAS  Google Scholar 

  149. Marciscano, A. E. et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin. Cancer Res. 24, 5058–5071 (2018).

    Article  CAS  Google Scholar 

  150. McLaughlin, M. et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat. Rev. Cancer 20, 203–217 (2020).

    Article  CAS  Google Scholar 

  151. Price, J. M. et al. Pretreatment lymphocyte count predicts benefit from concurrent chemotherapy with radiotherapy in oropharyngeal cancer. J. Clin. Oncol. 40, 2203–2212 (2022).

    Article  CAS  Google Scholar 

  152. Chen, D. et al. Absolute lymphocyte count predicts abscopal responses and outcomes in patients receiving combined immunotherapy and radiation therapy: analysis of 3 phase 1/2 trials. Int. J. Radiat. Oncol. Biol. Phys. 108, 196–203 (2020).

    Article  Google Scholar 

  153. Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

    Article  CAS  Google Scholar 

  154. Hall, J. et al. Ionizing radiation biomarkers in epidemiological studies – an update. Mutat. Res. Rev. Mutat. Res. 771, 59–84 (2017).

    Article  CAS  Google Scholar 

  155. West, C. & Rosenstein, B. S. Establishment of a radiogenomics consortium. Int. J. Radiat. Oncol. Biol. Phys. 76, 1295–1296 (2010).

    Article  Google Scholar 

  156. Kerns, S. L. et al. Radiogenomics consortium genome-wide association study meta-analysis of late toxicity after prostate cancer radiotherapy. J. Natl Cancer Inst. 112, 179–190 (2020).

    Article  Google Scholar 

  157. Barnett, G. C. et al. Incorporating genetic biomarkers into predictive models of normal tissue toxicity. Clin. Oncol. 27, 579–587 (2015).

    Article  CAS  Google Scholar 

  158. Azria, D. et al. Radiation-induced CD8 T-lymphocyte apoptosis as a predictor of breast fibrosis after radiotherapy: results of the prospective multicenter French trial. EBioMedicine 2, 1965–1973 (2015).

    Article  Google Scholar 

  159. Mackay, R. I. & Hendry, J. H. The modelled benefits of individualizing radiotherapy patients’ dose using cellular radiosensitivity assays with inherent variability. Radiother. Oncol. 50, 67–75 (1999).

    Article  CAS  Google Scholar 

  160. Mehanna, H. et al. De-escalation after DE-ESCALATE and RTOG 1016: a Head and Neck Cancer InterGroup framework for future de-escalation studies. J. Clin. Oncol. 38, 2552–2557 (2020).

    Article  CAS  Google Scholar 

  161. Bristow, R. G. et al. Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol. 19, e240–e251 (2018).

    Article  Google Scholar 

  162. Ma, D. J. et al. Phase II evaluation of aggressive dose de-escalation for adjuvant chemoradiotherapy in human papillomavirus-associated oropharynx squamous cell carcinoma. J. Clin. Oncol. 37, 1909–1918 (2019).

    Article  CAS  Google Scholar 

  163. Riaz, N. et al. Precision radiotherapy: reduction in radiation for oropharyngeal cancer in the 30 ROC trial. J. Natl Cancer Inst. 113, 742–751 (2020).

    Article  Google Scholar 

  164. Knegjens, J. L. et al. Tumour volume as prognostic factor in chemoradiation for advanced head and neck cancer. Head. Neck 33, 375–382 (2011).

    Google Scholar 

  165. van Laar, M., van Amsterdam, W. A. C., van Lindert, A. S. R., de Jong, P. A. & Verhoeff, J. J. C. Prognostic factors for overall survival of stage III non-small cell lung cancer patients on computed tomography: a systematic review and meta-analysis. Radiother. Oncol. 151, 152–175 (2020).

    Article  Google Scholar 

  166. Kurth, I., Peitzsch, C., Baumann, M. & Dubrovska, A. The role of cancer stem cells in tumor radioresistance. Cancer Stem Cell https://doi.org/10.1016/j.radonc.2022.02.009 (2014).

    Article  Google Scholar 

  167. Linge, A. et al. Independent validation of tumour volume, cancer stem cell markers and hypoxia-associated gene expressions for HNSCC after primary radiochemotherapy. Clin. Transl. Radiat. Oncol. 16, 40–47 (2019).

    Article  Google Scholar 

  168. Linge, A. et al. Low cancer stem cell marker expression and low hypoxia identify good prognosis subgroups in HPV(-) HNSCC after postoperative radiochemotherapy: a multicenter study of the DKTK-ROG. Clin. Cancer Res. 22, 2639–2649 (2016).

    Article  CAS  Google Scholar 

  169. Löck, S. et al. Biomarker signatures for primary radiochemotherapy of locally advanced HNSCC – Hypothesis generation on a multicentre cohort of the DKTK-ROG. Radiother. Oncol. 169, 8–14 (2022).

    Article  Google Scholar 

  170. Wiedenmann, N. E. et al. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother. Oncol. 117, 113–117 (2015).

    Article  Google Scholar 

  171. Eschrich, S. A. et al. Validation of a radiosensitivity molecular signature in breast cancer. Clin. Cancer Res. 18, 5134–5143 (2012).

    Article  Google Scholar 

  172. Torres-Roca, J. F. et al. A molecular signature of radiosensitivity (RSI) is an RT-specific biomarker in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 90, S157 (2014).

    Article  Google Scholar 

  173. Creelan, B., Eschrich, S. A., Fulp, W. J. & Torres-Roca, J. F. A gene expression platform to predict benefit from adjuvant external beam radiation in resected non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 90, S76–S77 (2014).

    Article  Google Scholar 

  174. Ahmed, K. A. et al. Differences between colon cancer primaries and metastases using a molecular assay for tumor radiation sensitivity suggest implications for potential oligometastatic SBRT patient selection. Int. J. Radiat. Oncol. Biol. Phys. 92, 837–842 (2015).

    Article  Google Scholar 

  175. Strom, T. et al. Radiosensitivity index predicts for survival with adjuvant radiation in resectable pancreatic cancer. Radiother. Oncol. 117, 159–164 (2015).

    Article  Google Scholar 

  176. Ahmed, K. A. et al. The radiosensitivity index predicts for overall survival in glioblastoma. Oncotarget 6, 34414–34422 (2015).

    Article  Google Scholar 

  177. Torres-Roca, J. F. et al. Integration of a radiosensitivity molecular signature into the assessment of local recurrence risk in breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 93, 631–638 (2015).

    Article  Google Scholar 

  178. Strom, T. et al. Regional radiation therapy impacts outcome for node positive cutaneous melanoma. J. Natl Compr. Canc. Netw. 15, 473–82. (2017).

    Article  Google Scholar 

  179. Mohammadi, H. et al. Using the radiosensitivity index (RSI) to predict pelvic failure in endometrial cancer treated with adjuvant radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 106, 496–502 (2020).

    Article  CAS  Google Scholar 

  180. Sun, C., Zhang, M., Qiao, Q. & Wang, Y. Integrating intrinsic radiosensitivity and immune status for predicting benefits of radiotherapy in head and neck squamous cell carcinoma. Med. Sci. Monit. 27, 1–11 (2021).

    Article  Google Scholar 

  181. Khan, M. T. et al.  Developing tumor radiosensitivity signatures using LncRNAs. Radiat. Res. 195, 324–333 (2021).

    Article  CAS  Google Scholar 

  182. Yang, G. et al. Genomic identification of sarcoma radiosensitivity and the clinical implications for radiation dose personalization. Transl. Oncol. 14, 101165 (2021).

    Article  CAS  Google Scholar 

  183. Ahmed, K. A. et al. Utilizing the genomically adjusted radiation dose (GARD) to personalize adjuvant radiotherapy in triple negative breast cancer management. EBioMedicine 47, 163–169 (2019).

    Article  Google Scholar 

  184. Scott, J. G. et al. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis. Lancet Oncol. 22, 1221–1229 (2021).

    Article  Google Scholar 

  185. Cui, Y., Li, B., Pollom, E. L., Horst, K. C. & Li, R. Integrating radiosensitivity and immune gene signatures for predicting benefit of radiotherapy in breast cancer. Clin. Cancer Res. 24, 4754–4762 (2018).

    Article  Google Scholar 

  186. Speers, C. et al. A signature that may be predictive of early versus late recurrence after radiation treatment for breast cancer that may inform the biology of early, aggressive recurrences. Int. J. Radiat. Oncol. Biol. Phys. 108, 686–696 (2020).

    Article  Google Scholar 

  187. Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8, e66855 (2013).

    Article  CAS  Google Scholar 

  188. Cooperberg, M. R. et al. Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur. Urol. 67, 326–333 (2015).

    Article  Google Scholar 

  189. Kim, S. II et al. Gene signature for prediction of radiosensitivity in human papillomavirus-negative head and neck squamous cell carcinoma. Radiat. Oncol. J. 38, 99–108 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

J.M.P. is supported by The Taylor Family Foundation. C.M.L.W. is supported by the Manchester NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this article. J.M.P. and C.M.L.W. contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Catharine M. L. West.

Ethics declarations

Competing interests

C.M.L.W. is co-founder of ManTRa Diagnostics, which seeks to commercialize hypoxia-associated gene signatures. J.M.P. and A.P. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Baumann, F. Moraes, J. Torres-Roca and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, J.M., Prabhakaran, A. & West, C.M.L. Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 20, 83–98 (2023). https://doi.org/10.1038/s41571-022-00709-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00709-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing