Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radiotheranostics in oncology: current challenges and emerging opportunities

Abstract

Structural imaging remains an essential component of diagnosis, staging and response assessment in patients with cancer; however, as clinicians increasingly seek to noninvasively investigate tumour phenotypes and evaluate functional and molecular responses to therapy, theranostics — the combination of diagnostic imaging with targeted therapy — is becoming more widely implemented. The field of radiotheranostics, which is the focus of this Review, combines molecular imaging (primarily PET and SPECT) with targeted radionuclide therapy, which involves the use of small molecules, peptides and/or antibodies as carriers for therapeutic radionuclides, typically those emitting α-, β- or auger-radiation. The exponential, global expansion of radiotheranostics in oncology stems from its potential to target and eliminate tumour cells with minimal adverse effects, owing to a mechanism of action that differs distinctly from that of most other systemic therapies. Currently, an enormous opportunity exists to expand the number of patients who can benefit from this technology, to address the urgent needs of many thousands of patients across the world. In this Review, we describe the clinical experience with established radiotheranostics as well as novel areas of research and various barriers to progress.

Key points

  • Radiotheranostics combines molecular imaging (primarily PET and SPECT) with targeted radionuclide therapy, typically with radionuclides that emit α-, β- or auger-radiation.

  • The exponential, global expansion of radiotheranostics in oncology stems from the potential to target and eliminate tumour cells with minimal adverse effects owing to a mechanism of action that is distinctly different from that of most other systemic therapies.

  • Approvals of new radiotheranostic agents such as 177Lu-DOTATATE and 177Lu-PSMA-617 alongside the availability of companion diagnostic agents (such as 68Ga-DOTATATE and 68Ga-PSMA-11, respectively) have driven a resurgence of interest in the field that is driving numerous clinical trials testing novel radiotheranostics.

  • Novel and potentially clinically important radiotheranostic approaches are expanding the range of targets to include those present in the tumour microenvironment, such as blood vessels, cancer-associated fibroblasts, the stromal matrix and immune cells.

  • Although access to radiotheranostics is expanding, challenges such as lack of isotope availability, shortages of trained personnel, regulatory burdens and costs might all limit the extent of global dissemination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the concept of radiotheranostics.
Fig. 2: Responses to approved theranostics, as demonstrated using their imaging counterpart.
Fig. 3: The predicted global nuclear medicine market 2013–2026.
Fig. 4: Therapeutic approaches involving radiotheranostics.

Similar content being viewed by others

References

  1. Jadvar, H., Chen, X., Cai, W. & Mahmood, U. Radiotheranostics in cancer diagnosis and management. Radiology 286, 388–400 (2018).

    Article  PubMed  Google Scholar 

  2. Herrmann, K. et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 21, e146–e156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. FDA. VENTANA PD-L1 (SP142) assay - P160002/S009, https://www.fda.gov/medical-devices/recently-approved-devices/ventana-pd-l1-sp142-assay-p160002s009 (2020)

  4. FDA. HERCEPTIN (trastuzumab) label, https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf (2010)

  5. Park, S. et al. Somatostatin receptor imaging and theranostics: current practice and future prospects. J. Nucl. Med. 62, 1323–1329 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. NCCN. NCCN Guidelines, https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1448 (2021).

  7. Garin, E. et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol. Hepatol. 6, 17–29 (2021).

    Article  PubMed  Google Scholar 

  8. Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 19, 589–608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ku, A., Facca, V. J., Cai, Z. & Reilly, R. M. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm. Chem. 4, 27 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Poty, S., Francesconi, L. C., McDevitt, M. R., Morris, M. J. & Lewis, J. S. Alpha-emitters for radiotherapy: from basic radiochemistry to clinical studies-part 1. J. Nucl. Med. 59, 878–884 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pouget, J. P., Catherine, L., Deshayes, E., Boudousq, V. & Navarro-Teulon, I. Introduction to radiobiology of targeted radionuclide therapy. Front. Med. 2, 12 (2015).

    Article  Google Scholar 

  12. Pouget, J. P. et al. From the target cell theory to a more integrated view of radiobiology in targeted radionuclide therapy: the Montpellier group’s experience. Nucl. Med/ Biol. 104–105, 53–64 (2022).

    Article  CAS  Google Scholar 

  13. Adams, D. J. The valley of death in anticancer drug development: a reassessment. Trends Pharmacol. Sci. 33, 173–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hertz, S., Roberts, A. & Evans, R. D. Radioactive iodine as an indicator in the study of thyroid physiology. Proc. Soc. Exp. Biol. Med. 38, 510–513 (1938).

    Article  Google Scholar 

  15. Chapman, E. M. & Evans, R. D. The treatment of hyperthyroidism with radioactive iodine. J. Am. Med. Assoc. 131, 86–91 (1946).

    Article  CAS  PubMed  Google Scholar 

  16. Seidlin, S. M., Marinelli, L. D. & Oshry, E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J. Am. Med. Assoc. 132, 838–847 (1946).

    Article  CAS  PubMed  Google Scholar 

  17. Witzig, T. E. et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J. Clin. Oncol. 15, 2453–2463 (2002).

    Article  CAS  Google Scholar 

  18. Grillo-Lopez, A. J. Zevalin: the first radioimmunotherapy approved for the treatment of lymphoma. Expert. Rev. Anticancer. Ther. 2, 485–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Friedberg, J. W. & Fisher, R. I. Iodine-131 tositumomab (Bexxar): radioimmunoconjugate therapy for indolent and transformed B-cell non-Hodgkin’s lymphoma. Expert. Rev. Anticancer. Ther. 4, 18–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Leahy, M. F., Seymour, J. F., Hicks, R. J. & Rurner, J. H. Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J. Clin. Oncol. 20, 4418–4425 (2006).

    Article  CAS  Google Scholar 

  21. Ferrucci, P. F. et al. High activity 90Y-ibritumomab tiuxetan (Zevalin) with peripheral blood progenitor cells support in patients with refractory/resistant B-cell non-Hodgkin lymphomas. Br. J. Haematol. 139, 590–599 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. Timmerman, L. Why Good Drugs Sometimes Fail: The Bexxar Story, https://xconomy.com/national/2013/08/26/why-good-drugs-sometimes-fail-in-the-market-the-bexxar-story/ (2013).

  23. Schaefer, N. G., Huang, P., Buchanan, J. W. & Wahl, R. L. Radioimmunotherapy in non-Hodgkin lymphoma: opinions of nuclear medicine physicians and radiation oncologists. J. Nucl. Med. 52, 830–838 (2011).

    Article  PubMed  Google Scholar 

  24. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Porter, A. T. & McEwan, A. J. Strontium-89 as an adjuvant to external beam radiation improves pain relief and delays disease progression in advanced prostate cancer: results of a randomized controlled trial. Semin. Oncol. 20, 38–43 (1993).

    CAS  PubMed  Google Scholar 

  26. Sartor, O., Quadramet 424Sm10/11 Study Group. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology 63, 940–945 (2004).

    Article  PubMed  Google Scholar 

  27. Handkiewicz-Junak, D. et al. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides. Eur. J. Nucl. Med. Mol. Imaging 45, 846–859 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith, M. et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 408–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. de Herder, W. W. et al. Neuroendocrine tumors and somatostatin: imaging techniques. J. Endocrinol. Invest. 28, 132–136 (2005).

    PubMed  Google Scholar 

  30. De Jong, M. et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin. Nucl. Med. 32, 133–140 (2002).

    Article  PubMed  Google Scholar 

  31. Bodei, L., Kassi, A., Adelstein, S. J. & Mariani, G. Radionuclide therapy with iodine-125 and other auger-electron-emitting radionuclides: experimental models and clinical applications. Cancer Biother. Radiopharm. 18, 861–877 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Anthony, L. B. et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin. Nucl. Med. 32, 123–132 (2002).

    Article  PubMed  Google Scholar 

  33. Smit Duijzentkunst, D. A., Kwekkeboom, D. J. & Bodei, L. Somatostatin receptor 2-targeting compounds. J. Nucl. Med. 58, 54S–60S (2017).

    Article  PubMed  CAS  Google Scholar 

  34. Bodei, L., Kwekkeboom, D. J., Kidd, M., Modlin, I. M. & Krenning, E. P. Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer. Semin. Nucl. Med. 46, 225–238 (2016).

    Article  PubMed  Google Scholar 

  35. Strosberg, J. et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strosberg, J. et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-Dotatate in the phase III NETTER-1 trial. J. Clin. Oncol. 36, 2578–2584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strosberg, J. R. et al. NETTER-1 investigators. 177Lu-Dotatate plus long-acting octreotide versus high‑dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 22, 1752–1763 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Eder, M. et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 23, 688–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Afshar-Oromieh, A., Haberkorn, U., Eder, M., Eisenhut, M. & Zechmann, C. M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging 39, 1085–1086 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kratochwil, C. et al. [177Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 42, 987–988 (2015).

    Article  PubMed  Google Scholar 

  41. Mottet N., et al. EAU Guidelines: Prostate Cancer, https://uroweb.org/guideline/prostate-cancer/ (2001).

  42. NCCN. Recently Updated Guidelines, https://www.nccn.org/guidelines/recently-published-guidelines (2022).

  43. Sartor, O., VISION Investigators. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 16, 1091–1103 (2021).

    Article  Google Scholar 

  44. Hofman, M. S. et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. McInnes, L. E. et al. Therapeutic efficacy of a bivalent inhibitor of prostate-specific membrane antigen labeled with 67Cu. J. Nucl. Med. 1, 8290832 (2021).

    Google Scholar 

  46. d’Abadie, P. et al. Microspheres used in liver radioembolization: from conception to clinical effects. Molecules 26, 3966 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Weber, M. et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur. J. Nucl. Med. Mol. Imaging 49, 1682–1699 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mulcahy, M. F. et al. Radioembolization with chemotherapy for colorectal liver metastases: a randomized, open-label, international, multicenter, phase III trial. J. Clin. Oncol. 39, 3897–3907 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Braat, A. J. A. et al. Additional holmium-166 radioembolisation after lutetium-177-dotatate in patients with neuroendocrine tumour liver metastases (HEPAR PLuS): a single-centre, single-arm, open-label, phase 2 study. Lancet Oncol. 21, 561–570 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Garin, E., Tselikas, L., Guiu, B. & Campillo-Gimenez, B. Personalised dosimetry for SIRT: new standard or bridge to surgical resection? - Authors’ reply. Lancet Gastroenterol. Hepatol. 6, 162 (2021).

    Article  PubMed  Google Scholar 

  51. Arnold, C. Theranostics could be big business in precision oncology. Nat. Med. 28, 606–608 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Czernin, J., Sonni, I., Razmaria, A. & Calais, J. The future of nuclear medicine as an independent specialty. J. Nucl. Med. 60, 3S–12S (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Pienta, K. J. et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). J. Urol. 206, 52–61 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fendler, W. P. et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 5, 856–863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 9, eaan2415 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Klein, E. A. et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 32, 1167–1177 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Bredno, J., Lipson, J., Venn, O., Aravanis, A. M. & Jamshidi, A. Clinical correlates of circulating cell-free DNA tumor fraction. PLoS ONE 16, 0256436 (2021).

    Article  CAS  Google Scholar 

  58. Chabon, J. J. et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 580, 245–251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Markham, M. J. et al. Clinical cancer advances 2020: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 38, 1081 (2020).

    Article  PubMed  Google Scholar 

  60. Allemani, C. et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391, 1023–1075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hashim, D. et al. The global decrease in cancer mortality: trends and disparities. Ann. Oncol. 27, 926–933 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Howlader, N. et al. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 383, 640–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  64. Tamura, R. et al. Alterations of the tumor microenvironment in glioblastoma following radiation and temozolomide with or without bevacizumab. Ann. Transl. Med. 8, 297 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Future Market Insights. Radiopharmaceuticals Market By Radioisotope Type (Technetium-99, Fluorine-18, Iodine-131, Leutetium-177), Application (Oncology, Cardiology, Gastroenterology, Neuroendocrinology, Neurology, Nephrology), Source (Cyclotrons, Nuclear Reactors) & Region – Forecast 2021–2031. https://www.futuremarketinsights.com/reports/radiopharmaceuticals-market (2021).

  66. Fortune Business Insights. Nuclear Medicine Market Size, Share & COVID-19 Impact Analysis, By Type (Diagnostic Radiopharmaceuticals and Therapeutic Radiopharmaceticals), By Application (Neurology, Cardiology, Oncology, and Others), By End-user (Hopsitals & Clinics, Diagnostic Centers, and Others), and Regional Forecast, 2021–2028. Market Research Report. https://www.fortunebusinessinsights.com/industry-reports/nuclear-medicine-radiopharmaceuticals-market-101812 (2022).

  67. DataM Intelligence. Global Theranostics Market: Market Size, Share and Forecast; Market Outlook, Opportunity and Data Analysis 2022–2029. https://www.datamintelligence.com/research-report/theranostics-market (2021).

  68. Hricak, H. et al. Medical imaging and nuclear medicine: a Lancet Oncology Commission. Lancet Oncol. 22, e136–e172 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cutler, C. S. et al. Global issues of radiopharmaceutical access and availability: a Nuclear Medicine Global Initiative project. J. Nucl. Med. 62, 422–430 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bodei, L., Chiti, A., Modlin, I. M., Scott, A. M. & Schoder, H. The path to the future: education of nuclear medicine therapeutic specialists as responsible physicians. J. Nucl. Med. 60, 1663–1664 (2019).

    Article  PubMed  Google Scholar 

  71. Herrmann, K. et al. Joint EANM, SNMMI and IAEA enabling guide: how to set up a theranostics centre. J. Nucl. Med. https://doi.org/10.2967/jnumed.122.264321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lee, S. T. et al. The importance of training, accreditation and guidelines for the practice of theranostics: the australian perspective. J. Nucl. Med. https://doi.org/10.2967/jnumed.122.263996 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cherla, A., Naci, H., Kesselheim, A. S., Gyawali, B. & Mossialos, E. Assessment of coverage in england of cancer drugs qualifying for US food and drug administration accelerated approval. JAMA Intern. Med. 181, 490–498 (2021).

    Article  PubMed  Google Scholar 

  74. Elimova, E. et al. Updating reports of phase 3 clinical trials for cancer. JAMA Oncol. 7, 593–596 (2021).

    Article  PubMed  Google Scholar 

  75. Ebrahim, S. et al. Reanalyses of randomized clinical trial data. JAMA 312, 1024–1032 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Schnog, J. B., Samson, M. J., Gans, R. O. B. & Duits, A. J. An urgent call to raise the bar in oncology. Br. J. Cancer 125, 1477–1485 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ahn, H. J. et al. Radiation-induced CXCL12 upregulation via histone modification at the promoter in the tumor microenvironment of hepatocellular carcinoma. Mol. Cell 42, 530–545 (2019).

    CAS  Google Scholar 

  78. US Food and Drug Administration. Real-World Evidence, https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence (2020).

  79. Johnson, S. B. et al. Cancer misinformation and harmful information on facebook and other social media: a brief report. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djab141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lindberg, J. C. H. ‘J’accuse.!’: the continuous failure to address radiophobia and placing radiation in perspective. J. Radiol. Prot. 41, 459 (2021).

    Article  Google Scholar 

  81. Rajkumar, S. V. The high cost of insulin in the United States: an urgent call to action. Mayo Clin. Proc. 95, 22–28 (2020).

    Article  PubMed  Google Scholar 

  82. Takakusagi, Y. et al. Multimodal molecular imaging study evaluates pharmacological alteration of the tumor microenvironment to improve radiation response. Cancer Res. 78, 6828–6837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Congressional Budget Office. Research and Development in the Pharmaceutical Industry, https://www.cbo.gov/publication/57126 (2021) .

  84. Vokinger, K. N. et al. Price changes and within-class competition of cancer drugs in the USA and Europe: a comparative analysis. Lancet Oncol. 23, 514–520 (2022).

    Article  PubMed  Google Scholar 

  85. Himmelstein, D. U., Campbell, T. & Woolhandler, S. Health care administrative costs in the United States and Canada. Ann. Intern. Med. 21, 134–142 (2020).

    Article  Google Scholar 

  86. Pozen, A. & Cutler, D. M. Medical spending differences in the United States and Canada: the role of prices, procedures, and administrative expenses. Inquiry 47, 124–134 (2010).

    Article  PubMed  Google Scholar 

  87. CMS.gov: Centers for Medicare and Medicaid Services. NHE Fact Sheet, https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet (2021).

  88. Institute of Medicine. Delivering Affordable Cancer Care in the 21st Century: Workshop Summary (National Academies Press, 2013).

  89. Dusetzia, S. B. Your money or your life - the high cost of cancer drugs under medicare part D. N. Engl. J. Med. https://doi.org/10.1056/NEJMp2202726. (2022).

    Article  Google Scholar 

  90. Pouget, J.-P. & Constanzo, J. Revisiting the radiobiology of targeted alpha therapy. Front. Med. 8, 692436 (2021).

    Article  Google Scholar 

  91. Tang, L. et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res. 37, 87 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. De la Vieja, A. & Riesco-Eizaguirre, G. Radio-iodide treatment: from molecular aspects to the clinical view. Cancers 13, 995 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Waseem, N., Aparici, C. M. & Kunz, P. L. Evaluating the role of theranostics in grade 3 neuroendocrine neoplasms. J. Nucl. Med. 60, 882–891 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Bodei, L. et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur. J. Nucl. Med. Mol. Imaging 42, 5–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Sarnelli, A. et al. Therapeutic schemes in 177Lu and 90Y-PRRT: radiobiological considerations. Q. J. Nucl. Med. Mol. Imaging 61, 216–231 (2017).

    Article  PubMed  Google Scholar 

  96. National Cancer Institute, Division of Cancer Treatment & Diagnosis. Common Terminology Criteria for Adverse Events (CTCAE). Last Updated: 09/21/20, https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm (2022).

  97. Bodei, L. et al. Myeloid neoplasms after chemotherapy and PRRT: myth and reality. Endocr. Relat. Cancer 23, C1–C7 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Ma, J., Li, L., Liao, T., Gong, W. & Zhang, C. Efficacy and safety of 225Ac-PSMA-617-targeted alpha therapy in metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. Front. Oncol. 12, 796657 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yordanova, A. et al. Safety of multiple repeated cycles of 177Lu-octreotate in patients with recurrent neuroendocrine tumour. Eur. J. Nucl. Med. Mol. Imaging 44, 1207–1214 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. van der Zwan, W. A. et al. Salvage peptide receptor radionuclide therapy with [(177)Lu-DOTA,Tyr(3)]octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 46, 704–717 (2019).

    Article  PubMed  CAS  Google Scholar 

  101. Kratochwil, C. et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J. Nucl. Med. 59, 795–802 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Kratochwil, C., Haberkorn, U. & Giesel, F. L. (225)Ac-PSMA-617 for therapy of prostate cancer. Semin. Nucl. Med. 50, 133–140 (2020).

    Article  PubMed  Google Scholar 

  103. Ballal, S., Yadav, M. P., Bal, C., Sahoo, R. K. & Tripathi, M. Broadening horizons with (225)Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to (177)Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur. J. Nucl. Med. Mol. Imaging 47, 934–946 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Kristiansson, A. et al. Kidney protection with the radical scavenger α1-microglobulin (A1M) during peptide receptor radionuclide and radioligand therapy. Antioxidants 10, 1271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bohuslavizki, K. H. et al. Salivary gland protection by amifostine in high-dose radioiodine therapy of differentiated thyroid cancer. Strahlenther. Onkol. 175, 57–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Crumbaker, M. et al. Phase I/II trial of the combination of 177Lutetium prostate specific membrane antigen 617 and idronoxil (NOX66) in men with end-stage metastatic castration-resistant prostate cancer (LuPIN). Eur. Urol. Oncol. 4, 963–970 (2021).

    Article  PubMed  Google Scholar 

  107. Bodei, L. et al. Molecular profiling of neuroendocrine tumours to predict response and toxicity to peptide receptor radionuclide therapy. Lancet Oncol. 21, e431–e443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. De Giorgi, U. et al. Circulating androgen receptor gene amplification and resistance to 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: results of a phase 2 trial. Br. J. Cancer 125, 1226–1232 (2021).

    Article  PubMed  CAS  Google Scholar 

  109. Scott, A. M. & Bodei, L. Pharmacogenomics in radionuclide therapy: impact on response to theranostics. J. Nucl. Med. 1, 884–885 (2021).

    Article  CAS  Google Scholar 

  110. Chan, T. G., O’Neill, E., Habjan, C. & Cornelissen, B. Combination strategies to improve targeted radionuclide therapy. J. Nucl. Med. 61, 1544–1552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Satapathy, S. et al. 177Lu-DOTATATE plus radiosensitizing capecitabine versus octreotide long-acting release as first-line systemic therapy in advanced grade 1 or 2 gastroenteropancreatic neuroendocrine tumors: a single-institution experience. JCO Glob. Oncol. 7, 1167–1175 (2021).

    Article  PubMed  Google Scholar 

  112. Nonnekens, J. et al. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor olaparib. Theranostics 18, 1821–1832 (2016).

    Article  CAS  Google Scholar 

  113. Cullinane, C. et al. Enhancing the anti-tumour activity of 177Lu-DOTA-octreotate radionuclide therapy in somatostatin receptor-2 expressing tumour models by targeting PARP. Sci. Rep. 10, 10196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang, R.-X. & Zhou, P.-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal. Transduct. Target Ther. 1, 60 (2020).

    Article  CAS  Google Scholar 

  115. Kelly, M. P. et al. Therapeutic efficacy of 177Lu-CHX-A″-DTPA-hu3S193 radioimmunotherapy in prostate cancer is enhanced by EGFR inhibition or docetaxel chemotherapy. Prostate 1, 92–104 (2009).

    Article  CAS  Google Scholar 

  116. Wickstroem, K. et al. Synergistic effect of a mesothelin-targeted 227Th conjugate in combination with DNA damage response inhibitors in ovarian cancer xenograft models. J. Nucl. Med. 60, 1293–1300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lundsten, S., Spiegelberg, D., Raval, N. R. & Nestor, M. The radiosensitizer Onalespib increases complete remission in 177Lu-DOTATATE-treated mice bearing neuroendocrine tumor xenografts. Eur. J. Nucl. Med. Mol. Imaging 47, 980–990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y.-X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Parikh, A. R. et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat. Cancer 2, 1124–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen, H. et al. Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics 9, 7948–7960 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Czernin, J. et al. Immune-checkpoint blockade enhances 225Ac-PSMA617 efficacy in a mouse model of prostate cancer. J. Nucl. Med. 62, 228–231 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Aggarwal, R. S. et al. Immunogenic priming with 177Lu-PSMA-617 plus pembrolizumab in metastatic castration resistant prostate cancer (mCRPC): a phase 1b study. J. Clin. Oncol. 39, 5053 (2021).

    Article  Google Scholar 

  123. Sandu, S. K. et al. PRINCE: Interim analysis of the phase Ib study of 177Lu-PSMA-617 in combination with pembrolizumab for metastatic castration resistant prostate cancer (mCRPC). Ann. Oncol. 32, S626–S677 (2021).

    Article  Google Scholar 

  124. Samnick, S. et al. Efficacy of systemic radionuclide therapy with p-131I-iodo-L-phenylalanine combined with external beam photon irradiation in treating malignant gliomas. J. Nucl. Med. 50, 2025–2032 (2009).

    Article  PubMed  Google Scholar 

  125. Emmett, L. et al. Rapid modulation of PSMA expression by androgen deprivation: serial 68 Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J. Nucl. Med. 60, 950–954 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Claringbold, P. G., Brayshaw, P. A., Price, R. A. & Turner, J. H. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 38, 302–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Herbertson, R. A. et al. Targeted chemoradiation in metastatic colorectal cancer: a phase I trial of 131I-huA33 with concurrent capecitabine. J. Nucl. Med. 55, 534–539 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Genolla, J. et al. high-activity therapy with 131I-metaiodobenzylguanidine (131I-mIBG) and topotecan for the treatment of high-risk refractory neuroblastoma. Eur. J. Nucl. Med. Mol. Imaging 46, 1567–1575 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Pavlakis, N. et al. Australasian Gastrointestinal Trials Group (AGITG) CONTROL NET Study: Phase II study evaluating the activity of 177Lu-Octreotate peptide receptor radionuclide therapy (LuTate PRRT) and capecitabine, temozolomide CAPTEM) — First results for pancreas and updated midgut neuroendocrine tumors (pNETS, mNETS). J. Clin. Oncol. 38, Abstr. 4608 (2020).

    Article  Google Scholar 

  130. Batra, J. S. et al. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Urol. Oncol. 38, 848.e9–848.e16 (2020).

    Article  CAS  Google Scholar 

  131. Pool, S. E. et al. mTOR inhibitor RAD001 promotes metastasis in a rat model of pancreatic neuroendocrine cancer. Cancer Res. 73, 12–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Johnbeck, C. B., Nielsen, C. K., Knigge, U. & Kjaer, A. Synergistic effect of combined treatment with 177Lu-DOTATATE and Everolimus in neuroendocrine tumors as monitored by 18F-FDG-PET: studies in human neuroendocrine xenografts [abstract]. J. Nucl. Med. 53, 57 (2012).

    Google Scholar 

  133. Claringbold, P. G. & Turner, J. H. NeuroEndocrine tumor therapy with Lutetium-177-octreotate and everolimus (NETTLE): a phase I study. Cancer Biother. Radiopharm. 30, 261–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Schoenfeld, J. D. et al. Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 23, 279–291 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Theelen, W. S. M. E. et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respir. Med. 9, 467–475 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, S. T., Buarvenich, I. & Scott, A. M. Novel target selection for nuclear medicine studies. Semin. Nucl. Med. 49, 357–368 (2019).

    Article  PubMed  Google Scholar 

  138. Valkenburg, K. C., De Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15, 366–381 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Baum, R. P. et al. Feasibility, biodistribution and preliminary dosimetry in peptide-targeted radionuclide therapy (PTRT) of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-Human Results. J. Nucl. Med 63, 415–423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lindner, T. et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med. 59, 1415–1422 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Widel, M. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy? Neoplasma 64, 641–654 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Altai, M., Membreno, R., Cook, B., Tolmachev, V. & Zeglis, B. M. Pretargeted imaging and therapy. J. Nucl. Med. 58, 1553–1559 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cheal, S. M. et al. Curative multicycle radioimmunotherapy monitored by quantitative SPECT/CT-based theranostics, using bispecific antibody pretargeting strategy in colorectal cancer. J. Nucl. Med. 58, 1735–1742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Keinänen, O. et al. Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. Proc. Natl Acad. Sci. USA 10, 28316–28327 (2020).

    Article  CAS  Google Scholar 

  145. Zeglis, B. M. et al. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J. Nucl. Med. 54, 1389–1396 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Schlumberger, M. et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol. 6, 618–626 (2018).

    Article  PubMed  Google Scholar 

  147. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 14, 623–632 (2013).

    Article  CAS  Google Scholar 

  148. de Keizer, B. et al. Efficacy of high therapeutic doses of iodine-131 in patients with differentiated thyroid cancer and detectable serum thyroglobulin. Eur. J. Nucl. Med. Mol. Imaging 28, 198–202 (2001).

    Article  CAS  Google Scholar 

  149. Serafini, A. N. et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J. Clin. Oncol. 16, 1574–1581 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Gopal, A. K. et al. 90Y-Ibritumomab tiuxetan, fludarabine, and TBI-based nonmyeloablative allogeneic transplantation conditioning for patients with persistent high-risk B-cell lymphoma. Blood 28, 1132–1139 (2011).

    Article  CAS  Google Scholar 

  151. Smith, M. R. et al. Phase II study of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone immunochemotherapy followed by yttrium-90-ibritumomab tiuxetan in untreated mantle-cell lymphoma: Eastern Cooperative Oncology Group Study E1499. J. Clin. Oncol. 30, 3119–3126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Morschhauser, F. et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the International, Randomized, Phase III First-LineIndolent trial. J. Clin. Oncol. 1, 1977–1983 (2013).

    Article  CAS  Google Scholar 

  153. Lugtenburg, P. J. et al. Rituximab-PECC induction followed by 90 Y-ibritumomab tiuxetan consolidation in relapsed or refractory DLBCL patients who are ineligible for or have failed ASCT: results from a phase II HOVON study. Br. J. Haematol. 187, 347–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Shimoni, A. et al. A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer 1, 4706–4714 (2012).

    Article  CAS  Google Scholar 

  155. Davies, A. J. et al. Tositumomab and iodine I 131 tositumomab for recurrent indolent and transformed B-cell non-Hodgkin’s lymphoma. J. Clin. Oncol. 15, 1469–1479 (2004).

    Article  CAS  Google Scholar 

  156. Kaminski, M. S. et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J. Clin. Oncol. 1, 3918–3928 (2001).

    Article  Google Scholar 

  157. EMA. European Medicines Agency: Science Medicines Health. List of nationally authorised medicinal products, https://www.ema.europa.eu/en/documents/psusa/iodine-131i-iobenguane-list-nationally-authorised-medicinal-products-psusa/00001764/201505_en.pdf (2016).

  158. Pryma, D. A. et al. Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J. Nucl. Med. 60, 623–630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sartor, O. et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 15, 738–746 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Nilsson, S. et al. Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann. Oncol. 27, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank G. Scott for the careful editing of this manuscript and S. Lapi (University of Alabama) and J. Engle (University of Wisconsin-Madison) for help with Table 1. This work was supported in part by NIH grants R35 CA232130 (J.S.L.) and P30 CA008748 (J.S.L., L.B., H.S.), and NHMRC Investigator grant 1177837 (A.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made an equal contribution to all aspects of the preparation and writing of this manuscript.

Corresponding author

Correspondence to Jason S. Lewis.

Ethics declarations

Competing interests

L.B. has acted as a consultant and/or speaker for AAA-Novartis, Clovis Oncology, Iba, ITM and MTTI and received research funding from AAA-Novartis. K.H. has received personal fees from Adacap, Aktis Oncology, Amgen, Bayer, BTG, Curium, Endocyte, GE Healthcare, IPSEN, Pharma15, Novartis, Siemens Healthineers, SIRTEX, Theragnostics and YMabs; has received non-financial support from ABX and Sofie Biosciences and has received research funding from BTG. A.M.S. has acted as a consultant of Imagion Bio and ImmunOs; has received research funding from AbbVie, AVID, Cyclotek, Curis; has recevied research funding from AVID, Adalta, EMD Serono, Fusion, Humanigen, ITM, Merck, Medimmune, Telix Pharmaceuticals and Theramyc, and is a co-founder of Certis Therapeutics and Paracrine Therapeutics. J.S.L. has acted as an adviser of Boxer, Clarity Pharmaceuticals, Curie Therapeutics, Earli, Evergreen Theragnostics, Telix Pharmaceuticals, TPG Capital and Varian Medical Systems; is a co-inventor on technologies licensed to Diaprost, Daiichi Sankyo, Elucida Oncology, Macrocyclics and Samus Therapeutics; and is the co-founder of, and holds equity in, pHLIP and Sharp RTx. H.S. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks Jeremie Calais, Jacek Capala, Kazuma Ogawa, Rodney Hicks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodei, L., Herrmann, K., Schöder, H. et al. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol 19, 534–550 (2022). https://doi.org/10.1038/s41571-022-00652-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00652-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing