Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics

Abstract

Antagonistic antibodies targeting the inhibitory immune-checkpoint receptor PD-1 or its ligand PD-L1 are used to treat a wide range of cancer types and can substantially improve patient survival. Nevertheless, strategies to overcome intrinsic and acquired resistance are required to respectively increase response rates and durations. PD-L1 is often upregulated in various malignancies, and emerging evidence suggests numerous underlying mechanisms involving distinct oncogenic signalling pathways. Thus, specific small-molecule inhibitors have the potential to simultaneously suppress not only a key oncogenic signalling pathway but also PD-L1 expression and/or activity in particular cancers, thereby presenting attractive candidate drugs for combination with existing immune-checkpoint inhibitors and/or other targeted agents. Herein, we summarize advances in understanding the mechanisms regulating PD-L1 expression at the transcriptional, post-transcriptional, translational and post-translational levels in cancers. We describe the roles of the diverse post-translational modifications of PD-L1, including phosphorylation, palmitoylation, glycosylation, acetylation and ubiquitination. Moreover, we discuss the potential use of small-molecule agents to modulate these mechanisms as well as of predictive biomarkers to stratify patients for optimal treatment, and provide our perspective on potential therapeutic strategies to circumvent resistance to conventional anti-PD-1/PD-L1 antibodies.

Key points

  • Besides its localization on the cell membrane, PD-L1 can also be detected in the extracellular space or nucleus, where it has crucial roles in regulating immune evasion and tumorigenesis through PD-1-dependent or PD-1-independent activities.

  • Transcriptional, post-transcriptional and translational mechanisms contribute to PD-L1 overexpression in cancers, and these mechanisms are regulated by diverse oncogenic signalling and stress response pathways.

  • In addition, PD-L1 expression and/or activity is regulated through several post-translational modifications, including phosphorylation, glycosylation, acetylation, ubiquitination and palmitoylation, which serve as signals for lysosomal or proteasome-mediated degradation of PD-L1.

  • Small-molecule agents that either upregulate or downregulate PD-L1 expression have been extensively investigated in preclinical studies and for different purposes in clinical trials; most of these agents have the potential to both inhibit oncogenic signalling pathways and modulate PD-L1 expression.

  • Rational combinations of such small-molecule agents and conventional, antibody-based immune-checkpoint inhibitors might improve efficacy over that of either agent as monotherapy and/or overcome resistance mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-canonical activities of PD-L1.
Fig. 2: Transcriptional regulation of PD-L1 expression.
Fig. 3: Factors regulating PD-L1 mRNA stability and translation.
Fig. 4: Regulation of PD-L1 through post-translational modifications.
Fig. 5: Regulation of PD-L1 protein stability by ubiquitination and deubiquitination.

Similar content being viewed by others

References

  1. Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    CAS  PubMed  Google Scholar 

  2. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed  Google Scholar 

  3. Boussiotis, V. A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 375, 1767–1778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Borst, J., Busselaar, J., Bosma, D. M. T. & Ossendorp, F. Mechanism of action of PD-1 receptor/ligand targeted cancer immunotherapy. Eur. J. Immunol. 51, 1911–1920 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, R. et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12, 832 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11, 3801 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Grossman, J. E., Vasudevan, D., Joyce, C. E. & Hildago, M. Is PD-L1 a consistent biomarker for anti-PD-1 therapy? The model of balstilimab in a virally-driven tumor. Oncogene 40, 1393–1395 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, H. H. et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 36, 168–178.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    CAS  PubMed  Google Scholar 

  12. Prestipino, A. et al. Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci. Transl. Med. 10, eaam7729 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Shankaran, V. et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  14. Xue, V. W. et al. Transforming growth factor-beta: a multifunctional regulator of cancer immunity. Cancers 12, 3099 (2020).

    CAS  PubMed Central  Google Scholar 

  15. Zhang, N. et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int. J. Oncol. 49, 1360–1368 (2016).

    CAS  PubMed  Google Scholar 

  16. Xu, L. et al. Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels. Mol. Oncol. 12, 269–286 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, W. et al. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J. Immunother. Cancer 8, e000285 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Chan, L. C. et al. IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J. Clin. Invest. 129, 3324–3338 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carbotti, G. et al. IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 6, 43267–43280 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Sanmamed, M. F. et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann. Oncol. 28, 1988–1995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, L. et al. Gastric cancer mesenchymal stem cells derived IL-8 induces PD-L1 expression in gastric cancer cells via STAT3/mTOR-c-Myc signal axis. Cell Death Dis. 9, 928 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Wang, T. T. et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66, 1900–1911 (2017).

    CAS  PubMed  Google Scholar 

  24. Jiang, C., Yuan, F., Wang, J. & Wu, L. Oral squamous cell carcinoma suppressed antitumor immunity through induction of PD-L1 expression on tumor-associated macrophages. Immunobiology 222, 651–657 (2017).

    CAS  PubMed  Google Scholar 

  25. Wang, X. et al. Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol. Lett. 184, 7–14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Quandt, D., Jasinski-Bergner, S., Muller, U., Schulze, B. & Seliger, B. Synergistic effects of IL-4 and TNFalpha on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J. Transl. Med. 12, 151 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Wei, Y. et al. The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J. Clin. Invest. 129, 3347–3360 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Pulko, V. et al. TLR3-stimulated dendritic cells up-regulate B7-H1 expression and influence the magnitude of CD8 T cell responses to tumor vaccination. J. Immunol. 183, 3634–3641 (2009).

    CAS  PubMed  Google Scholar 

  29. Boes, M. & Meyer-Wentrup, F. TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells. Cancer Lett. 361, 49–56 (2015).

    CAS  PubMed  Google Scholar 

  30. Qian, Y. et al. TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest. 26, 816–821 (2008).

    CAS  PubMed  Google Scholar 

  31. Lv, H. et al. NAD+ metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab. 33, 110–127.e5 (2021).

    CAS  PubMed  Google Scholar 

  32. Sasi, B. et al. Regulation of PD-L1 expression is a novel facet of cyclic-AMP-mediated immunosuppression. Leukemia 35, 1990–2001 (2021).

    CAS  PubMed  Google Scholar 

  33. Glorieux, C. et al. Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox Biol. 38, 101780 (2021).

    CAS  PubMed  Google Scholar 

  34. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Barsoum, I. B., Smallwood, C. A., Siemens, D. R. & Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74, 665–674 (2014).

    CAS  PubMed  Google Scholar 

  36. Stutvoet, T. S. et al. MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells. J. Pathol. 249, 52–64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013).

    CAS  PubMed  Google Scholar 

  38. Li, C. W. et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33, 187–201.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, C. W. et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 7, 12632 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Concha-Benavente, F. et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res. 76, 1031–1043 (2016).

    CAS  PubMed  Google Scholar 

  41. Peng, S. et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol. Cancer 18, 165 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Ahn, H. K. et al. MET receptor tyrosine kinase regulates the expression of co-stimulatory and co-inhibitory molecules in tumor cells and contributes to PD-L1-mediated suppression of immune cell function. Int. J. Mol. Sci. 20, 4287 (2019).

    CAS  PubMed Central  Google Scholar 

  43. Li, H. et al. MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1. Gastroenterology 156, 1849–1861.e13 (2019).

    CAS  PubMed  Google Scholar 

  44. Sun, X. et al. Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma. Am. J. Cancer Res. 10, 564–571 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Marzec, M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl Acad. Sci. USA 105, 20852–20857 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ota, K. et al. Induction of PD-L1 Expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin. Cancer Res. 21, 4014–4021 (2015).

    CAS  PubMed  Google Scholar 

  47. Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, N. et al. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol. Immunother. 66, 1175–1187 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, J. et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110, 296–304 (2007).

    CAS  PubMed  Google Scholar 

  50. Lastwika, K. J. et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 76, 227–238 (2016).

    CAS  PubMed  Google Scholar 

  51. Fiedler, M. et al. Buparlisib modulates PD-L1 expression in head and neck squamous cell carcinoma cell lines. Exp. Cell Res. 396, 112259 (2020).

    CAS  PubMed  Google Scholar 

  52. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13, 84–88 (2007).

    CAS  PubMed  Google Scholar 

  53. Xu, C. et al. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25, 590–604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng, D. et al. BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 38, 6752–6766 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, M. et al. JAK2 and PD-L1 amplification enhance the dynamic expression of PD-L1 in triple-negative breast cancer. Clin. Breast Cancer 18, e1205–e1215 (2018).

    CAS  PubMed  Google Scholar 

  56. Ikeda, S. et al. PD-L1 is upregulated by simultaneous amplification of the PD-L1 and JAK2 genes in non-small cell lung cancer. J. Thorac. Oncol. 11, 62–71 (2016).

    PubMed  Google Scholar 

  57. Shen, M. et al. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J. Exp. Clin. Cancer Res. 38, 149 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Song, T. L. et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132, 1146–1158 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Castagnoli, L. et al. WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 38, 4047–4060 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Du, L. et al. β-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J. Exp. Med. 217, e20191115 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chakrabarti, J. et al. Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 9, 37439–37457 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Janse van Rensburg, H. J. et al. The hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res. 78, 1457–1470 (2018).

    CAS  PubMed  Google Scholar 

  63. Kim, M. H. et al. YAP-Induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol. Res. 6, 255–266 (2018).

    CAS  PubMed  Google Scholar 

  64. Hudson, K., Cross, N., Jordan-Mahy, N. & Leyland, R. The extrinsic and intrinsic roles of PD-L1 and its receptor PD-1: implications for immunotherapy treatment. Front. Immunol. 11, 568931 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, S. et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin beta4/SNAI1/SIRT3 signaling pathway. Oncogene 37, 4164–4180 (2018).

    CAS  PubMed  Google Scholar 

  66. Gao, L. et al. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine 41, 395–407 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Wu, X. et al. Targeting B7-H1 (PD-L1) sensitizes cancer cells to chemotherapy. Heliyon 4, e01039 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Liu, S. et al. PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8, 99901–99912 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    CAS  PubMed  Google Scholar 

  70. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    CAS  PubMed  Google Scholar 

  71. Daassi, D., Mahoney, K. M. & Freeman, G. J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. 20, 209–215 (2020).

    CAS  PubMed  Google Scholar 

  72. Frigola, X. et al. Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin. Cancer Res. 17, 1915–1923 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou, J. et al. Soluble PD-L1 as a biomarker in malignant melanoma treated with checkpoint blockade. Cancer Immunol. Res. 5, 480–492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, Y. et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28, 862–864 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427.e13 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mahoney, K. M. et al. A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol. Immunother. 68, 421–432 (2019).

    CAS  PubMed  Google Scholar 

  78. Gong, B. et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J. Exp. Med. 216, 982–1000 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Romero, Y., Wise, R. & Zolkiewska, A. Proteolytic processing of PD-L1 by ADAM proteases in breast cancer cells. Cancer Immunol. Immunother. 69, 43–55 (2020).

    CAS  PubMed  Google Scholar 

  80. Orme, J. J. et al. ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncoimmunology 9, 1744980 (2020).

    PubMed  PubMed Central  Google Scholar 

  81. Theodoraki, M. N., Yerneni, S. S., Hoffmann, T. K., Gooding, W. E. & Whiteside, T. L. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin. Cancer Res. 24, 896–905 (2018).

    CAS  PubMed  Google Scholar 

  82. Fan, Y. et al. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann. Surg. Oncol. 26, 3745–3755 (2019).

    PubMed  Google Scholar 

  83. Li, C. et al. Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J. Transl. Med. 17, 355 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Ricklefs, F. L. et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci. Adv. 4, eaar2766 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Kim, D. H. et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp. Mol. Med. 51, 1–13 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Du, W. et al. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ. 28, 1284–1300 (2021).

    CAS  PubMed  Google Scholar 

  87. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao, Y. et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat. Cell Biol. 22, 1064–1075 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, J. et al. Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 30, 590–601 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghebeh, H. et al. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res. 12, R48 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Roemer, M. G. et al. PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J. Clin. Oncol. 34, 2690–2697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. George, J. et al. Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin. Cancer Res. 23, 1220–1226 (2017).

    CAS  PubMed  Google Scholar 

  94. Twa, D. D. et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123, 2062–2065 (2014).

    CAS  PubMed  Google Scholar 

  95. Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    CAS  PubMed  Google Scholar 

  96. Lu, C. et al. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J. Natl Cancer Inst. 109, djw283 (2017).

    PubMed Central  Google Scholar 

  97. Xiao, G. et al. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J. Immunother. Cancer 7, 300 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Morel, K. L. et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat. Cancer 2, 444–456 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Deng, S. et al. HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol. Cancer Ther. 18, 900–908 (2019).

    CAS  PubMed  Google Scholar 

  100. Wang, H. et al. Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. J. Exp. Clin. Cancer Res. 39, 29 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lienlaf, M. et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol. Oncol. 10, 735–750 (2016).

    CAS  PubMed Central  Google Scholar 

  102. Emran, A. A. et al. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 40, 328–344 (2019).

    CAS  PubMed  Google Scholar 

  103. Zhang, Y. et al. PD-L1 promoter methylation mediates the resistance response to anti-PD-1 therapy in NSCLC patients with EGFR-TKI resistance. Oncotarget 8, 101535–101544 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Franzen, A. et al. PD-L1 (CD274) and PD-L2 (PDCD1LG2) promoter methylation is associated with HPV infection and transcriptional repression in head and neck squamous cell carcinomas. Oncotarget 9, 641–650 (2018).

    PubMed  Google Scholar 

  105. Yang, H. et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28, 1280–1288 (2014).

    CAS  PubMed  Google Scholar 

  106. Lee, S. J. et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett. 580, 755–762 (2006).

    CAS  PubMed  Google Scholar 

  107. Liu, L. et al. PD-L1 upregulation by IFN-alpha/gamma-mediated Stat1 suppresses anti-HBV T cell response. PLoS ONE 15, e0228302 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, Y. P. et al. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J. Clin. Invest. 129, 4316–4331 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Yan, Y., Zheng, L., Du, Q., Yan, B. & Geller, D. A. Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol. Immunother. 69, 1891–1903 (2020).

    CAS  PubMed  Google Scholar 

  110. Dorand, R. D. et al. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353, 399–403 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Han, H. et al. Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36, 483–497.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pan, Y. et al. Synergistic inhibition of pancreatic cancer with anti-PD-L1 and c-Myc inhibitor JQ1. Oncoimmunology 8, e1581529 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Abdelhamed, S., Ogura, K., Yokoyama, S., Saiki, I. & Hayakawa, Y. AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. J. Cancer 7, 1579–1586 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jiang, X., Zhou, J., Giobbie-Hurder, A., Wargo, J. & Hodi, F. S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res. 19, 598–609 (2013).

    CAS  PubMed  Google Scholar 

  116. Atsaves, V. et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31, 1633–1637 (2017).

    CAS  PubMed  Google Scholar 

  117. Green, M. R. et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin. Cancer Res. 18, 1611–1618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hogg, S. J. et al. BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1. Cell Rep. 18, 2162–2174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, H. et al. ADORA1 inhibition promotes tumor immune evasion by regulating the ATF3-PD-L1 axis. Cancer Cell 37, 324–339.e8 (2020).

    CAS  PubMed  Google Scholar 

  120. Peng, J. et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-kappaB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 75, 5034–5045 (2015).

    CAS  PubMed  Google Scholar 

  121. Chen, D. P. et al. Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. J. Hepatol. 71, 333–343 (2019).

    CAS  PubMed  Google Scholar 

  122. Wang, W. et al. Upregulation of PD-L1 via HMGB1-activated IRF3 and NF-kappaB contributes to UV radiation-induced immune suppression. Cancer Res. 79, 2909–2922 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu, B. et al. Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene 37, 4941–4954 (2018).

    CAS  PubMed  Google Scholar 

  124. Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 53, 322–331 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang, K. et al. Angiotensin II contributes to intratumoral immunosuppression via induction of PD-L1 expression in non-small cell lung carcinoma. Int. Immunopharmacol. 84, 106507 (2020).

    CAS  PubMed  Google Scholar 

  127. Zhang, Y., Yue, C., Krichevsky, A. M. & Garkavtsev, I. Repression of the stress granule protein G3BP2 inhibits immune checkpoint molecule PD-L1. Mol. Oncol. https://doi.org/10.1002/1878-0261.12915 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wang, X. et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal. 27, 443–452 (2015).

    CAS  PubMed  Google Scholar 

  129. Wang, Y. & Wang, L. miR-34a attenuates glioma cells progression and chemoresistance via targeting PD-L1. Biotechnol. Lett. 39, 1485–1492 (2017).

    CAS  PubMed  Google Scholar 

  130. Anastasiadou, E. et al. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 33, 132–147 (2019).

    CAS  PubMed  Google Scholar 

  131. Xu, S. et al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat. Commun. 7, 11406 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhao, L. et al. The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget 7, 45370–45384 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Ashizawa, M. et al. miRNA-148a-3p regulates Immunosuppression in DNA mismatch repair-deficient colorectal cancer by targeting PD-L1. Mol. Cancer Res. 17, 1403–1413 (2019).

    CAS  PubMed  Google Scholar 

  134. Chen, L. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 5, 5241 (2014).

    CAS  PubMed  Google Scholar 

  135. Xie, W. B. et al. MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol. Biochem. 46, 654–663 (2018).

    CAS  PubMed  Google Scholar 

  136. Huang, J. et al. MicroRNA-155-5p suppresses PD-L1 expression in lung adenocarcinoma. FEBS Open. Bio 10, 1065–1071 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wei, S., Wang, K., Huang, X., Zhao, Z. & Zhao, Z. LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis. Int. J. Immunopathol. Pharmacol. 33, 2058738419859699 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. He, B., Yan, F. & Wu, C. Overexpressed miR-195 attenuated immune escape of diffuse large B-cell lymphoma by targeting PD-L1. Biomed. Pharmacother. 98, 95–101 (2018).

    CAS  PubMed  Google Scholar 

  139. Sun, J. R., Zhang, X. & Zhang, Y. MiR-214 prevents the progression of diffuse large B-cell lymphoma by targeting PD-L1. Cell Mol. Biol. Lett. 24, 68 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, Q. M., Lian, G. Y., Song, Y., Huang, Y. F. & Gong, Y. LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci. 231, 116335 (2019).

    CAS  PubMed  Google Scholar 

  141. Tao, Z. et al. MiR-195/-16 family enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 immune checkpoint. Cell Physiol. Biochem. 48, 801–814 (2018).

    CAS  PubMed  Google Scholar 

  142. Chen, Q. H. et al. LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1. Cancer Cell Int. 20, 394 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kao, S. C. et al. Tumor Suppressor microRNAs contribute to the regulation of PD-L1 expression in malignant pleural mesothelioma. J. Thorac. Oncol. 12, 1421–1433 (2017).

    PubMed  Google Scholar 

  144. Gong, A. Y. et al. MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J. Immunol. 182, 1325–1333 (2009).

    CAS  PubMed  Google Scholar 

  145. Holla, S. et al. Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Sci. Rep. 6, 24193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhen, J. & Chen, W. MiR-142 inhibits cecal ligation and puncture (CLP)-induced inflammation via inhibiting PD-L1 expression in macrophages and improves survival in septic mice. Biomed. Pharmacother. 97, 1479–1485 (2018).

    CAS  PubMed  Google Scholar 

  147. Dong, P. et al. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer. Oncogene 37, 5257–5268 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Xu, D. et al. PD-L1 is a tumor suppressor in aggressive endometrial cancer cells and its expression is regulated by miR-216a and lncRNA MEG3. Front. Cell Dev. Biol. 8, 598205 (2020).

    PubMed  PubMed Central  Google Scholar 

  149. Fan, F. et al. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol. Int. 15, 444–458 (2021).

    PubMed  Google Scholar 

  150. Zhang, J., Zhao, X., Ma, X., Yuan, Z. & Hu, M. KCNQ1OT1 contributes to sorafenib resistance and programmed deathligand1mediated immune escape via sponging miR506 in hepatocellular carcinoma cells. Int. J. Mol. Med. 46, 1794–1804 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. L Mu et al. HIF1A-AS2 promotes the proliferation and metastasis of gastric cancer cells through miR-429/PD-L1 axis. Dig. Dis. Sci. 66 4314–4325 (2021).

    Google Scholar 

  152. Dang, S. et al. LncRNA SNHG15 contributes to immuno-escape of gastric cancer through targeting miR141/PD-L1. Onco Targets Ther. 13, 8547–8556 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, S., You, H. & Yu, S. Long non-coding RNA HOXA-AS2 promotes the expression levels of hypoxia-inducible factor-1alpha and programmed death-ligand 1, and regulates nasopharyngeal carcinoma progression via miR-519. Oncol. Lett. 20, 245 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Audrito, V. et al. PD-L1 up-regulation in melanoma increases disease aggressiveness and is mediated through miR-17-5p. Oncotarget 8, 15894–15911 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Jia, L. et al. miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem. Biophys. Res. Commun. 488, 425–431 (2017).

    CAS  PubMed  Google Scholar 

  156. Yee, D., Shah, K. M., Coles, M. C., Sharp, T. V. & Lagos, D. MicroRNA-155 induction via TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J. Biol. Chem. 292, 20683–20693 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sun, C. et al. Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat. Commun. 9, 1241 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Xie, G. et al. Helicobacter pylori promote B7-H1 expression by suppressing miR-152 and miR-200b in gastric cancer cells. PLoS ONE 12, e0168822 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Cortez, M. A. et al. PDL1 regulation by p53 via miR-34. J. Natl Cancer Inst. 108, djv303 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Liu, Y., Chang, Y. & Cai, Y. X. Inhibition of Lnc-OC1 induced cell apoptosis and decreased cell viability by releasing miR-34a and inhibiting PD-L1 in endometrial carcinoma. Reprod. Sci. 27, 1848–1856 (2020).

    CAS  PubMed  Google Scholar 

  161. Zhu, F., Niu, R., Shao, X. & Shao, X. FGD5AS1 promotes cisplatin resistance of human lung adenocarcinoma cell via the miR1425p/PDL1 axis. Int. J. Mol. Med. 47, 523–532 (2021).

    CAS  PubMed  Google Scholar 

  162. Wang, X., Zhang, Y., Zheng, J., Yao, C. & Lu, X. LncRNA UCA1 attenuated the killing effect of cytotoxic CD8+ T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway. Cancer Immunol. Immunother. 70, 2235–2245 (2021).

    CAS  PubMed  Google Scholar 

  163. Zhou, W. Y. et al. Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195-5p. J. Cell Physiol. 234, 23176–23189 (2019).

    CAS  PubMed  Google Scholar 

  164. Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Qiu, X. et al. M6A demethylase ALKBH5 regulates PD-L1 expression and tumor immunoenvironment in intrahepatic cholangiocarcinoma. Cancer Res. 81, 4778–4793 (2021).

    CAS  PubMed  Google Scholar 

  166. Tsuruta, N. et al. RNA N6-methyladenosine demethylase FTO regulates PD-L1 expression in colon cancer cells. Biochem. Biophys. Res. Commun. 530, 235–239 (2020).

    CAS  PubMed  Google Scholar 

  167. Yi, L., Wu, G., Guo, L., Zou, X. & Huang, P. Comprehensive analysis of the PD-L1 and immune infiltrates of m6A RNA methylation regulators in head and neck squamous cell carcinoma. Mol. Ther. Nucleic Acids 21, 299–314 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA 106, 7507–7512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Suresh, S. et al. eIF5B drives integrated stress response-dependent translation of PD-L1 in lung cancer. Nat. Cancer 1, 533–545 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wu, Y. et al. eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochem. J. 477, 4367–4381 (2020).

    CAS  PubMed  Google Scholar 

  172. Hsu, J. M. et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat. Commun. 9, 1908 (2018).

    PubMed  PubMed Central  Google Scholar 

  173. Ruan, Z. et al. KYA1797K down-regulates PD-L1 in colon cancer stem cells to block immune evasion by suppressing the beta-catenin/STT3 signaling pathway. Int. Immunopharmacol. 78, 106003 (2020).

    CAS  PubMed  Google Scholar 

  174. Maher, C. M. et al. Small-molecule sigma1 modulator induces autophagic degradation of PD-L1. Mol. Cancer Res. 16, 243–255 (2018).

    CAS  PubMed  Google Scholar 

  175. D’Arrigo, P. et al. A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget 8, 68291–68304 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Wu, Y. et al. ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nat. Commun. 12, 2346 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Martelli, A. M., Evangelisti, C., Paganelli, F., Chiarini, F. & McCubrey, J. A. GSK-3: a multifaceted player in acute leukemias. Leukemia 35, 1829–1842 (2021).

    CAS  PubMed  Google Scholar 

  178. Cha, J. H. et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 71, 606–620.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Dai, X. et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol. Cell 81, 2317–2331.e16 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang, X. et al. NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nat. Commun. 12, 4536 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Horita, H., Law, A., Hong, S. & Middleton, K. Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton. Neoplasia 19, 346–353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Qian, G. et al. Membrane-associated RING-CH 8 functions as a novel PD-L1 E3 ligase to mediate PD-L1 degradation Induced by EGFR inhibitors. Mol. Cancer Res. 19, 1622–1634 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang, J. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).

    CAS  PubMed  Google Scholar 

  184. Tang, Z. et al. ATR Inhibition Induces CDK1-SPOP signaling and enhances Anti-PD-L1 cytotoxicity in prostate cancer. Clin. Cancer Res. 27, 4898–4909 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Sun, L. L. et al. Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing. Am. J. Cancer Res. 8, 1307–1316 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Zou, J. et al. Casp8 acts through A20 to inhibit PD-L1 expression: the mechanism and its implication in immunotherapy. Cancer Sci. 112, 2664–2678 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Li, J. et al. DCUN1D1 facilitates tumor metastasis by activating FAK signaling and up-regulates PD-L1 in non-small-cell lung cancer. Exp. Cell Res. 374, 304–314 (2019).

    CAS  PubMed  Google Scholar 

  190. Wang, Y. et al. The deubiquitinase USP22 regulates PD-L1 degradation in human cancer cells. Cell Commun. Signal. 18, 112 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhu, D. et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ. 28, 1773–1789 (2021).

    CAS  PubMed  Google Scholar 

  192. Jingjing, W. et al. Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma. Cancer Med. 7, 4004–4011 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    CAS  PubMed  Google Scholar 

  194. Yang, Y. et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 29, 83–86 (2019).

    PubMed  Google Scholar 

  195. Yao, H. et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat. Biomed. Eng. 3, 306–317 (2019).

    CAS  PubMed  Google Scholar 

  196. Shahid, M. et al. S-Palmitoylation as a functional regulator of proteins associated with cisplatin resistance in bladder cancer. Int. J. Biol. Sci. 16, 2490–2505 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, H. et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat. Chem. Biol. 15, 42–50 (2019).

    CAS  PubMed  Google Scholar 

  198. Koikawa, K. et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 184, 4753–4771.e27 (2021).

    CAS  PubMed  Google Scholar 

  199. Guo, L., Wei, R., Lin, Y. & Kwok, H. F. Clinical and recent patents applications of PD-1/PD-L1 targeting immunotherapy in cancer treatment-current progress, strategy, and future perspective. Front. Immunol. 11, 1508 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Chang, H. N. et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 54, 11760–11764 (2015).

    CAS  Google Scholar 

  201. Li, C. et al. Peptide Blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Cancer Immunol. Res. 6, 178–188 (2018).

    CAS  PubMed  Google Scholar 

  202. Abbas, A. B. et al. Design and synthesis of A PD-1 binding peptide and evaluation of its anti-tumor activity. Int. J. Mol. Sci. 20, 572 (2019).

    CAS  PubMed Central  Google Scholar 

  203. Zou, S. et al. Discovery of hPRDX5-based peptide inhibitors blocking PD-1/PD-L1 interaction through in silico proteolysis and rational design. Cancer Chemother. Pharmacol. 85, 185–193 (2020).

    CAS  PubMed  Google Scholar 

  204. Zhang, H. et al. Discovery of novel small-molecule inhibitors of PD-1/PD-L1 interaction via structural simplification strategy. Molecules 26, 3347 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang, F. et al. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia 23, 281–293 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sasikumar, P. G. et al. PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy. Commun. Biol. 4, 699 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Musielak, B. et al. CA-170-a potent small-molecule PD-L1 inhibitor or not? Molecules 24, 2804 (2019).

    PubMed Central  Google Scholar 

  208. Zauderer, M. et al. Phase 1 Study of CA-170: first-in-class small molecule targeting VISTA/PD-L1 in patients with malignant pleural mesothelioma. J. Thorac. Oncol. 14, S757–S758 (2019).

    Google Scholar 

  209. Powderly, J. et al. CA-170, a first in class oral small molecule dual inhibitor of immune checkpoints PD-L1 and VISTA, demonstrates tumor growth inhibition in pre-clinical models and promotes T cell activation in Phase 1 study. Ann. Oncol. 28 (Suppl. 5), V405–V406 (2017).

    Google Scholar 

  210. Radhakrishnan, V. et al. Excellent CBR and prolonged PFS in non-squamous NSCLC with oral CA-170, an inhibitor of VISTA and PD-L1. Ann. Oncol. 30 (Suppl. 5), V494 (2019).

    Google Scholar 

  211. Radhakrishnan, V. S. et al. P714 Phase 2 trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints VISTA and PD-1, in patients (pts) with advanced solid tumor and Hodgkin lymphoma [abstract]. J. Immunother. Cancer 6 (Suppl. 2), 1–13 (2018).

    Google Scholar 

  212. Skalniak, L. et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 8, 72167–72181 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Ganesan, A. et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci. Rep. 9, 12392 (2019).

    PubMed  PubMed Central  Google Scholar 

  214. Zhang, H., Zhang, J., Liu, Y., Jiang, Y. & Li, Z. Molecular targeted agent and immune checkpoint inhibitor co-loaded thermosensitive hydrogel for synergistic therapy of rectal cancer. Front. Pharmacol. 12, 671611 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang, L. et al. The therapeutic significance of the novel photodynamic material TPE-IQ-2O in tumors. Aging 13, 1383–1409 (2020).

    PubMed  PubMed Central  Google Scholar 

  216. Hu, Z. et al. PCC0208025 (BMS202), a small molecule inhibitor of PD-L1, produces an antitumor effect in B16-F10 melanoma-bearing mice. PLoS ONE 15, e0228339 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Ashizawa, T. et al. Antitumor activity of the PD-1/PD-L1 binding inhibitor BMS-202 in the humanized MHC-double knockout NOG mouse. Biomed. Res. 40, 243–250 (2019).

    CAS  PubMed  Google Scholar 

  218. Chen, F. F., Li, Z., Ma, D. & Yu, Q. Small-molecule PD-L1 inhibitor BMS1166 abrogates the function of PD-L1 by blocking its ER export. Oncoimmunology 9, 1831153 (2020).

    PubMed  PubMed Central  Google Scholar 

  219. Zhu, T. et al. Epigenetically silenced PD-L1 confers drug resistance to anti-PD1 therapy in gastric cardia adenocarcinoma. Int. Immunopharmacol. 82, 106245 (2020).

    CAS  PubMed  Google Scholar 

  220. Huang, K. C. et al. Decitabine augments chemotherapy-induced PD-L1 upregulation for PD-L1 blockade in colorectal cancer. Cancers 12, 462 (2020).

    CAS  PubMed Central  Google Scholar 

  221. Woods, D. M. et al. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 3, 1375–1385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Shi, Y. et al. Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol. Immunother. 70, 61–73 (2021).

    CAS  PubMed  Google Scholar 

  223. Llopiz, D. et al. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunol. Immunother. 68, 379–393 (2019).

    CAS  PubMed  Google Scholar 

  224. Jiang, X. M. et al. Osimertinib (AZD9291) decreases programmed death ligand-1 in EGFR-mutated non-small cell lung cancer cells. Acta Pharmacol. Sin. 38, 1512–1520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hu-Lieskovan, S. et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci. Transl. Med. 7, 279ra241 (2015).

    Google Scholar 

  226. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Loi, S. et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22, 1499–1509 (2016).

    CAS  PubMed  Google Scholar 

  228. Fang, W. et al. EBV-driven LMP1 and IFN-gamma up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget 5, 12189–12202 (2014).

    PubMed  PubMed Central  Google Scholar 

  229. Bu, L. L. et al. STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J. Dent. Res. 96, 1027–1034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Cerezo, M. et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat. Med. 24, 1877–1886 (2018).

    CAS  PubMed  Google Scholar 

  231. Liang, J. et al. Verteporfin Inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol. Res. 8, 952–965 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhang, J. J., Zhang, Q. S., Li, Z. Q., Zhou, J. W. & Du, J. Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells. Am. J. Transl. Res. 11, 6965–6976 (2019).

    PubMed  PubMed Central  Google Scholar 

  233. Zhang, J. et al. Downregulation of PD-L1 via amide analogues of brefelamide: alternatives to antibody-based cancer immunotherapy. Exp. Ther. Med. 19, 3150–3158 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Liu, J. et al. Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nat. Commun. 12, 2425 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Liang, M. Q., Yu, F. Q. & Chen, C. C-Myc regulates PD-L1 expression in esophageal squamous cell carcinoma. Am. J. Transl. Res. 12, 379–388 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhu, H. et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep. 16, 2829–2837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Kim, D. J. et al. Doxorubicin inhibits PD-L1 expression by enhancing TTP-mediated decay of PD-L1 mRNA in cancer cells. Biochem. Biophys. Res. Commun. 522, 402–407 (2020).

    CAS  PubMed  Google Scholar 

  238. Liu, Y., Li, X., Zhang, H., Zhang, M. & Wei, Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene 40, 2230–2242 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Hanna, J., Hossain, G. S. & Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet. 10, 478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Reid, G. et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8, 1079–1085 (2016).

    CAS  PubMed  Google Scholar 

  241. Bader, A. G. miR-34-a microRNA replacement therapy is headed to the clinic. Front. Genet. 3, 120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Finnerty, J. R. et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J. Mol. Biol. 402, 491–509 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Li, N. et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc. Natl Acad. Sci. USA 117, 20159–20170 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Sharma, R. K. et al. eFT508, a potent and highly selective inhibitor of MNK1 and MNK2, regulates T-cell differentiation promoting an antitumor immune response. Cancer Res. 78, 5546 (2018).

    Google Scholar 

  245. El-Khoueiry, A. B. et al. A phase II, open-label study of tomivosertib (eFT508) added on to continued checkpoint inhibitor therapy in patients (pts) with insufficient response to single-agent treatment. J. Clin. Oncol. 38, 3112 (2020).

    Google Scholar 

  246. Jiao, S. et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 23, 3711–3720 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Wu, Z. et al. The synergistic effect of PARP inhibitors and immune checkpoint inhibitors. Clin. Med. Insights Oncol. 15, 1179554921996288 (2021).

    PubMed  PubMed Central  Google Scholar 

  248. Zhang, Z. S. et al. HGF/c-MET pathway contributes to cisplatin-mediated PD-L1 expression in hepatocellular carcinoma. Cell Biol. Int. 45, 2521–2533 (2021).

    CAS  PubMed  Google Scholar 

  249. Kim, K., Yang, W. H., Jung, Y. S. & Cha, J. H. A new aspect of an old friend: the beneficial effect of metformin on anti-tumor immunity. BMB Rep. 53, 512–520 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Petroni, G., Formenti, S. C., Chen-Kiang, S. & Galluzzi, L. Immunomodulation by anticancer cell cycle inhibitors. Nat. Rev. Immunol. 20, 669–679 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Sun, W. et al. Targeting DNA damage repair for immune checkpoint inhibition: mechanisms and potential clinical applications. Front. Oncol. 11, 648687 (2021).

    PubMed  PubMed Central  Google Scholar 

  252. Li, H. et al. The beneficial role of sunitinib in tumor immune surveillance by regulating tumor PD-L1. Adv. Sci. 8, 2001596 (2021).

    CAS  Google Scholar 

  253. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Wang, Y. et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC). Bioorg. Chem. 111, 104833 (2021).

    CAS  PubMed  Google Scholar 

  255. Hogg, S. J. et al. BET inhibition induces apoptosis in aggressive B-cell lymphoma via epigenetic regulation of BCL-2 family members. Mol. Cancer Ther. 15, 2030–2041 (2016).

    CAS  PubMed  Google Scholar 

  256. Imai, K. & Takaoka, A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer 6, 714–727 (2006).

    CAS  PubMed  Google Scholar 

  257. Kobayashi, Y., Lim, S. O. & Yamaguchi, H. Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Semin. Cancer Biol. 65, 51–64 (2020).

    CAS  PubMed  Google Scholar 

  258. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Tang, F. & Zheng, P. Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci. 8, 34 (2018).

    PubMed  PubMed Central  Google Scholar 

  260. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Anagnostou, V. et al. Integrative tumor and immune cell multi-omic analyses predict response to immune checkpoint blockade in melanoma. Cell Rep. Med. 1, 100139 (2020).

    PubMed  PubMed Central  Google Scholar 

  262. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  263. Roth-Walter, F. et al. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: an EAACI Taskforce on Immunopharmacology position paper. Allergy 74, 432–448 (2019).

    PubMed  Google Scholar 

  264. Ai, L. et al. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des. Devel Ther. 14, 3625–3649 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Ministry of Science and Technology, Taiwan (MOST 110-2314-B-039-060 to H.Y., MOST 109-2314-B-039-006-MY2 to J.-M.H., MOST 110-2320-B-039-065 to W.-H.Y. and MOST 110-2639-B-039-001-ASP to M.-C.H.); China Medical University YingTsai Young Scholar Awards (CMU108-YTY-02 to J.-M.H. and CMU108-YTY-04 to W.-H.Y.); a China Medical University YingTsai Scholar Award (CMU-10951L8* to H.Y.); and an Innovative Research Grant from the National Health Research Institutes, Taiwan (NHRI-EX110-11010BI to W.-H.Y.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Mien-Chie Hung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks T. Foukakis, K. Liu, W. Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, H., Hsu, JM., Yang, WH. et al. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol 19, 287–305 (2022). https://doi.org/10.1038/s41571-022-00601-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00601-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer