Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing cytokines and chemokines for cancer therapy

Abstract

During the past 40 years, cytokines and cytokine receptors have been extensively investigated as either cancer targets or cancer treatments. A strong preclinical rationale supports therapeutic strategies to enhance the growth inhibitory and immunostimulatory effects of interferons and interleukins, including IL-2, IL-7, IL-12 and IL-15, or to inhibit the inflammatory and tumour-promoting actions of cytokines such as TNF, IL-1β and IL-6. This rationale is underscored by the discovery of altered and dysregulated cytokine expression in all human cancers. These findings prompted clinical trials of several cytokines or cytokine antagonists, revealing relevant biological activity but limited therapeutic efficacy. However, most trials involved patients with advanced-stage disease, which might not be the optimal setting for cytokine-based therapy. The advent of more effective immunotherapies and an increased understanding of the tumour microenvironment have presented new approaches to harnessing cytokine networks in the treatment of cancer, which include using cytokine-based therapies to enhance the activity or alleviate the immune-related toxicities of other treatments as well as to target early stage cancers. Many challenges remain, especially concerning delivery methods, context dependencies, and the pleiotropic, redundant and often conflicting actions of many cytokines. Herein, we discuss the lessons learnt from the initial trials of single-agent cytokine-based therapies and subsequent efforts to better exploit such agents for the treatment of solid tumours.

Key points

  • Cytokines are key mediators of cell communication in the tumour microenvironment.

  • Some cytokines contribute to host antitumour responses, but the production and function of many cytokines is dysregulated in cancer.

  • A robust rationale supports the use of both cytokines and cytokine antagonists in cancer therapy.

  • Despite strong preclinical evidence, neither cytokines nor cytokine antagonists have been effective as monotherapies in patients with advanced-stage cancers.

  • New approaches in this area include exploiting cytokines to enhance the actions or reduce the adverse effects of other cancer treatments, treatment at earlier disease stages and using the cytokine profile of each tumour type to define how best to leverage cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Actions of cytokines in the tumour microenvironment.

Similar content being viewed by others

References

  1. Lin, J. X. & Leonard, W. J. Fine-tuning cytokine signals. Annu. Rev. Immunol. 37, 295–324 (2019).

    CAS  PubMed  Google Scholar 

  2. Aggarwal, B. B., Gupta, S. C. & Kim, J. H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119, 651–665 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alspach, E., Lussier, D. M. & Schreiber, R. D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb. Perspect. Biol. 11, a028480 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III Interferons. Immunity 50, 907–923 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rose-John, S. Interleukin-6 family cytokines. Cold Spring Harb. Perspect. Biol. 10, a028415 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Zhang, Y., Alexander, P. B. & Wang, X. F. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol. 9, a022145 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    CAS  PubMed  Google Scholar 

  10. Graham, G. J., Handel, T. M. & Proudfoot, A. E. I. Leukocyte adhesion: reconceptualizing chemokine presentation by glycosaminoglycans. Trends Immunol. 40, 472–481 (2019).

    CAS  PubMed  Google Scholar 

  11. Shalapour, S. & Karin, M. Pas de deux: control of anti-tumor immunity by cancer-associated inflammation. Immunity 51, 15–26 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, a028472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).

    CAS  PubMed  Google Scholar 

  14. Borrello, M. G. et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc. Natl Acad. Sci. USA 102, 14825–14830 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sodir, N. M. et al. MYC instructs and maintains pancreatic adenocarcinoma phenotype. Cancer Discov. 10, 588–607 (2020).

    CAS  PubMed  Google Scholar 

  16. Balkwill, F. R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22, 33–40 (2012).

    CAS  PubMed  Google Scholar 

  17. Diakos, C. I., Charles, K. A., McMillan, D. C. & Clarke, S. J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 15, e493–e503 (2014).

    PubMed  Google Scholar 

  18. Mouasni, S. & Tourneur, L. FADD at the crossroads between cancer and inflammation. Trends Immunol. 39, 1036–1053 (2018).

    CAS  PubMed  Google Scholar 

  19. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, Y. & Lundqvist, A. Immunomodulatory effects of IL-2 and IL-15; implications for cancer immunotherapy. Cancers 12, 3586 (2020).

    CAS  PubMed Central  Google Scholar 

  21. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    CAS  PubMed  Google Scholar 

  22. Payne, R. et al. Durable responses and reversible toxicity of high-dose interleukin-2 treatment of melanoma and renal cancer in a community hospital biotherapy program. J. Immunother. Cancer 2, 13 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. McDermott, D. F. et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 23, 133–141 (2004).

    Google Scholar 

  24. Dutcher, J. P. et al. High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014. J. Immunother. Cancer 2, 26 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    CAS  PubMed  Google Scholar 

  27. Doberstein, S. K. Bempegaldesleukin (NKTR-214): a CD-122-biased IL-2 receptor agonist for cancer immunotherapy. Expert Opin. Biol. Ther. 19, 1223–1228 (2019).

    PubMed  Google Scholar 

  28. Bentebibel, S. E. et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 9, 711–721 (2019).

    CAS  PubMed  Google Scholar 

  29. Diab, A. et al. NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: preliminary phase 1/2 results of PIVOT. J. Clin. Oncol. 36, 3006–3006 (2018).

    Google Scholar 

  30. Diab, A. et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 10, 1158–1173 (2020).

    CAS  PubMed  Google Scholar 

  31. Lopes, J. E. et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J. Immunother. Cancer 8, e000673 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. Hamid, O. et al. Selection of the recommended phase 2 dose (RP2D) for subcutaneous nemvaleukin alfa: ARTISTRY-2. J. Clin. Oncol. 39, 2552–2552 (2021).

    Google Scholar 

  33. Boni, V. et al. ARTISTRY-1: Nemvaleukin alfa monotherapy and in combination with pembrolizumab in patients (pts) with advanced solid tumors. J. Clin. Oncol. 39, 2513–2513 (2021).

    Google Scholar 

  34. Sampson, J. H. et al. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS ONE 7, e31046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobs, J. F. et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 16, 5067–5078 (2010).

    CAS  PubMed  Google Scholar 

  36. Rech, A. J. & Vonderheide, R. H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. N. Y. Acad. Sci. 1174, 99–106 (2009).

    CAS  PubMed  Google Scholar 

  37. Kolben, T. Abstract ND08: anti-CD25 Mab: selective depletion of T-regulatory cells. Cancer Res. 81, ND08 (2021).

    Google Scholar 

  38. Barata, J. T., Durum, S. K. & Seddon, B. Flip the coin: IL-7 and IL-7R in health and disease. Nat. Immunol. 20, 1584–1593 (2019).

    CAS  PubMed  Google Scholar 

  39. Dwyer, C. J. et al. Fueling cancer immunotherapy with common gamma chain cytokines. Front. Immunol. 10, 263 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, J. H., Lee, K. J. & Lee, S. W. Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7. BMB Rep. 54, 21–30 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Waldmann, T. A., Miljkovic, M. D. & Conlon, K. C. Interleukin-15 (dys)regulation of lymphoid homeostasis: implications for therapy of autoimmunity and cancer. J. Exp. Med. 217, e20191062 (2020).

    PubMed  Google Scholar 

  42. Waldmann, T. A., Dubois, S., Miljkovic, M. D. & Conlon, K. C. IL-15 in the combination immunotherapy of cancer. Front. Immunol. 11, 868 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Conlon, K. C. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33, 74–82 (2015).

    CAS  PubMed  Google Scholar 

  44. Miller, J. S. et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin. Cancer Res. 24, 1525–1535 (2018).

    CAS  PubMed  Google Scholar 

  45. Knudson, K. M., Hodge, J. W., Schlom, J. & Gameiro, S. R. Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opin. Biol. Ther. 20, 705–709 (2020).

    PubMed  Google Scholar 

  46. Chamie, K. et al. Phase II/III clinical results of IL-15RαFc superagonist N-803 with BCG in BCG-unresponsive non-muscle invasive bladder cancer (NMIBC) carcinoma in situ (CIS) patients. J. Clin. Oncol. 39, 510–510 (2021).

    Google Scholar 

  47. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wrangle, J. M. et al. Preliminary data from QUILT 3.055: a phase 2 multi-cohort study of N803 (IL-15 superagonist) in combination with checkpoint inhibitors (CPI). J. Clin. Oncol. 39, 2596–2596 (2021).

    Google Scholar 

  49. Tait Wojno, E. D., Hunter, C. A. & Stumhofer, J. S. The immunobiology of the interleukin-12 family: room for discovery. Immunity 50, 851–870 (2019).

    CAS  PubMed  Google Scholar 

  50. Voest, E. E. et al. Inhibition of angiogenesis in vivo by interleukin 12. J. Natl Cancer Inst. 87, 581–586 (1995).

    CAS  PubMed  Google Scholar 

  51. Del Vecchio, M. et al. Interleukin-12: biological properties and clinical application. Clin. Cancer Res. 13, 4677–4685 (2007).

    PubMed  Google Scholar 

  52. Lasek, W., Zagożdżon, R. & Jakobisiak, M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother. 63, 419–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Duvic, M. et al. A phase II open-label study of recombinant human interleukin-12 in patients with stage IA, IB, or IIA mycosis fungoides. J. Am. Acad. Dermatol. 55, 807–813 (2006).

    PubMed  Google Scholar 

  54. Rook, A. H. et al. Interleukin-12 therapy of cutaneous T-cell lymphoma induces lesion regression and cytotoxic T-cell responses. Blood 94, 902–908 (1999).

    CAS  PubMed  Google Scholar 

  55. Little, R. F. et al. Activity of subcutaneous interleukin-12 in AIDS-related Kaposi sarcoma. Blood 107, 4650–4657 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Younes, A. et al. Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clin. Cancer Res. 10, 5432–5438 (2004).

    CAS  PubMed  Google Scholar 

  57. Gollob, J. A. et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin. Cancer Res. 6, 1678–1692 (2000).

    CAS  PubMed  Google Scholar 

  58. Mortarini, R. et al. Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin 12. Cancer Res. 60, 3559–3568 (2000).

    CAS  PubMed  Google Scholar 

  59. Fallon, J. et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 5, 1869–1884 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Greiner, J. W., Morillon, Y. M. II & Schlom, J. NHS-IL12, a tumor-targeting immunocytokine. Immunotargets Ther. 10, 155–169 (2021).

    PubMed  PubMed Central  Google Scholar 

  61. Strauss, J. et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin. Cancer Res. 25, 99–109 (2019).

    CAS  PubMed  Google Scholar 

  62. Ongaro, T. et al. A novel anti-cancer L19-interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J. Biotechnol. 291, 17–25 (2019).

    CAS  PubMed  Google Scholar 

  63. Daud, A. I. et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26, 5896–5903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Algazi, A. P. et al. Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clin. Cancer Res. 26, 2827–2837 (2020).

    CAS  PubMed  Google Scholar 

  65. Telli, M. L. et al. Intratumoral plasmid IL12 expands CD8+ T cells and induces a CXCR3 gene signature in triple-negative breast tumors that sensitizes patients to anti-PD-1 Therapy. Clin. Cancer Res. 27, 2481–2493 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nguyen, K. G. et al. Localized interleukin-12 for cancer immunotherapy. Front. Immunol. 11, 575597 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Saraiva, M., Vieira, P. & O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217, e20190418 (2020).

    PubMed  Google Scholar 

  68. Emmerich, J. et al. IL-10 directly activates and expands tumor-resident CD8+ T cells without de novo infiltration from secondary lymphoid organs. Cancer Res. 72, 3570–3581 (2012).

    CAS  PubMed  Google Scholar 

  69. Mumm, J. B. et al. IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell 20, 781–796 (2011).

    CAS  PubMed  Google Scholar 

  70. Oft, M. Immune regulation and cytotoxic T cell activation of IL-10 agonists - preclinical and clinical experience. Semin. Immunol. 44, 101325 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Autio, K. & Oft, M. Pegylated interleukin-10: clinical development of an immunoregulatory cytokine for use in cancer therapeutics. Curr. Oncol. Rep. 21, 19 (2019).

    PubMed  Google Scholar 

  72. Naing, A. et al. PEGylated IL-10 (Pegilodecakin) induces systemic immune activation, CD8+ T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell 34, 775–791.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tannir, N. M. et al. Pegilodecakin as monotherapy or in combination with anti-PD-1 or tyrosine kinase inhibitor in heavily pretreated patients with advanced renal cell carcinoma: final results of cohorts A, G, H and I of IVY phase I study. Int. J. Cancer 149, 403–408 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Naing, A. et al. Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J. Clin. Oncol. 34, 3562–3569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hecht, J. R. et al. Overall survival of PEGylated human IL-10 (AM0010) with 5-FU/LV and oxaliplatin (FOLFOX) in metastatic pancreatic adenocarcinoma (PDAC). J. Clin. Oncol. 36, 374–374 (2018).

    Google Scholar 

  76. Hecht, J. R. et al. Randomized phase III study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (SEQUOIA). J. Clin. Oncol. 39, 1108–1118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Naing, A. et al. Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol. 20, 1544–1555 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pal, S., Hu-Lieskovan, S. & Agarwal, N. Can pegylated IL-10 add to a backbone of PD-1 inhibition for solid tumours? Lancet Oncol. 20, 1473–1474 (2019).

    PubMed  Google Scholar 

  79. Spigel, D. et al. Randomized Phase 2 studies of checkpoint inhibitors alone or in combination with pegilodecakin in patients with metastatic NSCLC (CYPRESS 1 and CYPRESS 2). J. Thorac. Oncol. 16, 327–333 (2021).

    CAS  PubMed  Google Scholar 

  80. Chapman, P. B. Targeting tumor-rejection antigens in melanoma with tumor-infiltrating lymphocytes. J. Clin. Oncol. 39, 2640–2642 (2021).

    CAS  PubMed  Google Scholar 

  81. Dafni, U. et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann. Oncol. 30, 1902–1913 (2019).

    CAS  PubMed  Google Scholar 

  82. Cao, G., Lei, L. & Zhu, X. Efficiency and safety of autologous chimeric antigen receptor T-cells therapy used for patients with lymphoma: a systematic review and meta-analysis. Medicine 98, e17506 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Koneru, M., O’Cearbhaill, R., Pendharkar, S., Spriggs, D. R. & Brentjens, R. J. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J. Transl. Med. 13, 102 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    CAS  PubMed  Google Scholar 

  85. Zhang, X. et al. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 10, 1929005 (2021).

    PubMed  PubMed Central  Google Scholar 

  86. Génin, P., Vaccaro, A. & Civas, A. The role of differential expression of human interferon-A genes in antiviral immunity. Cytokine Growth Factor Rev. 20, 283–295 (2009).

    PubMed  Google Scholar 

  87. Turinetto, M., Scotto, G., Tuninetti, V., Giannone, G. & Valabrega, G. The role of PARP inhibitors in the ovarian cancer microenvironment: moving forward from synthetic lethality. Front. Oncol. 11, 689829 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Borden, E. C. et al. Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 6, 975–990 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kirkwood, J. M. et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol. 14, 7–17 (1996).

    CAS  PubMed  Google Scholar 

  90. Lens, M. B. & Dawes, M. Interferon alfa therapy for malignant melanoma: a systematic review of randomized controlled trials. J. Clin. Oncol. 20, 1818–1825 (2002).

    CAS  PubMed  Google Scholar 

  91. Ives, N. J. et al. Adjuvant interferon-α for the treatment of high-risk melanoma: an individual patient data meta-analysis. Eur. J. Cancer 82, 171–183 (2017).

    CAS  PubMed  Google Scholar 

  92. Motzer, R. J., Bacik, J., Murphy, B. A., Russo, P. & Mazumdar, M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J. Clin. Oncol. 20, 289–296 (2002).

    CAS  PubMed  Google Scholar 

  93. No authors listed. Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Medical Research Council Renal Cancer Collaborators.Lancet 353, 14–17 (1999).

    Google Scholar 

  94. Koneru, R. & Hotte, S. J. Role of cytokine therapy for renal cell carcinoma in the era of targeted agents. Curr. Oncol. 16 (Suppl. 1), S40–S44 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Chou, R. et al. Intravesical therapy for the treatment of nonmuscle invasive bladder cancer: a systematic review and meta-analysis. J. Urol. 197, 1189–1199 (2017).

    PubMed  Google Scholar 

  96. Lu, J. L. et al. Efficacy of intravesical therapies on the prevention of recurrence and progression of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis. Cancer Med. 9, 7800–7809 (2020).

    PubMed  PubMed Central  Google Scholar 

  97. Tur, E. & Brenner, S. Classic Kaposi’s sarcoma: low-dose interferon alfa treatment. Dermatology 197, 37–42 (1998).

    CAS  PubMed  Google Scholar 

  98. Lebbe, C. et al. Diagnosis and treatment of Kaposi’s sarcoma: European consensus-based interdisciplinary guideline (EDF/EADO/EORTC). Eur. J. Cancer 114, 117–127 (2019).

    CAS  PubMed  Google Scholar 

  99. Sleijfer, S., Bannink, M., Van Gool, A. R., Kruit, W. H. & Stoter, G. Side effects of interferon-α therapy. Pharm. World Sci. 27, 423–431 (2005).

    CAS  PubMed  Google Scholar 

  100. How, J. & Hobbs, G. Use of interferon alfa in the treatment of myeloproliferative neoplasms: perspectives and review of the literature. Cancers 12, 1954 (2020).

    CAS  PubMed Central  Google Scholar 

  101. Hasselbalch, H. C. & Holmström, M. O. Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure? Semin. Immunopathol. 41, 5–19 (2019).

    CAS  PubMed  Google Scholar 

  102. Tarhini, A. et al. Neoadjuvant ipilimumab (3mg/kg or 10mg/kg) and high dose IFN-α2b in locally/regionally advanced melanoma: safety, efficacy and impact on T-cell repertoire. J. Immunother. Cancer 6, 112 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Tarhini, A. A. et al. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol. 30, 322–328 (2012).

    CAS  PubMed  Google Scholar 

  104. Brohl, A. S. et al. A phase IB study of ipilimumab with peginterferon alfa-2b in patients with unresectable melanoma. J. Immunother. Cancer 4, 85 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Atkins, M. B. et al. Pembrolizumab (pembro) plus ipilimumab (ipi) or pegylated interferon alfa-2b (PEG-IFN) for advanced melanoma or renal cell carcinoma (RCC). J. Clin. Oncol. 34, 3013–3013 (2016).

    Google Scholar 

  106. Duggan, M. C. et al. A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-α-2b in patients with CEA-expressing carcinomas. Cancer Immunol. Immunother. 65, 1353–1364 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sheng, L., Chen, X., Wang, Q., Lyu, S. & Li, P. Interferon-α2b enhances survival and modulates transcriptional profiles and the immune response in melanoma patients treated with dendritic cell vaccines. Biomed. Pharmacother. 125, 109966 (2020).

    CAS  PubMed  Google Scholar 

  108. Pujade-Lauraine, E. et al. Intraperitoneal recombinant interferon gamma in ovarian cancer patients with residual disease at second-look laparotomy. J. Clin. Oncol. 14, 343–350 (1996).

    CAS  PubMed  Google Scholar 

  109. Windbichler, G. H. et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br. J. Cancer 82, 1138–1144 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Alberts, D. S. et al. Randomized phase 3 trial of interferon gamma-1b plus standard carboplatin/paclitaxel versus carboplatin/paclitaxel alone for first-line treatment of advanced ovarian and primary peritoneal carcinomas: results from a prospectively designed analysis of progression-free survival. Gynecol. Oncol. 109, 174–181 (2008).

    CAS  PubMed  Google Scholar 

  111. Cole, C. B. & Annunziata, C. M. First-in-human phase I study of intraperitoneally administered interferon-activated autologous monocytes in platinum-resistant or refractory ovarian cancer. J. Clin. Oncol. 38, 1–1 (2020).

    Google Scholar 

  112. Gleave, M. E. et al. Interferon gamma-1b compared with placebo in metastatic renal-cell carcinoma. N. Engl. J. Med. 338, 1265–1271 (1998).

    CAS  PubMed  Google Scholar 

  113. Wiesenfeld, M. et al. Controlled clinical trial of interferon-gamma as postoperative surgical adjuvant therapy for colon cancer. J. Clin. Oncol. 13, 2324–2329 (1995).

    CAS  PubMed  Google Scholar 

  114. Schiller, J. H. et al. Eastern cooperative group trial of interferon gamma in metastatic melanoma: an innovative study design. Clin. Cancer Res. 2, 29–36 (1996).

    CAS  PubMed  Google Scholar 

  115. Meyskens, F. L. Jr. et al. Randomized trial of adjuvant human interferon gamma versus observation in high-risk cutaneous melanoma: a Southwest Oncology Group study. J. Natl Cancer Inst. 87, 1710–1713 (1995).

    PubMed  Google Scholar 

  116. Jett, J. R. et al. Phase III trial of recombinant interferon gamma in complete responders with small-cell lung cancer. J. Clin. Oncol. 12, 2321–2326 (1994).

    CAS  PubMed  Google Scholar 

  117. Von Hoff, D. D. et al. Phase II evaluation of recombinant gamma-interferon in patients with advanced pancreatic carcinoma: a Southwest Oncology Group study. J. Biol. Response Mod. 9, 584–587 (1990).

    Google Scholar 

  118. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Higgs, B. W. et al. Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small cell lung carcinoma or urothelial cancer treated with durvalumab. Clin. Cancer Res. 24, 3857–3866 (2018).

    CAS  PubMed  Google Scholar 

  120. Grasso, C. S. et al. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell 38, 500–515.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Propper, D. J. et al. Low-dose IFN-γ induces tumor MHC expression in metastatic malignant melanoma. Clin. Cancer Res. 9, 84–92 (2003).

    CAS  PubMed  Google Scholar 

  123. Zhang, S. et al. Systemic interferon-γ increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial. Cancer Immunol. Res. 7, 1237–1243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat. Med. 5, 828–831 (1999).

    CAS  PubMed  Google Scholar 

  125. Greten, F. R. et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    CAS  PubMed  Google Scholar 

  126. Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    CAS  PubMed  Google Scholar 

  127. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364–371 (2002).

    CAS  PubMed  Google Scholar 

  129. D’Haens, G. R. & van Deventer, S. 25 years of anti-TNF treatment for inflammatory bowel disease: lessons from the past and a look to the future. Gut 70, 1396–1405 (2021).

    PubMed  Google Scholar 

  130. Brown, E. R. et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer. Ann. Oncol. 19, 1340–1346 (2008).

    CAS  PubMed  Google Scholar 

  131. Harrison, M. L. et al. Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J. Clin. Oncol. 25, 4542–4549 (2007).

    CAS  PubMed  Google Scholar 

  132. Bertrand, F. et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 8, 2256 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).

    CAS  PubMed  Google Scholar 

  134. Montfort, A. et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin. Cancer Res. 27, 1037–1047 (2021).

    CAS  PubMed  Google Scholar 

  135. Choy, E. H. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 16, 335–345 (2020).

    CAS  PubMed  Google Scholar 

  136. Taniguchi, K. & Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol. 26, 54–74 (2014).

    CAS  PubMed  Google Scholar 

  137. van Rhee, F. et al. Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 15, 966–974 (2014).

    PubMed  Google Scholar 

  138. Nishimoto, N. et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106, 2627–2632 (2005).

    CAS  PubMed  Google Scholar 

  139. Rossi, J. F., Lu, Z. Y., Jourdan, M. & Klein, B. Interleukin-6 as a therapeutic target. Clin. Cancer Res. 21, 1248–1257 (2015).

    CAS  PubMed  Google Scholar 

  140. Coward, J. et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin. Cancer Res. 17, 6083–6096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Culig, Z. & Puhr, M. Interleukin-6 and prostate cancer: current developments and unsolved questions. Mol. Cell Endocrinol. 462, 25–30 (2018).

    CAS  PubMed  Google Scholar 

  143. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-021-00547-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Voronov, E., Dinarello, C. A. & Apte, R. N. Interleukin-1α as an intracellular alarmin in cancer biology. Semin. Immunol. 38, 3–14 (2018).

    CAS  PubMed  Google Scholar 

  146. Voronov, E. & Apte, R. N. Targeting the tumor microenvironment by intervention in interleukin-1 biology. Curr. Pharm. Des. 23, 4893–4905 (2017).

    CAS  PubMed  Google Scholar 

  147. Ershaid, N. et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat. Commun. 10, 4375 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Heath, O. et al. Chemotherapy induces tumor-associated macrophages that aid adaptive immune responses in ovarian cancer. Cancer Immunol. Res. 9, 665–681 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    CAS  PubMed  Google Scholar 

  150. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  151. Gottschlich, A., Endres, S. & Kobold, S. Therapeutic strategies for targeting IL-1 in Cancer. Cancers https://doi.org/10.3390/cancers13030477 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Novartis. Novartis provides update on Phase III Study Evaluating Canakinumab (ACZ885) as second or third-line Treatment in Combination with Chemotherapy in Non-Small Cell Lung Cancer https://www.novartis.com/news/media-releases/novartis-provides-update-phase-iii-study-evaluating-canakinumab-acz885-second-or-third-line-treatment-combination-chemotherapy-non-small-cell-lung-cancer (2021).

  153. Cavalli, G. & Dinarello, C. A. Anakinra therapy for non-cancer inflammatory diseases. Front. Pharmacol. 9, 1157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Missiroli, S. et al. Targeting the NLRP3 inflammasome as a new therapeutic option for overcoming cancer. Cancers 13, 2297 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wu, T. C. et al. IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res. 78, 5243–5258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Isambert, N. et al. Fluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 study. Oncoimmunology 7, e1474319 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Strati, P. et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 4, 3123–3127 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    PubMed  Google Scholar 

  159. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9, e90353 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Necchi, A. et al. PF-03446962, a fully-human monoclonal antibody against transforming growth-factor β (TGFβ) receptor ALK1, in pre-treated patients with urothelial cancer: an open label, single-group, phase 2 trial. Invest. N. Drugs 32, 555–560 (2014).

    CAS  Google Scholar 

  162. Goff, L. W. et al. A phase I study of the anti-activin receptor-like kinase 1 (ALK-1) monoclonal antibody PF-03446962 in patients with advanced solid tumors. Clin. Cancer Res. 22, 2146–2154 (2016).

    CAS  PubMed  Google Scholar 

  163. Simonelli, M. et al. Phase I study of PF-03446962, a fully human monoclonal antibody against activin receptor-like kinase-1, in patients with hepatocellular carcinoma. Ann. Oncol. 27, 1782–1787 (2016).

    CAS  PubMed  Google Scholar 

  164. Clarke, J. M. et al. A phase Ib study of the combination regorafenib with PF-03446962 in patients with refractory metastatic colorectal cancer (REGAL-1 trial). Cancer Chemother. Pharmacol. 84, 909–917 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan5488 (2018).

    Article  PubMed  Google Scholar 

  166. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer https://doi.org/10.1136/jitc-2019-000433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Yoo, C. et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-000564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kang, Y. K. et al. Safety and tolerability of bintrafusp alfa, a bifunctional fusion protein targeting TGFβ and PD-L1, in Asian patients with pretreated recurrent or refractory gastric cancer. Clin. Cancer Res. 26, 3202–3210 (2020).

    CAS  PubMed  Google Scholar 

  169. Liu, S., Ren, J. & ten Dijke, P. Targeting TGFβ signal transduction for cancer therapy. Signal. Transduct. Target. Ther. 6, 8 (2021).

    PubMed  PubMed Central  Google Scholar 

  170. Korbecki, J. et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21218412 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Bule, P., Aguiar, S. I., Aires-Da-Silva, F. & Dias, J. N. R. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22189804 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kohli, K., Pillarisetty, V. G. & Kim, T. S. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. https://doi.org/10.1038/s41417-021-00303-x (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lim, S. Y., Yuzhalin, A. E., Gordon-Weeks, A. N. & Muschel, R. J. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7, 28697–28710 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Jahchan, N. S. et al. Tuning the tumor myeloid microenvironment to fight cancer. Front. Immunol. 10, 1611 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Pienta, K. J. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. N. Drugs 31, 760–768 (2013).

    CAS  Google Scholar 

  176. Brana, I. et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target. Oncol. 10, 111–123 (2015).

    PubMed  Google Scholar 

  177. Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Noel, M. et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. N. Drugs 38, 800–811 (2020).

    CAS  Google Scholar 

  179. Linehan, D. et al. Overall survival in a trial of orally administered CCR2 inhibitor CCX872 in locally advanced/metastatic pancreatic cancer: correlation with blood monocyte counts. J. Clin. Oncol. 36, 92–92 (2018).

    Google Scholar 

  180. Le, D. et al. Abstract CT124: A phase Ib/II study of BMS-813160, a CC chemokine receptor (CCR) 2/5 dual antagonist, in combination with chemotherapy or nivolumab in patients (pts) with advanced pancreatic or colorectal cancer. Cancer Res. 78, CT124–CT124 (2018).

    Google Scholar 

  181. Berlato, C. et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J. Clin. Invest. 127, 801–813 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. Marshall, L. A. et al. Tumors establish resistance to immunotherapy by regulating T(reg) recruitment via CCR4. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-000764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kim, Y. H. et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19, 1192–1204 (2018).

    CAS  PubMed  Google Scholar 

  184. Zamarin, D. et al. Mogamulizumab in combination with durvalumab or tremelimumab in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 26, 4531–4541 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Doi, T. et al. A Phase I Study of the Anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin. Cancer Res. 25, 6614–6622 (2019).

    CAS  PubMed  Google Scholar 

  186. Cohen, E. E. W. et al. A phase Ib study of utomilumab (PF-05082566) in combination with mogamulizumab in patients with advanced solid tumors. J. Immunother. Cancer 7, 342 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Ho, W., Nasrah, N. & Johnson, D. Phase I/II dose escalation and expansion study of FLX475 alone and in combination with pembrolizumab in advanced cancer. J. Clin. Oncol. 37, TPS24–TPS24 (2019).

    Google Scholar 

  188. RAPT Therapeutics. RAPT therapeutics reports positive initial data from ongoing phase 1/2 clinical trial of FLX475 in multiple cancer indications. https://www.globenewswire.com/en/news-release/2020/11/16/2127181/0/en/RAPT-Therapeutics-Reports-Positive-Initial-Data-from-Ongoing-Phase-1-2-Clinical-Trial-of-FLX475-in-Multiple-Cancer-Indications.html (16 November 2020).

  189. Aldinucci, D., Borghese, C. & Casagrande, N. The CCL5/CCR5 axis in cancer progression. Cancers https://doi.org/10.3390/cancers12071765 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Miao, M., De Clercq, E. & Li, G. Clinical significance of chemokine receptor antagonists. Expert Opin. Drug. Metab. Toxicol. 16, 11–30 (2020).

    PubMed  Google Scholar 

  191. Qi, B. et al. Advances of CCR5 antagonists: From small molecules to macromolecules. Eur. J. Med. Chem. 208, 112819 (2020).

    CAS  PubMed  Google Scholar 

  192. Haag, G. M. et al. Combined PD-1 inhibition (Pembrolizumab) and CCR5 inhibition (Maraviroc) for the treatment of refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC): first results of the PICCASSO phase I trial. J. Clin. Oncol. 38, 3010–3010 (2020).

    Google Scholar 

  193. Alfaro, C. et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 60, 24–31 (2017).

    CAS  PubMed  Google Scholar 

  194. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Fousek, K., Horn, L. A. & Palena, C. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol. Ther. https://doi.org/10.1016/j.pharmthera.2020.107692 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Bilusic, M. et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 7, 240 (2019).

    PubMed  PubMed Central  Google Scholar 

  197. Davar, D. et al. 394 Interleukin-8–neutralizing monoclonal antibody BMS-986253 plus nivolumab (NIVO) in biomarker-enriched, primarily anti–PD-(L)1–experienced patients with advanced cancer: initial phase 1 results. J. Immunother. Cancer 8, A239–A240 (2020).

    Google Scholar 

  198. Schott, A. F. et al. Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin. Cancer Res. 23, 5358–5365 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Goldstein, L. J. et al. A randomized phase II trial of reparixin, a CXCR1 inhibitor, in combination with paclitaxel in the treatment of mTNBC [abstract]. Cancer Res. 80 (Suppl. 4), Abstr. P3-11-07 (2020).

  200. Balkwill, F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol. 14, 171–179 (2004).

    CAS  PubMed  Google Scholar 

  201. Domanska, U. M. et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur. J. Cancer 49, 219–230 (2013).

    CAS  PubMed  Google Scholar 

  202. Sacco, A. et al. Cancer cell dissemination and homing to the bone marrow in a zebrafish model. Cancer Res. 76, 463–471 (2016).

    CAS  PubMed  Google Scholar 

  203. Pernas, S. et al. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol. 19, 812–824 (2018).

    PubMed  Google Scholar 

  204. Lee, E. Q. et al. Phase I and biomarker study of plerixafor and bevacizumab in recurrent high-grade glioma. Clin. Cancer Res. 24, 4643–4649 (2018).

    CAS  PubMed  Google Scholar 

  205. Adlere, I. et al. Modulators of CXCR4 and CXCR7/ACKR3 function. Mol. Pharmacol. 96, 737–752 (2019).

    CAS  PubMed  Google Scholar 

  206. Daniel, S. K., Seo, Y. D. & Pillarisetty, V. G. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol. 65, 176–188 (2020).

    CAS  PubMed  Google Scholar 

  207. Galsky, M. D. et al. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin. Cancer Res. 20, 3581–3588 (2014).

    CAS  PubMed  Google Scholar 

  208. Hainsworth, J. D. et al. A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with sunitinib versus sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Target. Oncol. 11, 643–653 (2016).

    PubMed  Google Scholar 

  209. Salgia, R. et al. A randomized phase II study of LY2510924 and carboplatin/etoposide versus carboplatin/etoposide in extensive-disease small cell lung cancer. Lung Cancer 105, 7–13 (2017).

    PubMed  Google Scholar 

  210. O’Hara, M. H. et al. Safety and Pharmacokinetics of CXCR4 Peptide Antagonist, LY2510924, in combination with durvalumab in advanced refractory solid tumors. J. Pancreat. Cancer 6, 21–31 (2020).

    PubMed  PubMed Central  Google Scholar 

  211. Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020).

    CAS  PubMed  Google Scholar 

  212. Biasci, D. et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc. Natl Acad. Sci. USA 117, 28960–28970 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Anfray, C., Ummarino, A., Andón, F. T. & Allavena, P. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells https://doi.org/10.3390/cells9010046 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    CAS  PubMed  Google Scholar 

  216. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Tap, W. D. et al. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet 394, 478–487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Benner, B. et al. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: a systematic review of pre-clinical and clinical development. Drug Des. Devel Ther. 14, 1693–1704 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    PubMed  Google Scholar 

  220. Gomez-Roca, C. A. et al. Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann. Oncol. 30, 1381–1392 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Papadopoulos, K. P. et al. First-in-Human Study of AMG 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clin. Cancer Res. 23, 5703–5710 (2017).

    CAS  PubMed  Google Scholar 

  222. Autio, K. A. et al. Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: a phase I study. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-20-0855 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    CAS  PubMed  Google Scholar 

  224. Cassier, P. A. et al. MEDIPLEX: a phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). J. Clin. Oncol. 37, 2579–2579 (2019).

    Google Scholar 

  225. Wainberg, Z. et al. First-in-human phase 1 dose escalation and expansion of a novel combination, anti–CSF-1 Receptor (cabiralizumab) Plus Anti–PD-1 (nivolumab), in patients with advanced solid tumors. J. Immunother. Cancer 8, e000530 (2018).

    Google Scholar 

  226. Wainberg, Z. et al. 32nd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2017): Late-Breaking Abstracts. National Harbor, MD, USA. 8-12 November 2017. J. Immunother. Cancer 5 (Suppl. 3), 89 (2017). abstract 042.

    Google Scholar 

  227. Carleton, M. et al. Pharmacodynamics (PD) and genomic profiling of pts treated with cabiralizumab (cabira)+nivolumab (NIVO) provide evidence of on-target tumor immune modulations and support future clinical applications. J. Clin. Oncol. 36, 3020–3020 (2018).

    Google Scholar 

  228. Businesswire. Five Prime Therapeutics provides update on phase 2 trial of cabiralizumab Combined with Opdivo® in pancreatic cancer. https://www.businesswire.com/news/home/20200218005144/en/ (18 February 2020).

  229. Micic, D., Komaki, Y., Alavanja, A., Rubin, D. T. & Sakuraba, A. Risk of cancer recurrence among individuals exposed to antitumor necrosis factor therapy: a systematic review and meta-analysis of observational studies. J. Clin. Gastroenterol. 53, e1–e11 (2019).

    PubMed  PubMed Central  Google Scholar 

  230. Mercer, L. K. et al. Risk of solid cancer in patients exposed to anti-tumour necrosis factor therapy: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 74, 1087–1093 (2015).

    CAS  PubMed  Google Scholar 

  231. Böhm, S. et al. Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin. Cancer Res. 22, 3025–3036 (2016).

    PubMed  Google Scholar 

  232. Maniati, E. et al. Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Rep. 30, 525–540.e527 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Rodrigues, J., Heinrich, M. A., Teixeira, L. M. & Prakash, J. 3D in vitro model (R)evolution: unveiling tumor-stroma interactions. Trends Cancer 7, 249–264 (2021).

    CAS  PubMed  Google Scholar 

  234. Malacrida, B. et al. A human multi-cellular model shows how platelets drive production of diseased extracellular matrix and tissue invasion. iScience 24, 102676 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    CAS  PubMed  Google Scholar 

  236. Pease, D. F. & Kratzke, R. A. Oncolytic viral therapy for mesothelioma. Front. Oncol. 7, 179 (2017).

    PubMed  PubMed Central  Google Scholar 

  237. Cho, B. C. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in advanced squamous cell carcinoma of the head and neck: results from a phase I cohort. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-000664 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of F.R.B. is supported by Cancer Research UK programme grant A25714.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Frances R. Balkwill.

Ethics declarations

Competing interests

F.R.B. is on the scientific advisory board of Verseau Therapeutics and is an adviser to iOmix Therapeutics. D.J.P. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks K. C. Conlon, F. Greten, C. Krieg and I. Melero for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Propper, D.J., Balkwill, F.R. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 19, 237–253 (2022). https://doi.org/10.1038/s41571-021-00588-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00588-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer