Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards precision oncology with patient-derived xenografts

Abstract

Under the selective pressure of therapy, tumours dynamically evolve multiple adaptive mechanisms that make static interrogation of genomic alterations insufficient to guide treatment decisions. Clinical research does not enable the assessment of how various regulatory circuits in tumours are affected by therapeutic insults over time and space. Likewise, testing different precision oncology approaches informed by composite and ever-changing molecular information is hard to achieve in patients. Therefore, preclinical models that incorporate the biology and genetics of human cancers, facilitate analyses of complex variables and enable adequate population throughput are needed to pinpoint randomly distributed response predictors. Patient-derived xenograft (PDX) models are dynamic entities in which cancer evolution can be monitored through serial propagation in mice. PDX models can also recapitulate interpatient diversity, thus enabling the identification of response biomarkers and therapeutic targets for molecularly defined tumour subgroups. In this Review, we discuss examples from the past decade of the use of PDX models for precision oncology, from translational research to drug discovery. We elaborate on how and to what extent preclinical observations in PDX models have confirmed and/or anticipated findings in patients. Finally, we illustrate emerging methodological efforts that could broaden the application of PDX models by honing their predictive accuracy or improving their versatility.

Key points

  • The generation of patient-derived xenograft (PDX) models involves a selection bottleneck imposed by tumour engraftment, and subsequent propagation influences the evolutionary trajectories of cancer cells; therefore, these models can be used to investigate tumour clonal composition and competition during spontaneous tumour progression and under the selective pressure of treatment.

  • Work in which PDX models were studied at the moment of maximal tumour shrinkage during exposure to a given therapy has provided insights into lineage-specific phenotypic adaptations, which underlie the acquisition of drug tolerance and are responsible for sustaining residual disease.

  • The substitution of human stromal cells by mouse stromal cells that occurs after tumour implantation has enabled the identification of transcriptional signatures related to either cancer or stromal cells with predictive and prognostic value.

  • Large collections of PDX models have contributed to the discovery and validation of novel biomarkers of response to treatment and have aided the design of new therapeutic options, some of which have entered the clinic.

  • Next-generation models with higher tissue complexity (humanized mice) or easier manageability (non-mammal organisms, ex vivo cultures) are being developed that complement conventional PDX models.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: PDX models as dynamic tools to trace cancer clonal evolution.
Fig. 2: Studying phenotypic rewiring in drug-tolerant ‘persister’ cells using PDX models.
Fig. 3: Discriminating the contributions of cancer cells and stromal cells in PDX models.

References

  1. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hahn, W. C. et al. An expanded universe of cancer targets. Cell 184, 1142–1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCoach, C. E. & Bivona, T. G. Engineering multidimensional evolutionary forces to combat cancer. Cancer Discov. 9, 587–604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marine, J.-C., Dawson, S.-J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Garraway, L. A. Genomics-driven oncology: framework for an emerging paradigm. J. Clin. Oncol. 31, 1806–1814 (2013).

    Article  PubMed  Google Scholar 

  7. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Stripecke, R. et al. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol. Med. 12, e8662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Article  PubMed  Google Scholar 

  11. Bailey, C. et al. Tracking cancer evolution through the disease course. Cancer Discov. 11, 916–932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aparicio, S., Hidalgo, M. & Kung, A. L. Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311–316 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Avolio, M. & Trusolino, L. Rational treatment of metastatic colorectal cancer: a reverse tale of men, mice, and culture dishes. Cancer Discov. 11, 1644–1660 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoge, A. C. H. et al. DNA-based copy number analysis confirms genomic evolution of PDX models. NPJ Precis. Oncol. 6, 30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, H. et al. Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nat. Commun. 12, 5086 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmitt, M. W., Loeb, L. A. & Salk, J. J. The influence of subclonal resistance mutations on targeted cancer therapy. Nat. Rev. Clin. Oncol. 13, 335–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Izumchenko, E. et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann. Oncol. 28, 2595–2605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Salehi, S. et al. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature 595, 585–590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dang, H. X. et al. The clonal evolution of metastatic colorectal cancer. Sci. Adv. 6, eaay9691 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fakih, M. G. et al. A phase I, pharmacokinetic, and pharmacodynamic study of two schedules of vorinostat in combination with 5-fluorouracil and leucovorin in patients with refractory solid tumors. Clin. Cancer Res. 16, 3786–3794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng, Y. et al. Phase II study of chidamide in combination with cisplatin in patients with metastatic triple-negative breast cancer. Ann. Palliat. Med. 10, 11255–11264 (2021).

    Article  PubMed  Google Scholar 

  30. Cleary, J. M. et al. A phase I clinical trial of navitoclax, a targeted high-affinity Bcl-2 family inhibitor, in combination with gemcitabine in patients with solid tumors. Invest. New Drugs 32, 937–945 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Vlahovic, G. et al. A phase I safety and pharmacokinetic study of ABT-263 in combination with carboplatin/paclitaxel in the treatment of patients with solid tumors. Invest. New Drugs 32, 976–984 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Marin-Bejar, O. et al. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 39, 1135–1149 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Vendramin, R. et al. Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. J. Exp. Med. 218, e20210571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buczacki, S. J. A. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Basak, O. et al. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20, 177–190 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Barriga, F. M. et al. Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell 20, 801–816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lupo, B. et al. Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell-like phenotype. Sci. Transl Med. 12, eaax8313 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Fenelon, J. C., Banerjee, A. & Murphy, B. D. Embryonic diapause: development on hold. Int. J. Dev. Biol. 58, 163–174 (2014).

    Article  PubMed  Google Scholar 

  41. Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dhimolea, E. et al. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deeken, J. F. et al. A phase 1 study of cetuximab and lapatinib in patients with advanced solid tumor malignancies. Cancer 121, 1645–1653 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Hill, A. G. et al. Phase II study of the dual EGFR/HER3 inhibitor duligotuzumab (MEHD7945A) versus cetuximab in combination with FOLFIRI in second-line RAS wild-type metastatic colorectal cancer. Clin. Cancer Res. 24, 2276–2284 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Mahalingam, D. et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10, 1403–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orlov, S. V. et al. Rapid improvement of the performance status and reduction of the tumor size in KRAS-mutated colorectal cancer patient receiving binimetinib, hydroxychloroquine, and bevacizumab. Case Rep. Oncol. 13, 985–989 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Sousa, E. et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19, 614–618 (2013).

    Article  Google Scholar 

  48. Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Medico, E. et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun. 6, 7002 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Trinh, A. et al. Practical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry. Clin. Cancer Res. 23, 387–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, T. et al. An empirical approach leveraging tumorgrafts to dissect the tumor microenvironment in renal cell carcinoma identifies missing link to prognostic inflammatory factors. Cancer Discov. 8, 1142–1155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dunne, P. D. et al. Challenging the cancer molecular stratification dogma: intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer. Clin. Cancer Res. 22, 4095–4104 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Isella, C. et al. Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat. Commun. 8, 15107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dunne, P. D. et al. Cancer-cell intrinsic gene expression signatures overcome intratumoural heterogeneity bias in colorectal cancer patient classification. Nat. Commun. 8, 15657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trusolino, L. & Bertotti, A. Compensatory pathways in oncogenic kinase signaling and resistance to targeted therapies: six degrees of separation. Cancer Discov. 2, 876–880 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Meehan, T. F. et al. PDX-MI: minimal Information for patient-derived tumor xenograft models. Cancer Res. 77, e62–e66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Conte, N. et al. PDX finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res. 47, D1073–D1079 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trunzer, K. et al. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J. Clin. Oncol. 31, 1767–1774 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Shi, H. et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3, 724 (2012).

    Article  PubMed  Google Scholar 

  65. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Rizos, H. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965–1977 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Khambata-Ford, S. et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25, 3230–3237 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Jacobs, B. et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J. Clin. Oncol. 27, 5068–5074 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Zanella, E. R. et al. IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Sci. Transl Med. 7, 272ra12 (2015).

    Article  PubMed  Google Scholar 

  71. Douillard, J.-Y. et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 369, 1023–1034 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Schütte, M. et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat. Commun. 8, 14262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schuijers, J. et al. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 16, 158–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. von Kriegsheim, A. et al. Cell fate decisions are specified by the dynamic ERK interactome. Nat. Cell Biol. 11, 1458–1464 (2009).

    Article  Google Scholar 

  75. Na, D. et al. Predictive biomarkers for 5-fluorouracil and oxaliplatin-based chemotherapy in gastric cancers via profiling of patient-derived xenografts. Nat. Commun. 12, 4840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bardelli, A. et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 3, 658–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bertotti, A. et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature 526, 263–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kavuri, S. M. et al. HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 5, 832–841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Klinghammer, K. et al. Basal subtype is predictive for response to cetuximab treatment in patient-derived xenografts of squamous cell head and neck cancer. Int. J. Cancer 141, 1215–1221 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Huang, C. et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39, 361–379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Siano, M. et al. Gene signatures and expression of miRNAs associated with efficacy of panitumumab in a head and neck cancer phase II trial. Oral. Oncol. 82, 144–151 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Adkins, D. et al. Palbociclib and cetuximab in platinum-resistant and in cetuximab-resistant human papillomavirus-unrelated head and neck cancer: a multicentre, multigroup, phase 2 trial. Lancet Oncol. 20, 1295–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Karamboulas, C. et al. Patient-derived xenografts for prognostication and personalized treatment for head and neck squamous cell carcinoma. Cell Rep. 25, 1318–1331.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Coussy, F. et al. BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers. Sci. Transl Med. 12, eaax2625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zoppoli, G. et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc. Natl Acad. Sci. USA 109, 15030–15035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murai, J. et al. SLFN11 blocks stressed replication forks independently of ATR. Mol. Cell 69, 371–384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Jin, H. et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature 595, 730–734 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Yonesaka, K. et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl Med. 3, 99ra86 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Martin, V. et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br. J. Cancer 108, 668–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sartore-Bianchi, A. et al. HER2 positivity predicts unresponsiveness to EGFR-targeted treatment in metastatic colorectal cancer. Oncologist 24, 1395–1402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leto, S. M. et al. Sustained inhibition of HER3 and EGFR is necessary to induce regression of HER2-amplified gastrointestinal carcinomas. Clin. Cancer Res. 21, 5519–5531 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Sartore-Bianchi, A. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 738–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Grothey, A. et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 303–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Li, J. et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 16, 619–629 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Mayer, R. J. et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N. Engl. J. Med. 372, 1909–1919 (2015).

    Article  PubMed  Google Scholar 

  98. Xu, J. et al. Results of a randomized, double-blind, placebo-controlled, phase III trial of trifluridine/tipiracil (TAS-102) monotherapy in Asian patients with previously treated metastatic colorectal cancer: the TERRA study. J. Clin. Oncol. 36, 350–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Hyman, D. M. et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554, 189–194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Migliardi, G. et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin. Cancer Res. 18, 2515–2525 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Do, K. et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest. New Drugs 33, 720–728 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Rongvaux, A. et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu. Rev. Immunol. 31, 635–674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zitvogel, L., Pitt, J. M., Daillère, R., Smyth, M. J. & Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer 16, 759–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Guichelaar, T. et al. Human regulatory T cells do not suppress the antitumor immunity in the bone marrow: a role for bone marrow stromal cells in neutralizing regulatory T cells. Clin. Cancer Res. 19, 1467–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. King, M. A. et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin. Exp. Immunol. 157, 104–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P. & Hutmacher, D. W. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem Cell 33, 1696–1704 (2015).

    Article  CAS  Google Scholar 

  108. Drake, A. C., Chen, Q. & Chen, J. Engineering humanized mice for improved hematopoietic reconstitution. Cell. Mol. Immunol. 9, 215–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ito, R. et al. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. J. Immunol. 191, 2890–2899 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Billerbeck, E. et al. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood 117, 3076–3086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cagan, R. L., Zon, L. I. & White, R. M. Modeling cancer with flies and fish. Dev. Cell 49, 317–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fazio, M., Ablain, J., Chuan, Y., Langenau, D. M. & Zon, L. I. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat. Rev. Cancer 20, 263–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fior, R. et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl Acad. Sci. USA 114, E8234–E8243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yan, C. et al. Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish. Cell 177, 1903–1914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bruna, A. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, J.-K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet. 50, 1399–1411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Veninga, V. & Voest, E. E. Tumor organoids: opportunities and challenges to guide precision medicine. Cancer Cell 39, 1190–1201 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Ponsioen, B. et al. Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nat. Cell Biol. 23, 377–390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. LeBlanc, V. G. et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity. Cancer Cell 40, 379–392 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl Med. 11, eaay2574 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Guillen, K. P. et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat. Cancer 3, 232–250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ooft, S. N. et al. Prospective experimental treatment of colorectal cancer patients based on organoid drug responses. ESMO Open 6, 100103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their friends and colleagues at the Laboratory of Translational Cancer Medicine at the Candiolo Cancer Institute for their comments and suggestions. The authors’ research is supported by Associazione Italiana per la Ricerca sul Cancro (Investigator Grant 22802 and AIRC 5×1000 grant 21091), AIRC–CRUK–FC AECC Accelerator Award 22795, European Union H2020 grant agreement no. 754923 COLOSSUS, and Fondazione Piemontese per la Ricerca sul Cancro–ONLUS 5×1000 Ministero della Salute 2016. L.T. is a member of the EurOPDX consortium. All figures were initially created with Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

L.T. conceived and wrote the manuscript. E.R.Z. and E.G. researched data for the article. All authors contributed to discussions of content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Livio Trusolino.

Ethics declarations

Competing interests

L.T. has received research grants from Menarini, Merck KGaA, Merus, Pfizer, Servier and Symphogen. E.R.Z. and E.G. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks E. Marangoni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

EurOPDX: https://www.europdx.eu/

PDX Finder: https://www.pdxfinder.org/

PDXNet: https://www.pdxnetwork.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zanella, E.R., Grassi, E. & Trusolino, L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol 19, 719–732 (2022). https://doi.org/10.1038/s41571-022-00682-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00682-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer