Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is early-onset cancer an emerging global epidemic? Current evidence and future implications

Abstract

Over the past several decades, the incidence of early-onset cancers, often defined as cancers diagnosed in adults <50 years of age, in the breast, colorectum, endometrium, oesophagus, extrahepatic bile duct, gallbladder, head and neck, kidney, liver, bone marrow, pancreas, prostate, stomach and thyroid has increased in multiple countries. Increased use of screening programmes has contributed to this phenomenon to a certain extent, although a genuine increase in the incidence of early-onset forms of several cancer types also seems to have emerged. Evidence suggests an aetiological role of risk factor exposures in early life and young adulthood. Since the mid-20th century, substantial multigenerational changes in the exposome have occurred (including changes in diet, lifestyle, obesity, environment and the microbiome, all of which might interact with genomic and/or genetic susceptibilities). However, the effects of individual exposures remain largely unknown. To study early-life exposures and their implications for multiple cancer types will require prospective cohort studies with dedicated biobanking and data collection technologies. Raising awareness among both the public and health-care professionals will also be critical. In this Review, we describe changes in the incidence of early-onset cancers globally and suggest measures that are likely to reduce the burden of cancers and other chronic non-communicable diseases.

Key points

  • The incidence of cancers of various organs diagnosed in adults ≤50 years of age has been rising in many parts of the world since the 1990s.

  • Evidence suggests an aetiological role for risk factor exposures in early life and young adulthood, although specific effects of individual exposures remain largely unknown.

  • The early life exposome (including, among other factors, diet, lifestyle, obesity, environmental exposures and the microbiome) has changed substantially, with variable trends observed around the world since the mid-20th century.

  • The early-onset cancer epidemic might be one manifestation of increasing trends in the development of many chronic diseases in young and future generations.

  • Prospective cohort studies using electronic health records and/or early-life biospecimen collection would enable the detailed investigation of early-life factors in relation to many future health outcomes, including cancer.

  • Raising awareness of the early-onset cancer epidemic and improving the early-life environment should be our immediate goals: these are likely to reduce the burden of both early-onset and later-onset cancers.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Trends in incidence of selected early-onset cancers.
Fig. 2: Individual life-course exposures and their relationship with the development of early-onset cancers.
Fig. 3: Broad implications and benefits of prevention efforts for early-onset cancers.

References

  1. Shah, R. R. et al. Trends in the incidence of early-onset colorectal cancer in all 50 United States from 2001 through 2017. Cancer 128, 299–310 (2021).

    Article  PubMed  Google Scholar 

  2. Islami, F. et al. Annual report to the nation on the status of cancer, part 1: National Cancer Statistics. J. Natl Cancer Inst. 113, 1648–1669 (2021).

    Article  PubMed Central  Google Scholar 

  3. Gupta, S. et al. International trends in the incidence of cancer among adolescents and young adults. J. Natl Cancer Inst. 112, 1105–1117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heer, E. et al. Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study. Lancet Glob. Health 8, e1027–e1037 (2020).

    Article  PubMed  Google Scholar 

  5. Lortet-Tieulent, J., Ferlay, J., Bray, F. & Jemal, A. International patterns and trends in endometrial cancer incidence, 1978–2013. J. Natl Cancer Inst. 110, 354–361 (2018).

    Article  PubMed  Google Scholar 

  6. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article  PubMed  Google Scholar 

  7. Ward, E. M. et al. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20–49 years. J. Natl Cancer Inst. 111, 1279–1297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sung, H., Siegel, R. L., Rosenberg, P. S. & Jemal, A. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 4, e137–e147 (2019).

    Article  PubMed  Google Scholar 

  9. Fidler, M. M. et al. Cancer incidence and mortality among young adults aged 20–39 years worldwide in 2012: a population-based study. Lancet Oncol. 18, 1579–1589 (2017).

    Article  PubMed  Google Scholar 

  10. Codipilly, D. C. et al. Epidemiology and outcomes of young-onset esophageal adenocarcinoma: an analysis from a population-based database. Cancer Epidemiol. Biomark. Prev. 30, 142–149 (2021).

    Article  Google Scholar 

  11. Huang, J. et al. Disease burden, risk factors, and recent trends of liver cancer: a global country-level analysis. Liver Cancer 10, 330–345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, J. et al. Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology 160, 744–754 (2021).

    Article  PubMed  Google Scholar 

  13. Wong, M. C. S. et al. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Netw. Open 4, e2118457 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee, J. S. et al. Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer 122, 116–123 (2016).

    Article  PubMed  Google Scholar 

  15. Chao, C. et al. Cardiovascular disease risk profiles in survivors of adolescent and young adult (AYA) cancer: the Kaiser Permanente AYA Cancer Survivors study. J. Clin. Oncol. 34, 1626–1633 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. van Dorp, W. et al. Reproductive function and outcomes in female survivors of childhood, adolescent, and young adult cancer: a review. J. Clin. Oncol. 36, 2169–2180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. NIH. Provocative questions. NIH https://provocativequestions.cancer.gov/home (2022).

  18. Akimoto, N. et al. Rising incidence of early-onset colorectal cancer–a call to action. Nat. Rev. Clin. Oncol. 18, 230–243 (2021).

    Article  PubMed  Google Scholar 

  19. Chelmow, D. et al. Executive summary of the Early-Onset Breast Cancer Evidence Review Conference. Obstet. Gynecol. 135, 1457–1478 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fujiyoshi, K. et al. Opinion: standardizing gene product nomenclature – a call to action. Proc. Natl Acad. Sci. USA 118, e2025207118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hofseth, L. J. et al. Early-onset colorectal cancer: initial clues and current views. Nat. Rev. Gastroenterol. Hepatol. 17, 352–364 (2020).

    Article  PubMed  Google Scholar 

  22. Song, M., Vogelstein, B., Giovannucci, E. L., Willett, W. C. & Tomasetti, C. Cancer prevention: molecular and epidemiologic consensus. Science 361, 1317–1318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barker, D. J. et al. A possible link between the pubertal growth of girls and breast cancer in their daughters. Am. J. Hum. Biol. 20, 127–131 (2008).

    Article  PubMed  Google Scholar 

  25. Barker, D. J. A new model for the origins of chronic disease. Med. Health Care Philos. 4, 31–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Barker, D. J. In utero programming of chronic disease. Clin. Sci. 95, 115–128 (1998).

    Article  CAS  Google Scholar 

  27. Bleker, L. S., de Rooij, S. R., Painter, R. C., Ravelli, A. C. & Roseboom, T. J. Cohort profile: the Dutch famine birth cohort (DFBC) – a prospective birth cohort study in the Netherlands. BMJ Open 11, e042078 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schulz, L. C. The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl Acad. Sci. USA 107, 16757–16758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy, C. C. et al. Maternal obesity, pregnancy weight gain, and birth weight and risk of colorectal cancer. Gut 71, 1332–1339 (2021).

    Article  PubMed  Google Scholar 

  30. Smith, N. R. et al. Associations between birth weight and colon and rectal cancer risk in adulthood. Cancer Epidemiol. 42, 181–185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wakeford, R. The risk of childhood leukaemia following exposure to ionising radiation – a review. J. Radiol. Prot. 33, 1–25 (2013).

    Article  PubMed  Google Scholar 

  32. Charalampopoulos, D., McLoughlin, A., Elks, C. E. & Ong, K. K. Age at menarche and risks of all-cause and cardiovascular death: a systematic review and meta-analysis. Am. J. Epidemiol. 180, 29–40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Siegel, R. L. et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J. Natl Cancer Inst. 109, djw322 (2017).

    Article  PubMed Central  Google Scholar 

  34. Stoffel, E. M. & Murphy, C. C. Epidemiology and mechanisms of the increasing incidence of colon and rectal cancers in young adults. Gastroenterology 158, 341–353 (2020).

    Article  PubMed  Google Scholar 

  35. Siegel, R. L. et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 68, 2179–2185 (2019).

    Article  PubMed  Google Scholar 

  36. Murphy, C. C. & Yang, Y. C. Use of age-period-cohort analysis in cancer epidemiology research. Curr. Epidemiol. Rep. 5, 418–431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Simmonds, M. et al. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis. Health Technol. Assess. 19, 1–336 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gordon-Larsen, P., The, N. S. & Adair, L. S. Longitudinal trends in obesity in the United States from adolescence to the third decade of life. Obesity 18, 1801–1804 (2010).

    Article  PubMed  Google Scholar 

  39. Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012).

    Article  PubMed  Google Scholar 

  40. Giovannucci, E. A growing link – what is the role of height in cancer risk? Br. J. Cancer 120, 575–576 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Malik, V. S., Willet, W. C. & Hu, F. B. Nearly a decade on — trends, risk factors and policy implications in global obesity. Nat. Rev. Endocrinol. 16, 615–616 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin, X. et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci. Rep. 10, 14790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koopman, R. J., Mainous, A. G. III, Diaz, V. A. & Geesey, M. E. Changes in age at diagnosis of type 2 diabetes mellitus in the United States, 1988 to 2000. Ann. Fam. Med. 3, 60–63 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 376, 1419–1429 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fazeli Farsani, S., van der Aa, M. P., van der Vorst, M. M., Knibbe, C. A. & de Boer, A. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: a systematic review and evaluation of methodological approaches. Diabetologia 56, 1471–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Muthuri, S. K. et al. Temporal trends and correlates of physical activity, sedentary behaviour, and physical fitness among school-aged children in Sub-Saharan Africa: a systematic review. Int. J. Environ. Res. Public Health 11, 3327–3359 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Knuth, A. G. & Hallal, P. C. Temporal trends in physical activity: a systematic review. J. Phys. Act. Health 6, 548–559 (2009).

    Article  PubMed  Google Scholar 

  49. Yang, L. et al. Trends in sedentary behavior among the US population, 2001–2016. JAMA 321, 1587–1597 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  51. Azzam, A. Is the world converging to a ‘Western diet’? Public. Health Nutr. 24, 309–317 (2021).

    Article  PubMed  Google Scholar 

  52. Sans, P. & Combris, P. World meat consumption patterns: an overview of the last fifty years (1961–2011). Meat Sci. 109, 106–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Clonan, A., Roberts, K. E. & Holdsworth, M. Socioeconomic and demographic drivers of red and processed meat consumption: implications for health and environmental sustainability. Proc. Nutr. Soc. 75, 367–373 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Popkin, B. M. & Hawkes, C. Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 4, 174–186 (2016).

    Article  PubMed  Google Scholar 

  56. NCD Risk Factor Collaboration (NCD-RisC). A century of trends in adult human height. Elife 5, e13410 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang, Y. C., Bleich, S. N. & Gortmaker, S. L. Increasing caloric contribution from sugar-sweetened beverages and 100% fruit juices among US children and adolescents, 1988–2004. Pediatrics 121, e1604–e1614 (2008).

    Article  PubMed  Google Scholar 

  58. Blecher, E., Liber, A. C., Drope, J. M., Nguyen, B. & Stoklosa, M. Global trends in the affordability of sugar-sweetened beverages, 1990–2016. Prev. Chronic Dis. 14, E37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Holmes, A. J. & Anderson, K. Convergence in national alcohol consumption patterns: new global indicators. J. Wine Econ. 12, 117–148 (2017).

    Article  Google Scholar 

  60. Johnston, L. D., O’Malley, P. M., Miech, R. A., Bachman, J. G., Schulenberg, J. E. Monitoring the Future national survey results on drug use, 1975–2015: overview, key findings on adolescent drug use (ERIC, 2016).

  61. Chen, C. M., Yoon, Y.-H. Trends in underage drinking in the United States, 1991–2019. Report No. 116 (National Institute on Alcohol Abuse and Alcoholism, 2021).

  62. International Alliance for Responsible Drinking. Trends report: Underage drinking (IARD, 2019).

  63. Vashishtha, R. et al. Trends in adolescent drinking across 39 high-income countries: exploring the timing and magnitude of decline. Eur. J. Public Health 31, 424–431 (2021).

    Article  PubMed  Google Scholar 

  64. Pierce, J. P. International comparisons of trends in cigarette smoking prevalence. Am. J. Public Health 79, 152–157 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Graham, H. Smoking prevalence among women in the European Community 1950–1990. Soc. Sci. Med. 43, 243–254 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Nelson, D. E. et al. Trends in cigarette smoking among US adolescents, 1974 through 1991. Am. J. Public Health 85, 34–40 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marcon, A. et al. Trends in smoking initiation in Europe over 40 years: a retrospective cohort study. PLoS ONE 13, e0201881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yang, J. J. et al. Tobacco smoking and mortality in Asia: a pooled meta-analysis. JAMA Netw. Open 2, e191474 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet 397, 2337–2360 (2021).

    Article  Google Scholar 

  70. Matricciani, L., Olds, T. & Petkov, J. In search of lost sleep: secular trends in the sleep time of school-aged children and adolescents. Sleep. Med. Rev. 16, 203–211 (2012).

    Article  PubMed  Google Scholar 

  71. Youngstedt, S. D. et al. Has adult sleep duration declined over the last 50+ years? Sleep. Med. Rev. 28, 69–85 (2016).

    Article  PubMed  Google Scholar 

  72. IARC Working Group on the Identification of Carcinogenic Hazards to Humans. Night Shift Work Vol. 124 (IARC, 2020).

  73. The World Bank. Fertility rate, total (births per woman) – United States. The World Bank https://data.worldbank.org/indicator/SP.DYN.TFRT.IN?locations=US (2022).

  74. Leone, T. & Brown, L. J. Timing and determinants of age at menarche in low-income and middle-income countries. BMJ Glob. Health 5, e003689 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Morris, D. H., Jones, M. E., Schoemaker, M. J., Ashworth, A. & Swerdlow, A. J. Secular trends in age at menarche in women in the UK born 1908-93: results from the Breakthrough Generations Study. Paediatr. Perinat. Epidemiol. 25, 394–400 (2011).

    Article  PubMed  Google Scholar 

  76. United Nations. World Population Prospects 2019 (United Nations, 2019).

  77. Liang, M. et al. The state of adolescent sexual and reproductive health. J. Adolesc. Health 65, S3–S15 (2019).

    Article  PubMed  Google Scholar 

  78. Organisation for Economic Co-operation and Development. Age of mothers at childbirth and age-specific fertility (OECD, 2018).

  79. Darroch, J. E. Trends in contraceptive use. Contraception 87, 259–263 (2013).

    Article  PubMed  Google Scholar 

  80. Stevens, E. E., Patrick, T. E. & Pickler, R. A history of infant feeding. J. Perinat. Educ. 18, 32–39 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387, 475–490 (2016).

    Article  PubMed  Google Scholar 

  82. Rajpoot, M., Sharma, A. K., Sharma, A. & Gupta, G. K. Understanding the microbiome: emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Semin. Cancer Biol. 52, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Rescigno, T., Micolucci, L., Tecce, M. F. & Capasso, A. Bioactive nutrients and nutrigenomics in age-related diseases. Molecules 22, 105 (2017).

    Article  PubMed Central  Google Scholar 

  84. Hamada, T., Nowak, J. A., Milner, D. A. Jr., Song, M. & Ogino, S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J. Pathol. 247, 615–628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Petrelli, F. et al. Use of antibiotics and risk of cancer: a systematic review and meta-analysis of observational studies. Cancers 11, 1174 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  86. Klein, E. Y. et al. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–15: an analysis of pharmaceutical sales data. Lancet Infect. Dis. 21, 107–115 (2021).

    Article  PubMed  Google Scholar 

  87. Browne, A. J. et al. Global antibiotic consumption and usage in humans, 2000-18: a spatial modelling study. Lancet Planet. Health 5, e893–e904 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. McCaig, L. F. & Hughes, J. M. Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA 273, 214–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Zhou, Q. et al. Risk of colorectal cancer in ulcerative colitis patients: a systematic review and meta-analysis. Gastroenterol. Res. Pract. 2019, 5363261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ghione, S. et al. Dramatic increase in incidence of ulcerative colitis and Crohn’s disease (1988–2011): a population-based study of French adolescents. Am. J. Gastroenterol. 113, 265–272 (2018).

    Article  PubMed  Google Scholar 

  91. O’Sullivan, A., Farver, M. & Smilowitz, J. T. The influence of early infant-feeding practices on the intestinal microbiome and body composition in infants. Nutr. Metab. Insights 8, 1–9 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Blaser, M. J. & Dominguez-Bello, M. G. The human microbiome before birth. Cell Host Microbe 20, 558–560 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Mima, K. et al. The microbiome, genetics, and gastrointestinal neoplasms: the evolving field of molecular pathological epidemiology to analyze the tumor-immune-microbiome interaction. Hum. Genet. 140, 725–746 (2021).

    Article  PubMed  Google Scholar 

  94. Archambault, A. N. et al. Cumulative burden of colorectal cancer-associated genetic variants is more strongly associated with early-onset vs late-onset cancer. Gastroenterology 158, 1274–1286.e12 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Yanes, T., Young, M. A., Meiser, B. & James, P. A. Clinical applications of polygenic breast cancer risk: a critical review and perspectives of an emerging field. Breast Cancer Res. 22, 21 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Benafif, S., Kote-Jarai, Z., Eeles, R. A. & PRACTICAL Consortium. A review of prostate cancer genome-wide association studies (GWAS). Cancer Epidemiol. Biomark. Prev. 27, 845–857 (2018).

    Article  Google Scholar 

  97. Daly, A. A., Rolph, R., Cutress, R. I. & Copson, E. R. A review of modifiable risk factors in young women for the prevention of breast cancer. Breast Cancer 13, 241–257 (2021).

    PubMed  PubMed Central  Google Scholar 

  98. Stoffel, E. M. et al. Germline genetic features of young individuals with colorectal cancer. Gastroenterology 154, 897–905 e1 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Pearlman, R. et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 3, 464–471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. World Health Organization. Research on the menopause in the 1990s: report of a WHO scientific group (WHO, 1996).

  101. Organisation for Economic Co-operation and Development. Screening, survival and mortality for breast cancer, in health at a glance 2017 (OECD, 2017).

  102. Narayan, A. K., Lee, C. I. & Lehman, C. D. Screening for breast cancer. Med. Clin. North. Am. 104, 1007–1021 (2020).

    Article  PubMed  Google Scholar 

  103. Smith, R. A., Cokkinides, V., Brooks, D., Saslow, D. & Brawley, O. W. Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J. Clin. 60, 99–119 (2010).

    Article  PubMed  Google Scholar 

  104. Kehm, R. D., Yang, W., Tehranifar, P. & Terry, M. B. 40 years of change in age- and stage-specific cancer incidence rates in US women and men. JNCI Cancer Spectr. 3, pkz038 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lima, S. M., Kehm, R. D. & Terry, M. B. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. EClinicalMedicine 38, 100985 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hankinson, S. E. & Eliassen, A. H. Circulating sex steroids and breast cancer risk in premenopausal women. Horm. Cancer 1, 2–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Clavel-Chapelon, F. & Group, E. N. E. Differential effects of reproductive factors on the risk of pre- and postmenopausal breast cancer. Results from a large cohort of French women. Br. J. Cancer 86, 723–727 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Collaborative Group on Hormonal Factors in Breast Cancer.Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 13, 1141–1151 (2012).

    Article  PubMed Central  Google Scholar 

  109. Al-Ajmi, K., Lophatananon, A., Ollier, W. & Muir, K. R. Risk of breast cancer in the UK biobank female cohort and its relationship to anthropometric and reproductive factors. PLoS ONE 13, e0201097 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Lancet 347, 1713–1727 (1996).

    Article  Google Scholar 

  111. Li, C. I. et al. Timing of menarche and first full-term birth in relation to breast cancer risk. Am. J. Epidemiol. 167, 230–239 (2008).

    Article  PubMed  Google Scholar 

  112. Lima, S. M., Kehm, R. D., Swett, K., Gonsalves, L. & Terry, M. B. Trends in parity and breast cancer incidence in US women younger than 40 years from 1935 to 2015. JAMA Netw. Open 3, e200929 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bellanger, M., Lima, S. M., Cowppli-Bony, A., Molinie, F. & Terry, M. B. Effects of fertility on breast cancer incidence trends: comparing France and US. Cancer Causes Control. 32, 903–910 (2021).

    Article  PubMed  Google Scholar 

  114. Premenopausal Breast Cancer Collaborative Group. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol. 4, e181771 (2018).

    Article  Google Scholar 

  115. Amadou, A. et al. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes. Rev. 14, 665–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  117. Bergstrom, A., Pisani, P., Tenet, V., Wolk, A. & Adami, H. O. Overweight as an avoidable cause of cancer in Europe. Int. J. Cancer 91, 421–430 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. van den Brandt, P. A. et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am. J. Epidemiol. 152, 514–527 (2000).

    Article  PubMed  Google Scholar 

  119. Ursin, G., Longnecker, M. P., Haile, R. W. & Greenland, S. A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology 6, 137–141 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Rosner, B. et al. Weight and weight changes in early adulthood and later breast cancer risk. Int. J. Cancer 140, 2003–2014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van den Brandt, P. A. et al. Body size and weight change over adulthood and risk of breast cancer by menopausal and hormone receptor status: a pooled analysis of 20 prospective cohort studies. Eur. J. Epidemiol. 36, 37–55 (2021).

    Article  PubMed  Google Scholar 

  122. Houghton, S. C. et al. Central adiposity and subsequent risk of breast cancer by menopause status. J. Natl Cancer Inst. 113, 900–908 (2021).

    Article  PubMed  Google Scholar 

  123. Rosner, B. et al. Short-term weight gain and breast cancer risk by hormone receptor classification among pre- and postmenopausal women. Breast Cancer Res. Treat. 150, 643–653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chan, D. S. M. et al. World Cancer Research Fund International: continuous update project-systematic literature review and meta-analysis of observational cohort studies on physical activity, sedentary behavior, adiposity, and weight change and breast cancer risk. Cancer Causes Control. 30, 1183–1200 (2019).

    Article  PubMed  Google Scholar 

  125. Chen, W. Y., Rosner, B., Hankinson, S. E., Colditz, G. A. & Willett, W. C. Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA 306, 1884–1890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kropp, S., Becher, H., Nieters, A. & Chang-Claude, J. Low-to-moderate alcohol consumption and breast cancer risk by age 50 years among women in Germany. Am. J. Epidemiol. 154, 624–634 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Godinho-Mota, J. C. M. et al. Sedentary behavior and alcohol consumption increase breast cancer risk regardless of menopausal status: a case-control study. Nutrients 11, 1871 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  128. World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Alcoholic Drinks and the Risk of Cancer. AICR https://www.aicr.org/wp-content/uploads/2020/01/Alcoholic-Drinks.pdf (2018).

  129. Xiao, Y. et al. Associations between dietary patterns and the risk of breast cancer: a systematic review and meta-analysis of observational studies. Breast Cancer Res. 21, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Linos, E., Willett, W. C., Cho, E. & Frazier, L. Adolescent diet in relation to breast cancer risk among premenopausal women. Cancer Epidemiol. Biomark. Prev. 19, 689–696 (2010).

    Article  CAS  Google Scholar 

  131. Farvid, M. S., Cho, E., Chen, W. Y., Eliassen, A. H. & Willett, W. C. Premenopausal dietary fat in relation to pre- and post-menopausal breast cancer. Breast Cancer Res. Treat. 145, 255–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Reynolds, P. Smoking and breast cancer. J. Mammary Gland. Biol. Neoplasia 18, 15–23 (2013).

    Article  PubMed  Google Scholar 

  133. Johnson, K. C. Accumulating evidence on passive and active smoking and breast cancer risk. Int. J. Cancer 117, 619–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Band, P. R., Le, N. D., Fang, R. & Deschamps, M. Carcinogenic and endocrine disrupting effects of cigarette smoke and risk of breast cancer. Lancet 360, 1044–1049 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. van den Brandt, P. A. A possible dual effect of cigarette smoking on the risk of postmenopausal breast cancer. Eur. J. Epidemiol. 32, 683–690 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lynch, H. T., Watson, P., Conway, T., Fitzsimmons, M. L. & Lynch, J. Breast cancer family history as a risk factor for early onset breast cancer. Breast Cancer Res. Treat. 11, 263–267 (1988).

    Article  CAS  PubMed  Google Scholar 

  137. Copson, E. R. et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol. 19, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee, D. S. et al. Comparable frequency of BRCA1, BRCA2 and TP53 germline mutations in a multi-ethnic Asian cohort suggests TP53 screening should be offered together with BRCA1/2 screening to early-onset breast cancer patients. Breast Cancer Res. 14, R66 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gomez-Flores-Ramos, L., Alvarez-Gomez, R. M., Villarreal-Garza, C., Wegman-Ostrosky, T. & Mohar, A. Breast cancer genetics in young women: what do we know? Mutat. Res. Rev. Mutat. Res. 774, 33–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Mavaddat, N. et al. Prediction of breast cancer risk based on profiling with common genetic variants. J. Natl Cancer Inst. 107, djv036 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Barrdahl, M. et al. Gene-environment interactions involving functional variants: results from the Breast Cancer Association Consortium. Int. J. Cancer 141, 1830–1840 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rudolph, A., Chang-Claude, J. & Schmidt, M. K. Gene-environment interaction and risk of breast cancer. Br. J. Cancer 114, 125–133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. McCarthy, A. M. et al. Relationship of established risk factors with breast cancer subtypes. Cancer Med. 10, 6456–6467 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ihemelandu, C. U. et al. Molecular breast cancer subtypes in premenopausal African-American women, tumor biologic factors and clinical outcome. Ann. Surg. Oncol. 14, 2994–3003 (2007).

    Article  PubMed  Google Scholar 

  146. Levi, Z. et al. Adolescent body mass index and risk of colon and rectal cancer in a cohort of 1.79 million Israeli men and women: a population-based study. Cancer 123, 4022–4030 (2017).

    Article  PubMed  Google Scholar 

  147. Gausman, V. et al. Risk factors associated with early-onset colorectal cancer. Clin. Gastroenterol. Hepatol. 18, 2752–2759.e2 (2020).

    Article  PubMed  Google Scholar 

  148. Kim, J. Y. et al. Different risk factors for advanced colorectal neoplasm in young adults. World J. Gastroenterol. 22, 3611–3620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Syed, A. R. et al. Old vs new: risk factors predicting early onset colorectal cancer. World J. Gastrointest. Oncol. 11, 1011–1020 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sanford, N. N., Giovannucci, E. L., Ahn, C., Dee, E. C. & Mahal, B. A. Obesity and younger versus older onset colorectal cancer in the United States, 1998–2017. J. Gastrointest. Oncol. 11, 121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jung, Y. S. et al. Risk factors for colorectal neoplasia in persons aged 30 to 39 years and 40 to 49 years. Gastrointest. Endosc. 81, 637–645.e7 (2015).

    Article  PubMed  Google Scholar 

  152. Hong, S. N. et al. Prevalence and risk of colorectal neoplasms in asymptomatic, average-risk screenees 40 to 49 years of age. Gastrointest. Endosc. 72, 480–489 (2010).

    Article  PubMed  Google Scholar 

  153. Hussan, H. et al. Rising incidence of colorectal cancer in young adults corresponds with increasing surgical resections in obese patients. Clin. Transl. Gastroenterol. 11, e00160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Liu, P.-H. et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5, 37–44 (2019).

    Article  PubMed  Google Scholar 

  155. O’Sullivan, D. E. et al. Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, e00160 (2021).

    Google Scholar 

  156. Win, A. K. et al. Body mass index in early adulthood and colorectal cancer risk for carriers and non-carriers of germline mutations in DNA mismatch repair genes. Br. J. Cancer 105, 162–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ma, Y. et al. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS ONE 8, e53916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Siegel, R. L. et al. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70, 145–164 (2020).

    Article  PubMed  Google Scholar 

  159. Cercek, A. et al. A comprehensive comparison of early-onset and average-onset colorectal cancers. J. Natl Cancer Inst. 113, 1683–1692 (2021).

    Article  PubMed Central  Google Scholar 

  160. Nguyen, L. H. et al. Sedentary behaviors, TV viewing time, and risk of young-onset colorectal cancer. JNCI Cancer Spectr. 2, pky073 (2018).

    Article  PubMed  Google Scholar 

  161. Fraser, G. & Pearce, N. Occupational physical activity and risk of cancer of the colon and rectum in New Zealand males. Cancer Causes Control. 4, 45–50 (1993).

    Article  CAS  PubMed  Google Scholar 

  162. Peters, R. K., Garabrant, D. H., Yu, M. C. & Mack, T. M. A case-control study of occupational and dietary factors in colorectal cancer in young men by subsite. Cancer Res. 49, 5459–5468 (1989).

    CAS  PubMed  Google Scholar 

  163. Chen, H. et al. Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut 70, 1147–1154 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Kim, J. Y. et al. Development and validation of a scoring system for advanced colorectal neoplasm in young Korean subjects less than age 50 years. Intest. Res. 17, 253–264 (2019).

    Article  PubMed  Google Scholar 

  165. Breau, G. & Ellis, U. Risk factors associated with young-onset colorectal adenomas and cancer: a systematic review and meta-analysis of observational research. Cancer Control. 27, 1073274820976670 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Elangovan, A. et al. Colorectal cancer, age, and obesity-related comorbidities: a large database study. Dig. Dis. Sci. 66, 3156–3163 (2020).

    Article  PubMed  Google Scholar 

  167. Ali Khan, U. et al. Personal history of diabetes as important as family history of colorectal cancer for risk of colorectal cancer: a nationwide cohort study. Am. J. Gastroenterol. 115, 1103–1109 (2020).

    Article  PubMed  Google Scholar 

  168. Hur, J. et al. Sugar-sweetened beverage intake in adulthood and adolescence and risk of early-onset colorectal cancer among women. Gut 70, 2330–2336 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Zheng, X. et al. Comprehensive assessment of diet quality and risk of precursors of early-onset colorectal cancer. J. Natl Cancer Inst. 113, 543–552 (2021).

    Article  PubMed  Google Scholar 

  170. Rosato, V. et al. Risk factors for young-onset colorectal cancer. Cancer Causes Control. 24, 335–341 (2013).

    Article  PubMed  Google Scholar 

  171. Archambault, A. N. et al. Nongenetic determinants of risk for early-onset colorectal cancer. JNCI Cancer Spectr. 5, pkab029 (2021).

    Article  PubMed Central  Google Scholar 

  172. Kim, H. et al. Total vitamin D intake and risks of early-onset colorectal cancer and precursors. Gastroenterology 161, 1208–1217.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Yue, Y. et al. Prospective evaluation of dietary and lifestyle pattern indices with risk of colorectal cancer in a cohort of younger women. Ann. Oncol. 32, 778–786 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Kwak, J. Y. et al. Prevalence of colorectal adenomas in asymptomatic young adults: a window to early intervention? Scand. J. Gastroenterol. 51, 731–738 (2016).

    Article  PubMed  Google Scholar 

  175. Kim, N. H. et al. Prevalence of and risk factors for colorectal neoplasia in asymptomatic young adults (20–39 years old). Clin. Gastroenterol. Hepatol. 17, 115–122 (2019).

    Article  PubMed  Google Scholar 

  176. Low, E. E. et al. Risk factors for early-onset colorectal cancer. Gastroenterology 159, 492–501.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Chung, S. J. et al. Prevalence and risk of colorectal adenoma in asymptomatic Koreans aged 40–49 years undergoing screening colonoscopy. J. Gastroenterol. Hepatol. 25, 519–525 (2010).

    Article  PubMed  Google Scholar 

  178. Jung, Y. S., Park, C. H., Kim, N. H., Lee, M. Y. & Park, D. I. Impact of age on the risk of advanced colorectal neoplasia in a young population: an analysis using the predicted probability model. Dig. Dis. Sci. 62, 2518–2525 (2017).

    Article  PubMed  Google Scholar 

  179. Lee, S. E. et al. Characteristics of and risk factors for colorectal neoplasms in young adults in a screening population. World J. Gastroenterol. 22, 2981–2992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Buc, E. et al. Tobacco smoking: a factor of early onset of colorectal cancer. Dis. Colon Rectum 49, 1893–1896 (2006).

    Article  PubMed  Google Scholar 

  181. Song, M., Nguyen, L. H., Emilsson, L., Chan, A. T. & Ludvigsson, J. F. Antibiotic use associated with risk of colorectal polyps in a nationwide study. Clin. Gastroenterol. Hepatol. 19, 1426–1435.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Cao, Y. et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut 67, 672–678 (2018).

    CAS  PubMed  Google Scholar 

  183. McDowell, R. et al. Oral antibiotic use and early-onset colorectal cancer: findings from a case-control study using a national clinical database. Br. J. Cancer 126, 957–967 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Nguyen, L. H. et al. Antibiotic therapy and risk of early-onset colorectal cancer: a national case-control study. Clin. Transl. Gastroenterol. 13, e00437 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Lu, S. S. M. et al. Antibiotics use and subsequent risk of colorectal cancer: a Swedish nationwide population-based study. J. Natl Cancer Inst. 114, 38–46 (2022).

    Article  PubMed  Google Scholar 

  186. Fuchs, C. S. et al. A prospective study of family history and the risk of colorectal cancer. N. Engl. J. Med. 331, 1669–1674 (1994).

    Article  CAS  PubMed  Google Scholar 

  187. Chen, F. W., Sundaram, V., Chew, T. A. & Ladabaum, U. Advanced-stage colorectal cancer in persons younger than 50 years not associated with longer duration of symptoms or time to diagnosis. Clin. Gastroenterol. Hepatol. 15, 728–737.e3 (2017).

    Article  PubMed  Google Scholar 

  188. Heikkinen, S. M. et al. Familial aggregation of early-onset cancers. Int. J. Cancer 146, 1791–1799 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Hall, N., Bishop, D., Stephenson, B. & Finan, P. Hereditary susceptibility to colorectal cancer. Dis. Colon Rectum 39, 739–743 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. Willauer, A. N. et al. Clinical and molecular characterization of early-onset colorectal cancer. Cancer 125, 2002–2010 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Giráldez, M. D. et al. Susceptibility genetic variants associated with early-onset colorectal cancer. Carcinogenesis 33, 613–619 (2012).

    Article  PubMed  Google Scholar 

  192. Lu, K. H. & Broaddus, R. R. Endometrial cancer. N. Engl. J. Med. 383, 2053–2064 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Raglan, O. et al. Risk factors for endometrial cancer: an umbrella review of the literature. Int. J. Cancer 145, 1719–1730 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Haidopoulos, D. et al. Risk factors in women 40 years of age and younger with endometrial carcinoma. Acta Obstet. Gynecol. Scand. 89, 1326–1330 (2010).

    Article  PubMed  Google Scholar 

  195. Soliman, P. T. et al. Risk factors for young premenopausal women with endometrial cancer. Obstet. Gynecol. 105, 575–580 (2005).

    Article  PubMed  Google Scholar 

  196. Walsh, M. D. et al. Molecular, pathologic, and clinical features of early-onset endometrial cancer: identifying presumptive Lynch syndrome patients. Clin. Cancer Res. 14, 1692–1700 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Xie, S. H. & Lagergren, J. Risk factors for oesophageal cancer. Best. Pract. Res. Clin. Gastroenterol. 36-37, 3–8 (2018).

    Article  PubMed  Google Scholar 

  198. Arnold, M., Ferlay, J., van Berge Henegouwen, M. I. & Soerjomataram, I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 69, 1564–1571 (2020).

    Article  PubMed  Google Scholar 

  199. Drahos, J. et al. Age-specific risk factor profiles of adenocarcinomas of the esophagus: a pooled analysis from the international BEACON consortium. Int. J. Cancer 138, 55–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Anand, G. & Katz, P. O. Gastroesophageal reflux disease and obesity. Gastroenterol. Clin. North. Am. 39, 39–46 (2010).

    Article  PubMed  Google Scholar 

  201. El-Serag, H. B., Sweet, S., Winchester, C. C. & Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 63, 871–880 (2014).

    Article  PubMed  Google Scholar 

  202. Nelson, S. P. et al. Pediatric gastroesophageal reflux disease and acid-related conditions: trends in incidence of diagnosis and acid suppression therapy. J. Med. Econ. 12, 348–355 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Scida, S. et al. Relationship between Helicobacter pylori infection and GERD. Acta Biomed. 89, 40–43 (2018).

    CAS  PubMed  Google Scholar 

  204. Toporcov, T. N. et al. Risk factors for head and neck cancer in young adults: a pooled analysis in the INHANCE consortium. Int. J. Epidemiol. 44, 169–185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Shewale, J. B. & Gillison, M. L. Dynamic factors affecting HPV-attributable fraction for head and neck cancers. Curr. Opin. Virol. 39, 33–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Marur, S., D’Souza, G., Westra, W. H. & Forastiere, A. A. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 11, 781–789 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Leiba, A. et al. Adolescent obesity and paternal country of origin predict renal cell carcinoma: a cohort study of 1.1 million 16 to 19-year-old males. J. Urol. 189, 25–29 (2013).

    Article  PubMed  Google Scholar 

  208. Hemminki, K. & Li, X. Age-specific familial risks for renal cell carcinoma with evidence on recessive heritable effects. Kidney Int. 65, 2298–2302 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Behrens, G. & Leitzmann, M. F. The association between physical activity and renal cancer: systematic review and meta-analysis. Br. J. Cancer 108, 798–811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chow, W. H. & Devesa, S. S. Contemporary epidemiology of renal cell cancer. Cancer J. 14, 288–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Parker, A. S., Cerhan, J. R., Janney, C. A., Lynch, C. F. & Cantor, K. P. Smoking cessation and renal cell carcinoma. Ann. Epidemiol. 13, 245–251 (2003).

    Article  PubMed  Google Scholar 

  212. McGlynn, K. A., Petrick, J. L. & El-Serag, H. B. Epidemiology of hepatocellular carcinoma. Hepatology 73, 4–13 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

    Article  PubMed  Google Scholar 

  214. Lam, C. M. et al. Different presentation of hepatitis B-related hepatocellular carcinoma in a cohort of 1863 young and old patients – implications for screening. Aliment. Pharmacol. Ther. 19, 771–777 (2004).

    Article  PubMed  Google Scholar 

  215. Yang, H. I. et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N. Engl. J. Med. 347, 168–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  216. Liu, J. et al. A viral exposure signature defines early onset of hepatocellular carcinoma. Cell 182, 317–328.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wan, D. W. et al. Risk factors for early-onset and late-onset hepatocellular carcinoma in Asian immigrants with hepatitis B in the United States. Am. J. Gastroenterol. 106, 1994–2000 (2011).

    Article  PubMed  Google Scholar 

  218. Park, C.-H. et al. Family history influences the early onset of hepatocellular carcinoma. World J. Gastroenterol. 18, 2661–2667 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Liu, Z. et al. Global incidence trends in primary liver cancer by age at diagnosis, sex, region, and etiology, 1990–2017. Cancer 126, 2267–2278 (2020).

    Article  PubMed  Google Scholar 

  220. Doycheva, I., Watt, K. D. & Alkhouri, N. Nonalcoholic fatty liver disease in adolescents and young adults: the next frontier in the epidemic. Hepatology 65, 2100–2109 (2017).

    Article  PubMed  Google Scholar 

  221. Cowan, A. J. et al. Global burden of multiple myeloma: a systematic analysis for the Global Burden of Disease study 2016. JAMA Oncol. 4, 1221–1227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. van de Donk, N., Pawlyn, C. & Yong, K. L. Multiple myeloma. Lancet 397, 410–427 (2021).

    Article  PubMed  Google Scholar 

  223. Birmann, B. M. et al. Young adult and usual adult body mass index and multiple myeloma risk: a pooled analysis in the International Multiple Myeloma Consortium (IMMC). Cancer Epidemiol. Biomark. Prev. 26, 876–885 (2017).

    Article  Google Scholar 

  224. Marinac, C. R. et al. Body mass index throughout adulthood, physical activity, and risk of multiple myeloma: a prospective analysis in three large cohorts. Br. J. Cancer 118, 1013–1019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  225. GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 4, 934–947 (2019).

    Article  Google Scholar 

  226. Juo, Y. Y. et al. Obesity is associated with early onset of gastrointestinal cancers in California. J. Obes. 2018, 7014073 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. McWilliams, R. R. et al. Risk factors for early-onset and very-early-onset pancreatic adenocarcinoma: a pancreatic cancer case-control consortium (PanC4) analysis. Pancreas 45, 311–316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Piciucchi, M. et al. Early onset pancreatic cancer: risk factors, presentation and outcome. Pancreatology 15, 151–155 (2015).

    Article  PubMed  Google Scholar 

  229. Ntala, C., Debernardi, S., Feakins, R. M. & Crnogorac-Jurcevic, T. Demographic, clinical, and pathological features of early onset pancreatic cancer patients. BMC Gastroenterol. 18, 139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Rebbeck, T. R. & Haas, G. P. Temporal trends and racial disparities in global prostate cancer prevalence. Can. J. Urol. 21, 7496–7506 (2014).

    PubMed  PubMed Central  Google Scholar 

  231. Pernar, C. H., Ebot, E. M., Wilson, K. M. & Mucci, L. A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med 8, a030361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Hur, J. & Giovannucci, E. Racial differences in prostate cancer: does timing of puberty play a role? Br. J. Cancer 123, 349–354 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Travis, R. C. et al. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res. 76, 2288–2300 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J. Clin. 22, 232–240 (1972).

    Article  CAS  PubMed  Google Scholar 

  235. Lange, E. M. et al. Early onset prostate cancer has a significant genetic component. Prostate 72, 147–156 (2012).

    Article  PubMed  Google Scholar 

  236. Hjelmborg, J. B. et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomark. Prev. 23, 2303–2310 (2014).

    Article  Google Scholar 

  237. Carter, B. S., Beaty, T. H., Steinberg, G. D., Childs, B. & Walsh, P. C. Mendelian inheritance of familial prostate cancer. Proc. Natl Acad. Sci. USA 89, 3367–3371 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Brandt, A., Bermejo, J. L., Sundquist, J. & Hemminki, K. Age-specific risk of incident prostate cancer and risk of death from prostate cancer defined by the number of affected family members. Eur. Urol. 58, 275–280 (2010).

    Article  PubMed  Google Scholar 

  239. Al-Jebari, Y. et al. Risk of prostate cancer for men fathering through assisted reproduction: nationwide population based register study. BMJ 366, l5214 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Arnold, M. et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159, 335–349.e15 (2020).

    Article  PubMed  Google Scholar 

  241. Balakrishnan, M., George, R., Sharma, A. & Graham, D. Y. Changing trends in stomach cancer throughout the world. Curr. Gastroenterol. Rep. 19, 36 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rugge, M. et al. Patients younger than 40 years with gastric carcinoma: Helicobacter pylori genotype and associated gastritis phenotype. Cancer 85, 2506–2511 (1999).

    Article  CAS  PubMed  Google Scholar 

  243. Sjomina, O., Pavlova, J., Niv, Y. & Leja, M. Epidemiology of Helicobacter pylori infection. Helicobacter 23, e12514 (2018).

    Article  PubMed  Google Scholar 

  244. Peleteiro, B., Bastos, A., Ferro, A. & Lunet, N. Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. Dig. Dis. Sci. 59, 1698–1709 (2014).

    Article  PubMed  Google Scholar 

  245. Hooi, J. K. Y. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017).

    Article  PubMed  Google Scholar 

  246. Bergquist, J. R. et al. Early-onset gastric cancer is a distinct disease with worrisome trends and oncogenic features. Surgery 166, 547–555 (2019).

    Article  PubMed  Google Scholar 

  247. Giryes, A., Oweira, H., Mannhart, M., Decker, M. & Abdel-Rahman, O. Exploring the differences between early-onset gastric cancer and traditional-onset gastric cancer. J. Gastrointest. Oncol. 9, 1157–1163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Zhou, F., Shi, J., Fang, C., Zou, X. & Huang, Q. Gastric carcinomas in young (younger than 40 years) Chinese patients: clinicopathology, family history, and postresection survival. Medicine 95, e2873 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Kwak, H. W. et al. Individual having a parent with early-onset gastric cancer may need screening at younger age. World J. Gastroenterol. 21, 4592–4598 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Chung, H. W., Noh, S. H. & Lim, J. B. Analysis of demographic characteristics in 3242 young age gastric cancer patients in Korea. World J. Gastroenterol. 16, 256–263 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Grönberg, H., Bergh, A., Damber, J. E. & Emanuelsson, M. Cancer risk in families with hereditary prostate carcinoma: a possible link between prostate, breast, and gastric carcinoma. Cancer 89, 1315–1321 (2000).

    Article  PubMed  Google Scholar 

  252. Fitzgerald, R. C. & Caldas, C. Clinical implications of E-cadherin associated hereditary diffuse gastric cancer. Gut 53, 775–778 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Li, J. Gastric cancer in young adults: a different clinical entity from carcinogenesis to prognosis. Gastroenterol. Res. Pract. 2020, 9512707 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Bacani, J. T. et al. CDH1/E-cadherin germline mutations in early-onset gastric cancer. J. Med. Genet. 43, 867–872 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Huntsman, D. G. et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N. Engl. J. Med. 344, 1904–1909 (2001).

    Article  CAS  PubMed  Google Scholar 

  256. Vaccarella, S. et al. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N. Engl. J. Med. 375, 614–617 (2016).

    Article  PubMed  Google Scholar 

  257. Li, M., Dal Maso, L. & Vaccarella, S. Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 8, 468–470 (2020).

    Article  PubMed  Google Scholar 

  258. Li, M. et al. Changing incidence and projections of thyroid cancer in mainland China, 1983-2032: evidence from cancer incidence in five continents. Cancer Causes Control 32, 1095–1105 (2021).

    Article  PubMed  Google Scholar 

  259. Kitahara, C. M. & Sosa, J. A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 12, 646–653 (2016).

    Article  PubMed  Google Scholar 

  260. Kim, J., Gosnell, J. E. & Roman, S. A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol. 16, 17–29 (2020).

    Article  PubMed  Google Scholar 

  261. Lian, W. et al. The impact of young age for prognosis by subtype in women with early breast cancer. Sci. Rep. 7, 11625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Colleoni, M. et al. Very young women (<35 years) with operable breast cancer: features of disease at presentation. Ann. Oncol. 13, 273–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  263. Anders, C. K. et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J. Clin. Oncol. 26, 3324–3330 (2008).

    Article  PubMed  Google Scholar 

  264. Assi, H. A. et al. Epidemiology and prognosis of breast cancer in young women. J. Thorac. Dis. 5, S2–S8 (2013).

    PubMed  PubMed Central  Google Scholar 

  265. Bharat, A., Aft, R. L., Gao, F. & Margenthaler, J. A. Patient and tumor characteristics associated with increased mortality in young women (<or = 40 years) with breast cancer. J. Surg. Oncol. 100, 248–251 (2009).

    Article  PubMed  Google Scholar 

  266. Gnerlich, J. L. et al. Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J. Am. Coll. Surg. 208, 341–347 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Keegan, T. H., DeRouen, M. C., Press, D. J., Kurian, A. W. & Clarke, C. A. Occurrence of breast cancer subtypes in adolescent and young adult women. Breast Cancer Res. 14, R55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Murphy, B. L., Day, C. N., Hoskin, T. L., Habermann, E. B. & Boughey, J. C. Adolescents and young adults with breast cancer have more aggressive disease and treatment than patients in their forties. Ann. Surg. Oncol. 26, 3920–3930 (2019).

    Article  PubMed  Google Scholar 

  269. Wang, K. et al. Comparison of clinicopathological features and treatments between young (</=40 years) and older (>40 years) female breast cancer patients in West China: a retrospective, epidemiological, multicenter, case only study. PLoS ONE 11, e0152312 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Kneuertz, P. J. et al. Overtreatment of young adults with colon cancer: more intense treatments with unmatched survival gains. JAMA Surg. 150, 402–409 (2015).

    Article  PubMed  Google Scholar 

  271. Myers, E. A. et al. Colorectal cancer in patients under 50 years of age: a retrospective analysis of two institutions’ experience. World J. Gastroenterol. 19, 5651–5657 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Liang, J. T. et al. Clinicopathological and molecular biological features of colorectal cancer in patients less than 40 years of age. Br. J. Surg. 90, 205–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  273. Ugai, T. et al. Immune cell profiles in the tumor microenvironment of early-onset, intermediate-onset, and later-onset colorectal cancer. Cancer Immunol. Immunother. 71, 933–942 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Akimoto, N. et al. Tumor long interspersed nucleotide element-1 (LINE-1) hypomethylation in relation to age of colorectal cancer diagnosis and prognosis. Cancers 13, 2016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Holowatyj, A. N. et al. Clinicopathologic and racial/ethnic differences of colorectal cancer among adolescents and young adults. Clin. Transl. Gastroenterol. 10, e00059 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Rodriguez, L. et al. Disease characteristics, clinical management, and outcomes of young patients with colon cancer: a population-based study. Clin. Colorectal Cancer 17, e651–e661 (2018).

    Article  PubMed  Google Scholar 

  277. Yeo, H. et al. Early-onset colorectal cancer is distinct from traditional colorectal cancer. Clin. Colorectal Cancer 16, 293–299.e6 (2017).

    Article  PubMed  Google Scholar 

  278. Chang, D. T. et al. Clinicopathologic and molecular features of sporadic early-onset colorectal adenocarcinoma: an adenocarcinoma with frequent signet ring cell differentiation, rectal and sigmoid involvement, and adverse morphologic features. Mod. Pathol. 25, 1128–1139 (2012).

    Article  PubMed  Google Scholar 

  279. Antelo, M. et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS ONE 7, e45357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Sultan, I. et al. Distinct features of colorectal cancer in children and adolescents: a population-based study of 159 cases. Cancer 116, 758–765 (2010).

    Article  PubMed  Google Scholar 

  281. Baba, Y. et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol. Cancer 9, 125 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Yantiss, R. K. et al. Clinical, pathologic, and molecular features of early-onset colorectal carcinoma. Am. J. Surg. Pathol. 33, 572–582 (2009).

    Article  PubMed  Google Scholar 

  283. Lachance, J. A. et al. The effect of age on clinical/pathologic features, surgical morbidity, and outcome in patients with endometrial cancer. Gynecol. Oncol. 101, 470–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  284. Tran, B. N., Connell, P. P., Waggoner, S., Rotmensch, J. & Mundt, A. J. Characteristics and outcome of endometrial carcinoma patients age 45 years and younger. Am. J. Clin. Oncol. 23, 476–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  285. Pellerin, G. P. & Finan, M. A. Endometrial cancer in women 45 years of age or younger: a clinicopathological analysis. Am. J. Obstet. Gynecol. 193, 1640–1644 (2005).

    Article  PubMed  Google Scholar 

  286. Quinn, M. A., Kneale, B. J. & Fortune, D. W. Endometrial carcinoma in premenopausal women: a clinicopathological study. Gynecol. Oncol. 20, 298–306 (1985).

    Article  CAS  PubMed  Google Scholar 

  287. Silverberg, S. G., Makowski, E. L. & Roche, W. D. Endometrial carcinoma in women under 40 years of age: comparison of cases in oral contraceptive users and non-users. Cancer 39, 592–598 (1977).

    Article  CAS  PubMed  Google Scholar 

  288. Evans-Metcalf, E. R., Brooks, S. E., Reale, F. R. & Baker, S. P. Profile of women 45 years of age and younger with endometrial cancer. Obstet. Gynecol. 91, 349–354 (1998).

    Article  CAS  PubMed  Google Scholar 

  289. Gitsch, G., Hanzal, E., Jensen, D. & Hacker, N. F. Endometrial cancer in premenopausal women 45 years and younger. Obstet. Gynecol. 85, 504–508 (1995).

    Article  CAS  PubMed  Google Scholar 

  290. Cheema, P. K. et al. Age 40 years and under does not confer superior prognosis in patients with multiple myeloma undergoing upfront autologous stem cell transmplant. Biol. Blood Marrow Transpl. 15, 686–693 (2009).

    Article  CAS  Google Scholar 

  291. Jurczyszyn, A. et al. Characteristics and outcomes of patients with multiple myeloma aged 21–40 years versus 41–60 years: a multi-institutional case-control study. Br. J. Haematol. 175, 884–891 (2016).

    Article  CAS  PubMed  Google Scholar 

  292. Blade, J., Kyle, R. A. & Greipp, P. R. Presenting features and prognosis in 72 patients with multiple myeloma who were younger than 40 years. Br. J. Haematol. 93, 345–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  293. Ludwig, H. et al. Myeloma in patients younger than age 50 years presents with more favorable features and shows better survival: an analysis of 10 549 patients from the International Myeloma Working Group. Blood 111, 4039–4047 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Chretien, M. L. et al. Age is a prognostic factor even among patients with multiple myeloma younger than 66 years treated with high-dose melphalan: the IFM experience on 2316 patients. Haematologica 99, 1236–1238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Kang, J. S., Jang, J. Y., Kwon, W., Han, Y. & Kim, S. W. Clinicopathologic and survival differences in younger patients with pancreatic ductal adenocarcinoma – a propensity score-matched comparative analysis. Pancreatology 17, 827–832 (2017).

    Article  PubMed  Google Scholar 

  296. Ramai, D. et al. Early- and late-onset pancreatic adenocarcinoma: a population-based comparative study. Pancreatology 21, 124–129 (2021).

    Article  PubMed  Google Scholar 

  297. Ansari, D., Althini, C., Ohlsson, H. & Andersson, R. Early-onset pancreatic cancer: a population-based study using the SEER registry. Langenbecks Arch. Surg. 404, 565–571 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Eguchi, H. et al. Clinicopathological characteristics of young patients with pancreatic cancer: an analysis of data from pancreatic cancer registry of Japan. Pancreas Soc. Pancreas 45, 1411–1417 (2016).

    Google Scholar 

  299. Shih, H. J., Fang, S. C., An, L. & Shao, Y. J. Early-onset prostate cancer is associated with increased risks of disease progression and cancer-specific mortality. Prostate 81, 118–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  300. Bleyer, A., Spreafico, F. & Barr, R. Prostate cancer in young men: an emerging young adult and older adolescent challenge. Cancer 126, 46–57 (2020).

    Article  PubMed  Google Scholar 

  301. Siegel, D. A., O’Neil, M. E., Richards, T. B., Dowling, N. F. & Weir, H. K. Prostate cancer incidence and survival, by stage and race/ethnicity – United States, 2001–2017. MMWR Morb. Mortal. Wkly. Rep. 69, 1473–1480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Sandhu, D. P., Munson, K. W., Benghiat, A. & Hopper, I. P. Natural history and prognosis of prostate carcinoma in adolescents and men under 35 years of age. Br. J. Urol. 69, 525–529 (1992).

    Article  CAS  PubMed  Google Scholar 

  303. Gerhauser, C. et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34, 996–1011.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Weischenfeldt, J. & Korbel, J. O. Genomes of early onset prostate cancer. Curr. Opin. Urol. 27, 481–487 (2017).

    Article  PubMed  Google Scholar 

  305. Chalmers, Z. R. et al. Early-onset metastatic and clinically advanced prostate cancer is a distinct clinical and molecular entity characterized by increased TMPRSS2-ERG fusions. Prostate Cancer Prostatic Dis. 24, 558–566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Zhou, Q. P., Ge, Y. H. & Liu, C. Y. Comparison of metastasis between early-onset and late-onset gastric signet ring cell carcinoma. BMC Gastroenterol. 20, 380 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Cho, S. Y. et al. Sporadic early-onset diffuse gastric cancers have high frequency of somatic CDH1 alterations, but low frequency of somatic RHOA mutations compared with late-onset cancers. Gastroenterology 153, 536–549.e26 (2017).

    Article  CAS  PubMed  Google Scholar 

  308. Mun, D. G. et al. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell 35, 111–124.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  309. De, B. et al. Gastric adenocarcinoma in young adult patients: patterns of care and survival in the United States. Gastric Cancer 21, 889–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  310. Ogino, S., Nowak, J. A., Hamada, T., Milner, D. A. Jr. & Nishihara, R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu. Rev. Pathol. 14, 83–103 (2019).

    Article  CAS  PubMed  Google Scholar 

  311. Ogino, S., Chan, A. T., Fuchs, C. S. & Giovannucci, E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 60, 397–411 (2011).

    Article  PubMed  Google Scholar 

  312. Ogino, S. et al. Review article: the role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology 27, 602–611 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Gurjao, C. et al. Discovery and features of an alkylating signature in colorectal cancer. Cancer Discov. 11, 2446–2455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Bai, J., Chen, H. & Bai, X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J. Clin. Lab. Anal. 35, e23810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Kuenzig, M. E. et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review. Gastroenterology 162, 1147–1159.e4 (2022).

    Article  PubMed  Google Scholar 

  317. Asakura, K. & Sasaki, S. School lunches in Japan: their contribution to healthier nutrient intake among elementary-school and junior high-school children. Public Health Nutr. 20, 1523–1533 (2017).

    Article  PubMed  Google Scholar 

  318. Yoshida, Y. & Simoes, E. J. Sugar-sweetened beverage, obesity, and type 2 diabetes in children and adolescents: policies, taxation, and programs. Curr. Diab Rep. 18, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Cathaoir, K. O. Childhood obesity and the right to health. Health Hum. Rights 18, 249–262 (2016).

    PubMed  PubMed Central  Google Scholar 

  320. Wright, A., Smith, K. E. & Hellowell, M. Policy lessons from health taxes: a systematic review of empirical studies. BMC Public Health 17, 583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  321. Beccuti, G. & Pannain, S. Sleep and obesity. Curr. Opin. Clin. Nutr. Metab. Care 14, 402–412 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Ogilvie, R. P. & Patel, S. R. The epidemiology of sleep and diabetes. Curr. Diab Rep. 18, 82 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Chavarro, J. E. et al. Contributions of the nurses’ health studies to reproductive health research. Am. J. Public Health 106, 1669–1676 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Cirillo, P. M. & Cohn, B. A. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the child health and development studies pregnancy cohort. Circulation 132, 1234–1242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Morton, S. M. et al. Cohort profile: growing up in New Zealand. Int. J. Epidemiol. 42, 65–75 (2013).

    Article  PubMed  Google Scholar 

  326. Connelly, R. & Platt, L. Cohort profile: UK Millennium Cohort Study (MCS). Int. J. Epidemiol. 43, 1719–1725 (2014).

    Article  PubMed  Google Scholar 

  327. Carter, A. B. et al. Electronic health records and genomics: perspectives from the association for molecular pathology electronic health record (EHR) Interoperability for Clinical Genomics Data Working Group. J. Mol. Diagn. 24, 1–17 (2022).

    Article  PubMed  Google Scholar 

  328. Maitre, L. et al. Human early life exposome (HELIX) study: a European population-based exposome cohort. BMJ Open 8, e021311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  329. van den Bosch, M. et al. Green CURIOCITY: a study protocol for a European birth cohort study analysing childhood heat-related health impacts and protective effects of urban natural environments. BMJ Open 12, e052537 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Alberts, B., Kirschner, M. W., Tilghman, S. & Varmus, H. Rescuing US biomedical research from its systemic flaws. Proc. Natl Acad. Sci. USA 111, 5773–5777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Zavala, V. A. et al. Cancer health disparities in racial/ethnic minorities in the United States. Br. J. Cancer 124, 315–332 (2021).

    Article  PubMed  Google Scholar 

  332. Huang, B. Z. et al. Rising incidence and racial disparities of early-onset pancreatic cancer in the United States, 1995–2018. Gastroenterology 163, 310–312 (2022).

    Article  PubMed  Google Scholar 

  333. Murphy, C. C., Wallace, K., Sandler, R. S. & Baron, J. A. Racial disparities in incidence of young-onset colorectal cancer and patient survival. Gastroenterology 156, 958–965 (2019).

    Article  PubMed  Google Scholar 

  334. Dai, J. et al. Revisiting social MPE: an integration of molecular pathological epidemiology and social science in the new era of precision medicine. Expert. Rev. Mol. Diagn. 21, 869–886 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Manthey, J. et al. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: a modelling study. Lancet 393, 2493–2502 (2019).

    Article  PubMed  Google Scholar 

  336. Mikaeel, R. R. et al. Young-onset colorectal cancer is associated with a personal history of type 2 diabetes. Asia Pac. J. Clin. Oncol. 17, 131–138 (2021).

    Article  PubMed  Google Scholar 

  337. Rosen, M. W. et al. Risk factors for endometrial cancer or hyperplasia in adolescents and women 25 years old or younger. J. Pediatr. Adolesc. Gynecol. 32, 546–549 (2019).

    Article  PubMed  Google Scholar 

  338. Campbell, B. R. et al. Early onset oral tongue squamous cell carcinoma: associated factors and patient outcomes. Head. Neck 41, 1952–1960 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  339. Arvold, N. D. et al. Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. J. Clin. Oncol. 29, 3885–3891 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  340. El Saghir, N. S. et al. Effects of young age at presentation on survival in breast cancer. BMC Cancer 6, 194 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Chung, M., Chang, H. R., Bland, K. I. & Wanebo, H. J. Younger women with breast carcinoma have a poorer prognosis than older women. Cancer 77, 97–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  342. de la Rochefordiere, A. et al. Age as prognostic factor in premenopausal breast carcinoma. Lancet 341, 1039–1043 (1993).

    Article  PubMed  Google Scholar 

  343. Jin, Z. et al. Clinicopathological and molecular characteristics of early-onset stage III colon adenocarcinoma: an analysis of the ACCENT database. J. Natl Cancer Inst. 113, 1693–1704 (2021).

    Article  PubMed Central  Google Scholar 

  344. Lieu, C. H. et al. Association of age with survival in patients with metastatic colorectal cancer: analysis from the ARCAD Clinical Trials Program. J. Clin. Oncol. 32, 2975–2984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Kim, T. J., Kim, E. R., Hong, S. N., Chang, D. K. & Kim, Y. H. Long-term outcome and prognostic factors of sporadic colorectal cancer in young patients: a large institutional-based retrospective study. Medicine 95, e3641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Chou, C. L., Tseng, C. J. & Shiue, Y. L. The impact of young age on the prognosis for colorectal cancer: a population-based study in Taiwan. Jpn. J. Clin. Oncol. 47, 1010–1018 (2017).

    Article  PubMed  Google Scholar 

  347. Blanke, C. D. et al. Impact of young age on treatment efficacy and safety in advanced colorectal cancer: a pooled analysis of patients from nine first-line phase III chemotherapy trials. J. Clin. Oncol. 29, 2781–2786 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Pokharkar, A. B. et al. Young vs old colorectal cancer in Indian Subcontinent: a tertiary care center experience. Indian J. Surg. Oncol. 8, 491–498 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Rho, Y. S. et al. Comparing clinical characteristics and outcomes of young-onset and late-onset colorectal cancer: an international collaborative study. Clin. Colorectal Cancer 16, 334–342 (2017).

    Article  PubMed  Google Scholar 

  350. Yang, Z. et al. Characteristics and long-term survival of colorectal cancer patients aged 44 years and younger. Clin. Transl. Oncol. 14, 896–904 (2012).

    Article  PubMed  Google Scholar 

  351. McMillan, D. C. & McArdle, C. S. The impact of young age on cancer-specific and non-cancer-related survival after surgery for colorectal cancer: 10-year follow-up. Br. J. Cancer 101, 557–560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Manjelievskaia, J. et al. Chemotherapy use and survival among young and middle-aged patients with colon cancer. JAMA Surg. 152, 452–459 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  353. Schellerer, V. S. et al. Despite aggressive histopathology survival is not impaired in young patients with colorectal cancer: CRC in patients under 50 years of age. Int. J. Colorectal Dis. 27, 71–79 (2012).

    Article  PubMed  Google Scholar 

  354. Wang, M. J. et al. The prognostic factors and multiple biomarkers in young patients with colorectal cancer. Sci. Rep. 5, 10645 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  355. Quah, H. M. et al. Young age influences treatment but not outcome of colon cancer. Ann. Surg. Oncol. 14, 2759–2765 (2007).

    Article  CAS  PubMed  Google Scholar 

  356. Boyce, S. et al. Young-onset colorectal cancer in New South Wales: a population-based study. Med. J. Aust. 205, 465–470 (2016).

    Article  PubMed  Google Scholar 

  357. O’Connell, J. B. et al. Do young colon cancer patients have worse outcomes? World J. Surg. 28, 558–562 (2004).

    Article  PubMed  Google Scholar 

  358. Hubbard, J. et al. Benefits and adverse events in younger versus older patients receiving adjuvant chemotherapy for colon cancer: findings from the adjuvant colon cancer endpoints data set. J. Clin. Oncol. 30, 2334–2339 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of S.O. is supported in part by the U.S. National Institutes of Health grants (R35 CA197735 and R01 CA248857) and the Cancer Research UK Cancer Grand Challenge Award (6340201/A27140). The work of T.U. is supported by grants from the Prevent Cancer Foundation, Japan Society for the Promotion of Science, and the Mishima Kaiun Memorial Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.U., N.S., H.-Y.L., M.A. and S.O. researched data for the article and wrote the manuscript. All authors made a substantial contribution to discussions of content, and edited and/or reviewed the manuscript prior to submission.

Corresponding authors

Correspondence to Tomotaka Ugai or Shuji Ogino.

Ethics declarations

Competing interests

E.W. is an employee of the IARC/WHO. The authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the IARC/WHO. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks C. Eng, L. Valle, and the other, anonymous, reviewer(s), for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Cancer Observatory: https://gco.iarc.fr/

HGNC: the HUGO Gene Nomenclature Committee database: https://www.genenames.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ugai, T., Sasamoto, N., Lee, HY. et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 19, 656–673 (2022). https://doi.org/10.1038/s41571-022-00672-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00672-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer