Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging roles of circRNAs in cancer and oncology

Abstract

Over the past decade, circular RNAs (circRNAs) have emerged as a large class of primarily non-coding RNA molecules, many of which have key roles in cancer development and progression through diverse mechanisms of action. CircRNAs often have tissue-restricted and cancer-specific expression patterns, and accumulating data suggest that these molecules are of potential clinical relevance and utility. In particular, circRNAs have strong potential as diagnostic, prognostic and predictive biomarkers, which is underscored by their detectability in liquid biopsy samples such as in plasma, saliva and urine. However, technical issues in the detection and assessment of circRNAs as well as biological knowledge gaps need to be addressed to move this relatively young field of research forward and bring circRNAs to the forefront of clinical practice. Herein, we review the current knowledge regarding circRNA biogenesis, regulation and functions in cancer as well as their clinical potential as biomarkers, therapeutic agents and drug targets.

Key points

  • Human cells produce many more unique circular RNAs (circRNAs) than we have protein-coding genes; some of these circRNAs are highly abundant, conserved and have important physiological and/or pathophysiological roles.

  • Most circRNAs are derived from protein-coding genes, are produced by back-splicing events carried out by the canonical splicing machinery and show tissue-specific expression patterns.

  • CircRNAs are highly stable molecules that are mostly present in the cytosol, where they can function through interactions with other molecules, including proteins and microRNAs.

  • Deciphering the mechanisms of action of circRNAs can be challenging and the field of circRNA research is associated with several controversies.

  • CircRNAs are promising as biomarkers for cancer diagnosis and prognostication as well as for early cancer detection and as therapeutic targets or agents to inhibit oncogenic microRNAs or proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biogenesis and turnover of exon-derived circRNAs.
Fig. 2: Mechanisms of action of circRNAs in cancer.
Fig. 3: Function of C-E-Cad in glioblastoma stem cells.
Fig. 4: Overview of key circRNAs that promote or suppress various hallmarks of cancer.
Fig. 5: CircRNAs can function as protein or miRNA sponges in cancer.

Similar content being viewed by others

References

  1. Goodall, G. J. & Wickramasinghe, V. O. RNA in cancer. Nat. Rev. Cancer 21, 22–36 (2021).

    CAS  PubMed  Google Scholar 

  2. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  PubMed  Google Scholar 

  3. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  PubMed  Google Scholar 

  4. Hsu, M. T. & Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339–340 (1979).

    CAS  PubMed  Google Scholar 

  5. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kjems, J. & Garrett, R. A. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Cell 54, 693–703 (1988).

    CAS  PubMed  Google Scholar 

  7. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).

    CAS  PubMed  Google Scholar 

  8. Cocquerelle, C., Mascrez, B., Hetuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).

    CAS  PubMed  Google Scholar 

  9. Wang, P. L. et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 9, e90859 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    CAS  PubMed  Google Scholar 

  11. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. & Brown, P. O. Cell-type specific features of circular RNA expression. PLoS Genet. 9, e1003777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Westholm, J. O. et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460.e5 (2019).

    CAS  PubMed  Google Scholar 

  15. Dong, R., Ma, X. K., Li, G. W. & Yang, L. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteom. Bioinforma. 16, 226–233 (2018).

    Google Scholar 

  16. Wu, W., Ji, P. & Zhao, F. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 21, 101 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan, M. A. et al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 119, 996–1003 (2016).

    CAS  PubMed  Google Scholar 

  18. Maass, P. G. et al. A map of human circular RNAs in clinically relevant tissues. J. Mol. Med. 95, 1179–1189 (2017).

    CAS  PubMed  Google Scholar 

  19. Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

    CAS  PubMed  Google Scholar 

  20. Veno, M. T. et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 16, 245 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, C. & Zhang, J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 36, 109439 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Aktas, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119 (2017).

    CAS  PubMed  Google Scholar 

  24. Chen, L. L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 21, 475–490 (2020).

    CAS  PubMed  Google Scholar 

  25. Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    CAS  PubMed  Google Scholar 

  26. Kristensen, L. S., Hansen, T. B., Veno, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).

    CAS  PubMed  Google Scholar 

  27. Patop, I. L., Wüst, S. & Kadener, S. Past, present, and future of circRNAs. EMBO J. 38, e100836 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Pamudurti, N. R. et al. Translation of circRNAs. Mol. Cell 66, 9–21.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hansen, T. B. Signal and noise in circRNA translation. Methods 196, 68–73 (2021).

    CAS  PubMed  Google Scholar 

  30. Stagsted, L. V., Nielsen, K. M., Daugaard, I. & Hansen, T. B. Noncoding AUG circRNAs constitute an abundant and conserved subclass of circles. Life Sci. Alliance 2, e201900398 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    CAS  PubMed  Google Scholar 

  32. Liang, D. et al. The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol. Cell 68, 940–954.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Starke, S. et al. Exon circularization requires canonical splice signals. Cell Rep. 10, 103–111 (2015).

    CAS  PubMed  Google Scholar 

  34. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    CAS  PubMed  Google Scholar 

  35. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    CAS  PubMed  Google Scholar 

  36. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    CAS  PubMed  Google Scholar 

  38. Das Mahapatra, K. et al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci. Rep. 10, 3637 (2020).

    PubMed  PubMed Central  Google Scholar 

  39. Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881.e13 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fei, T. et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl Acad. Sci. USA 114, E5207–E5215 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    PubMed  Google Scholar 

  42. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    CAS  PubMed  Google Scholar 

  43. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Li, Y. et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv. Sci. 8, 2001701 (2021).

    CAS  Google Scholar 

  45. Errichelli, L. et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 8, 14741 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    CAS  PubMed  Google Scholar 

  47. Qin, Y. R. et al. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res. 74, 840–851 (2014).

    CAS  PubMed  Google Scholar 

  48. Zipeto, M. A. et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell 19, 177–191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).

    CAS  PubMed  Google Scholar 

  50. Barrett, S. P., Wang, P. L. & Salzman, J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 4, e07540 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Kelly, S., Greenman, C., Cook, P. R. & Papantonis, A. Exon skipping is correlated with exon circularization. J. Mol. Biol. 427, 2414–2417 (2015).

    CAS  PubMed  Google Scholar 

  52. Grosso, A. R. et al. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. eLife 4, e09214 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Guarnerio, J. et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165, 289–302 (2016).

    CAS  PubMed  Google Scholar 

  54. Tan, S. et al. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 28, 693–695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferreira, H. J. et al. Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget 9, 29208–29219 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Hanniford, D. et al. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell 37, 55–70.e15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jakobsen, T. et al. Genome-wide circular RNA expression patterns reflect resistance to immunomodulatory drugs in multiple myeloma cells. Cancers 13, 365 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kristensen, L. S., Okholm, T. L. H., Veno, M. T. & Kjems, J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 15, 280–291 (2018).

    PubMed  Google Scholar 

  59. Huang, C., Liang, D., Tatomer, D. C. & Wilusz, J. E. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32, 639–644 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, C. et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20, 2262–2276 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, R.-X. et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun. 10, 4695 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dou, Y. et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep. 6, 37982 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Park, O. H. et al. Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex. Mol. Cell 74, 494–507.e8 (2019).

    CAS  PubMed  Google Scholar 

  66. Liu, C.-X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21 (2019).

    CAS  PubMed  Google Scholar 

  67. Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84.e76 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dodbele, S., Mutlu, N. & Wilusz, J. E. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 22, e52072 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jarlstad Olesen, M. T. & Kristensen, L. S. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 65, 685–696 (2021).

    PubMed  Google Scholar 

  70. Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Kristensen, L. S. et al. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun. 11, 4551 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, H. M., Ma, X. L. & Li, H. G. Intriguing circles: conflicts and controversies in circular RNA research. RNA 10, e1538 (2019).

    PubMed  Google Scholar 

  73. Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, S. et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat. Methods 18, 51–59 (2021).

    PubMed  Google Scholar 

  75. Abdelmohsen, K. et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by circPABPN1. RNA Biol. 14, 361–369 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Du, W. W. et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24, 357–370 (2017).

    CAS  PubMed  Google Scholar 

  77. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Li, B. et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat. Commun. 12, 295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, L. et al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer 18, 119 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Ho-Xuan, H. et al. Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res. 48, 10368–10382 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang, Y., Chen, X. & Zhang, W. Overexpression-based detection of translatable circular RNAs is vulnerable to coexistent linear RNA byproducts. Biochem. Biophys. Res. Commun. 558, 189–195 (2021).

    CAS  PubMed  Google Scholar 

  82. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2007).

    CAS  Google Scholar 

  84. Gao, X. et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat. Cell Biol. 23, 278–291 (2021).

    CAS  PubMed  Google Scholar 

  85. Jiang, T. et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol. Cancer 20, 66 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao, J. et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun. 10, 2300 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Yu, C. Y. et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat. Commun. 8, 1149 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Dunn, S. J., Martello, G., Yordanov, B., Emmott, S. & Smith, A. G. Defining an essential transcription factor program for naïve pluripotency. Science 344, 1156–1160 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gu, X. et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J. Cell. Mol. Med. 25, 4501–4515 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Moldovan, L. I. et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med. Genomics 12, 174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Moldovan, L. I. et al. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp. Dermatol. 30, 1187–1196 (2021).

    CAS  PubMed  Google Scholar 

  92. Zhu, P. et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. Nat. Immunol. 20, 183–194 (2019).

    CAS  PubMed  Google Scholar 

  93. Xia, P. et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48, 688–701.e7 (2018).

    CAS  PubMed  Google Scholar 

  94. Essers, M. A. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    CAS  PubMed  Google Scholar 

  95. Suenkel, C., Cavalli, D., Massalini, S., Calegari, F. & Rajewsky, N. A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain. Cell Rep. 30, 2170–2179.e5 (2020).

    CAS  PubMed  Google Scholar 

  96. Hollensen, A. K. et al. circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation. eLife 9, e58478 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, D. et al. CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death Differ. 28, 283–302 (2021).

    PubMed  Google Scholar 

  98. Chia, W., Liu, J., Huang, Y. G. & Zhang, C. A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis. 11, 372 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pandey, P. R. et al. circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Res. 48, 3789–3805 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Barbollat-Boutrand, L. et al. MicroRNA-23b-3p regulates human keratinocyte differentiation through repression of TGIF1 and activation of the TGF-ss-SMAD2 signalling pathway. Exp. Dermatol. 26, 51–57 (2017).

    CAS  PubMed  Google Scholar 

  101. Nicolet, B. P. et al. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res. 46, 8168–8180 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Suvà, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013).

    PubMed  Google Scholar 

  103. He, Y. et al. CircZNF609 enhances hepatocellular carcinoma cell proliferation, metastasis, and stemness by activating the Hedgehog pathway through the regulation of miR-15a-5p/15b-5p and GLI2 expressions. Cell Death Dis. 11, 358 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, S. et al. FUS-induced circular RNA ZNF609 promotes tumorigenesis and progression via sponging miR-142-3p in lung cancer. J. Cell Physiol. 236, 79–92 (2021).

    CAS  PubMed  Google Scholar 

  105. Rossi, F. et al. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 38, 3843–3854 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ho-Xuan, H. et al. Gene expression signatures of a preclinical mouse model during colorectal cancer progression under low-dose metronomic chemotherapy. Cancers 13, 49 (2020).

    PubMed Central  Google Scholar 

  107. Zhu, Y. J. et al. Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics 9, 3526–3540 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jin, C. et al. CircRNA EPHB4 modulates stem properties and proliferation of gliomas via sponging miR-637 and up-regulating SOX10. Mol. Oncol. 15, 596–622 (2021).

    CAS  PubMed  Google Scholar 

  109. Gong, L. P. et al. Epstein-Barr virus-derived circular RNA LMP2A induces stemness in EBV-associated gastric cancer. EMBO Rep. 21, e49689 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dou, Y. et al. Proteogenomic characterization of endometrial carcinoma. Cell 180, 729–748.e26 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Rickert, D. et al. Circular RNA profiling distinguishes medulloblastoma groups and shows aberrant RMST overexpression in WNT medulloblastoma. Acta Neuropathol. 141, 975–978 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ahmadov, U. et al. Distinct circular RNA expression profiles in pediatric ependymomas. Brain Pathol. 31, 387–392 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Smid, M. et al. The circular RNome of primary breast cancer. Genome Res. 29, 356–366 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Song, X. et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 44, e87 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Dahl, M. et al. Expression patterns and prognostic potential of circular RNAs in mantle cell lymphoma: a study of younger patients from the MCL2 and MCL3 clinical trials. Leukemia https://doi.org/10.1038/s41375-021-01311-4 (2021).

    Article  PubMed  Google Scholar 

  116. Bachmayr-Heyda, A. et al. Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 5, 8057 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  118. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843.e22 (2019).

    CAS  PubMed  Google Scholar 

  119. Bartolomé, R. A. et al. IL13 receptor α2 signaling requires a scaffold protein, FAM120A, to activate the FAK and PI3K pathways in colon cancer metastasis. Cancer Res. 75, 2434–2444 (2015).

    PubMed  Google Scholar 

  120. Li, Z. et al. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Dev. Cell 23, 1176–1188 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cheng, Z. et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat. Commun. 10, 3200 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Verduci, L. et al. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. 18, 237 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Geng, Y. et al. Circular RNA hsa_circ_0014130 inhibits apoptosis in non-small cell lung cancer by sponging miR-136-5p and upregulating BCL2. MCR 18, 748–756 (2020).

    CAS  PubMed  Google Scholar 

  124. Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166, 288–298 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sato, K. et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 67, 9677–9684 (2007).

    CAS  PubMed  Google Scholar 

  127. Zhang, Z., Zhu, H. & Hu, J. CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis. 12, 219 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Du, W. W. et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 37, 5829–5842 (2018).

    CAS  PubMed  Google Scholar 

  129. Okholm, T. L. H. et al. Circular RNA expression is abundant and correlated to aggressiveness in early-stage bladder cancer. NPJ Genom. Med. 2, 36 (2017).

    PubMed  PubMed Central  Google Scholar 

  130. Li, Y. et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 18, 1646–1659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Barbagallo, D. et al. CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers 11, 194 (2019).

    CAS  PubMed Central  Google Scholar 

  132. Xu, Y. et al. A Circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology 73, 1419–1435 (2021).

    CAS  PubMed  Google Scholar 

  133. Guarnerio, J. et al. Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res. 29, 628–640 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jiang, X. et al. CircMEG3 inhibits telomerase activity by reducing Cbf5 in human liver cancer stem cells. Mol. Ther. Nucleic Acids 23, 310–323 (2021).

    CAS  PubMed  Google Scholar 

  135. Zong, Z. H., Du, Y. P., Guan, X., Chen, S. & Zhao, Y. CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J. Exp. Clin. Cancer Res. 38, 437 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Zhan, P. et al. FBXW7 negatively regulates ENO1 expression and function in colorectal cancer. Lab. Invest. 95, 995–1004 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu, L. et al. Estrogen promotes prostate cancer cell migration via paracrine release of ENO1 from stromal cells. Mol. Endocrinol. 26, 1521–1530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhou, J. et al. CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 10, 885 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. Zhao, X., Tian, Z. & Liu, L. circATP2B1 promotes aerobic glycolysis in gastric cancer cells through regulation of the miR-326 gene cluster. Front. Oncol. 11, 628624 (2021).

    PubMed  PubMed Central  Google Scholar 

  140. Wang, X. et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol. 14, 539–555 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Anderson, R. L. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019).

    PubMed  Google Scholar 

  144. Liu, H. et al. circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Theranostics 10, 10791–10807 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Shen, P. et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol. Cancer 20, 51 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Petrella, B. L. & Brinckerhoff, C. E. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol. Cancer 5, 66 (2006).

    PubMed  PubMed Central  Google Scholar 

  147. Li, L. et al. FLI1 exonic circular RNAs as a novel oncogenic driver to promote tumor metastasis in small cell lung cancer. Clin. Cancer Res. 25, 1302–1317 (2019).

    CAS  PubMed  Google Scholar 

  148. Tan, S. et al. Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer. Mol. Cancer 17, 138 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Lorenzi, L. et al. The RNA Atlas expands the catalog of human non-coding RNAs. Nat. Biotechnol. 39, 1453–1465 (2021).

    CAS  PubMed  Google Scholar 

  150. Ruan, H. et al. Comprehensive characterization of circular RNAs in ~1000 human cancer cell lines. Genome Med. 11, 55 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Bahn, J. H. et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem. 61, 221–230 (2015).

    CAS  PubMed  Google Scholar 

  152. Brown, J. R. & Chinnaiyan, A. M. The potential of circular RNAs as cancer biomarkers. Cancer Epidemiol. Biomark. Prev. 29, 2541–2555 (2020).

    CAS  Google Scholar 

  153. Zou, Y. et al. Diagnostic and prognostic value of circular RNA CDR1as/ciRS-7 for solid tumours: a systematic review and meta-analysis. J. Cell. Mol. Med. 24, 9507–9517 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Huijbers, A. et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: validation in the VICTOR trial. Ann. Oncol. 24, 179–185 (2013).

    CAS  PubMed  Google Scholar 

  155. Gujam, F. J., Edwards, J., Mohammed, Z. M., Going, J. J. & McMillan, D. C. The relationship between the tumour stroma percentage, clinicopathological characteristics and outcome in patients with operable ductal breast cancer. Br. J. Cancer 111, 157–165 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, T. et al. Tumor-stroma ratio is an independent predictor for survival in NSCLC. Int. J. Clin. Exp. Pathol. 8, 11348–11355 (2015).

    PubMed  PubMed Central  Google Scholar 

  157. Zhang, X., Su, X., Guo, Z., Jiang, X. & Li, X. Circular RNA La-related RNA-binding protein 4 correlates with reduced tumor stage, as well as better prognosis, and promotes chemosensitivity to doxorubicin in breast cancer. J. Clin. Lab. Anal. 34, e23272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu, Y. et al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma. J. Clin. Lab. Anal. 34, e23045 (2020).

    CAS  PubMed  Google Scholar 

  159. Zhang, J. et al. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol. Cancer 16, 151 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Chen, Z. et al. circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. Cancer Sci. 110, 568–581 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, B. et al. CircUBAP2 promotes MMP9-mediated oncogenic effect via sponging miR-194-3p in hepatocellular carcinoma. Front. Cell Dev. Biol. 9, 675043 (2021).

    PubMed  PubMed Central  Google Scholar 

  162. Wang, S. et al. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway. Biochem. Biophys. Res. Commun. 505, 996–1002 (2018).

    CAS  PubMed  Google Scholar 

  163. Zhang, H. et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget 8, 61687–61697 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Zhang, P. F. et al. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol. Cancer 18, 179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ju, H. Q. et al. A circRNA signature predicts postoperative recurrence in stage II/III colon cancer. EMBO Mol. Med. 11, e10168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Nair, A. A. et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget 7, 80967–80979 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. Wang, C. et al. RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Mol. Cancer 18, 134 (2019).

    PubMed  PubMed Central  Google Scholar 

  168. He, Y. D. et al. A urine extracellular vesicle circRNA classifier for detection of high-grade prostate cancer in patients with prostate-specific antigen 2-10 ng/mL at initial biopsy. Mol. Cancer 20, 96 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sang, Y. et al. circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol. Ther. 27, 1638–1652 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Uhr, K. et al. Association of microRNA-7 and its binding partner CDR1-AS with the prognosis and prediction of 1(st)-line tamoxifen therapy in breast cancer. Sci. Rep. 8, 9657 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Greene, J. et al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep. 9, 10739 (2019).

    PubMed  PubMed Central  Google Scholar 

  172. Wu, G. et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 10, 37 (2019).

    PubMed  PubMed Central  Google Scholar 

  173. Hong, X. et al. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol. Cancer 19, 33 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Yu, D. et al. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs. PeerJ 6, e5011 (2018).

    PubMed  PubMed Central  Google Scholar 

  175. Gupta, S. K. et al. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ. Res. 122, 246–254 (2018).

    CAS  PubMed  Google Scholar 

  176. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Yu, J. et al. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma: a large-scale, multicenter study. Int. J. Cancer 146, 1754–1763 (2020).

    CAS  PubMed  Google Scholar 

  178. Stella, M. et al. Serum extracellular vesicle-derived circHIPK3 and circSMARCA5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals 14, 618 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).

    CAS  PubMed  Google Scholar 

  180. Ottesen, E. W., Luo, D., Seo, J., Singh, N. N. & Singh, R. N. Human survival motor neuron genes generate a vast repertoire of circular RNAs. Nucleic Acids Res. 47, 2884–2905 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. He, A. T., Liu, J., Li, F. & Yang, B. B. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal. Transduct. Target. Ther. 6, 185 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang, Y. et al. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 22, 41 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhao, Q. et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell 183, 76–93.e22 (2020).

    CAS  PubMed  Google Scholar 

  184. Meganck, R. M. et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol. Ther. Nucleic Acids 13, 89–98 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Müller, S. & Appel, B. In vitro circularization of RNA. RNA Biol. 14, 1018–1027 (2017).

    PubMed  Google Scholar 

  187. Breuer, J. & Rossbach, O. Production and purification of artificial circular RNA sponges for application in molecular biology and medicine. Methods Protoc. 3, 42 (2020).

    CAS  PubMed Central  Google Scholar 

  188. Umekage, S. & Kikuchi, Y. In vitro and in vivo production and purification of circular RNA aptamer. J. Biotechnol. 139, 265–272 (2009).

    CAS  PubMed  Google Scholar 

  189. Chen, C. Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417 (1995).

    CAS  PubMed  Google Scholar 

  190. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    PubMed  PubMed Central  Google Scholar 

  191. Szabo, L. & Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat. Rev. Genet. 17, 679–692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Li, L. et al. CircZNF609 aggravates neuropathic pain via miR-22-3p/ENO1 axis in CCI rat models. Gene 763, 145069 (2020).

    CAS  PubMed  Google Scholar 

  193. Tong, H., Zhao, K., Wang, J., Xu, H. & Xiao, J. CircZNF609/miR-134-5p/BTG-2 axis regulates proliferation and migration of glioma cell. J. Pharm. Pharmacol. 72, 68–75 (2020).

    CAS  PubMed  Google Scholar 

  194. Liu, Q., Cui, W., Yang, C. & Du, L. P. Circular RNA ZNF609 drives tumor progression by regulating the miR-138-5p/SIRT7 axis in melanoma. Aging 13, 19822–19834 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Liu, Z. et al. Circ-ZNF609 promotes carcinogenesis of gastric cancer cells by inhibiting miRNA-145-5p expression. Eur. Rev. Med. Pharmacol. Sci. 23, 9411–9417 (2019).

    CAS  PubMed  Google Scholar 

  196. Wang, S. et al. CircZNF609 promotes breast cancer cell growth, migration, and invasion by elevating p70S6K1 via sponging miR-145-5p. Cancer Manag. Res. 10, 3881–3890 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhu, L., Liu, Y., Yang, Y., Mao, X. M. & Yin, Z. D. CircRNA ZNF609 promotes growth and metastasis of nasopharyngeal carcinoma by competing with microRNA-150-5p. Eur. Rev. Med. Pharmacol. Sci. 23, 2817–2826 (2019).

    CAS  PubMed  Google Scholar 

  198. Li, M., Li, Y. & Yu, M. CircRNA ZNF609 knockdown suppresses cell growth via modulating miR-188/ELF2 axis in nasopharyngeal carcinoma. OncoTargets Ther. 13, 2399–2409 (2020).

    CAS  Google Scholar 

  199. Gu, Q. et al. Circular RNA ZNF609 functions as a competing endogenous RNA in regulating E2F transcription factor 6 through competitively binding to microRNA-197-3p to promote the progression of cervical cancer progression. Bioengineered 12, 927–936 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu, Z., Liu, F., Wang, F., Yang, X. & Guo, W. CircZNF609 promotes cell proliferation, migration, invasion, and glycolysis in nasopharyngeal carcinoma through regulating HRAS via miR-338-3p. Mol. Cell Biochem. 476, 175–186 (2021).

    CAS  PubMed  Google Scholar 

  201. Liao, X. et al. Circular RNA ZNF609 promoted hepatocellular carcinoma progression by upregulating PAP2C expression via sponging miR-342-3p. OncoTargets Ther. 13, 7773–7783 (2020).

    CAS  Google Scholar 

  202. Du, S., Zhang, P., Ren, W., Yang, F. & Du, C. Circ-ZNF609 accelerates the radioresistance of prostate cancer cells by promoting the glycolytic metabolism through miR-501-3p/HK2 Axis. Cancer Manag. Res. 12, 7487–7499 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Cui, X. et al. CircZNF609 is involved in the pathogenesis of focal segmental glomerulosclerosis by sponging miR-615-5p. Biochem. Biophys. Res. Commun. 531, 341–349 (2020).

    CAS  PubMed  Google Scholar 

  204. Wang, F., Li, X., Jia, X. & Geng, L. CircRNA ZNF609 knockdown represses the development of non-small cell lung cancer via miR-623/FOXM1 axis. Cancer Manag. Res. 13, 1029–1039 (2021).

    PubMed  PubMed Central  Google Scholar 

  205. Du, S., Li, H., Lu, F., Zhang, S. & Tang, J. Circular RNA ZNF609 promotes the malignant progression of glioma by regulating miR-1224-3p/PLK1 signaling. J. Cancer 12, 3354–3366 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Dudekula, D. B. et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13, 34–42 (2016).

    PubMed  Google Scholar 

  207. Rahimi, K., Venø, M. T., Dupont, D. M. & Kjems, J. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat. Commun. 12, 4825 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021).

    CAS  PubMed  Google Scholar 

  209. Xin, R. et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat. Commun. 12, 266 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Gao, Y. et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 7, 12060 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  212. Wu, J. et al. CircAST: full-length assembly and quantification of alternatively spliced isoforms in circular RNAs. Genomics Proteom. Bioinforma. 17, 522–534 (2019).

    Google Scholar 

  213. Conn, V. & Conn, S. J. SplintQuant: a method for accurately quantifying circular RNA transcript abundance without reverse transcription bias. RNA 25, 1202–1210 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Kristensen, L. S. Profiling of circRNAs using an enzyme-free digital counting method. Methods 196, 11–16 (2021).

    CAS  PubMed  Google Scholar 

  215. Dahl, M. et al. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab. Invest. 98, 1657–1669 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by a grant to L.S.K. from the Lundbeck Foundation (R307-2018-3433) and to J.K. from the Danish Cancer Society (R269-A15768). We thank M. Jarlstad Olesen, S. Seeler and A. Færch Nielsen for a careful and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.S.K., T.J. and J.K. researched data for the article. All authors contributed to discussions of content, writing and reviewing/editing of the manuscript.

Corresponding authors

Correspondence to Lasse S. Kristensen or Jørgen Kjems.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks S.-Y. Cheng, S. Huang and B. B. Yang for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristensen, L.S., Jakobsen, T., Hager, H. et al. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19, 188–206 (2022). https://doi.org/10.1038/s41571-021-00585-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00585-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer