Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The MYC oncogene — the grand orchestrator of cancer growth and immune evasion

Abstract

The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.

Key points

  • The MYC oncogene is activated in the vast majority of cancers by genetic, epigenetic or post-translational mechanisms.

  • In preclinical models, inactivation of MYC can result in sustained tumour regression owing to oncogene addiction.

  • MYC activation drives cancer progression through mechanisms involving either the cell-intrinsic acquisition of hallmarks of cancer or dysregulation of the tumour microenvironment and host immune responses.

  • MYC leads to cancer initiation and maintenance by regulating the host immune system through mechanisms involving immune checkpoints, specific receptors and secreted cytokines.

  • Currently, no direct inhibitors of MYC are approved; however, many therapeutic agents targeting MYC are under development.

  • We propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major genetic alterations involving MYC and its paralogues in human cancers.
Fig. 2: Mechanisms leading to MYC activation in human cancers.
Fig. 3: MYC is a grand orchestrator of the hallmarks of cancer.
Fig. 4: MYC blocks immune surveillance.
Fig. 5: Therapeutic strategies to target MYC-driven tumours.
Fig. 6: Proposed biomarker-stratified therapeutic strategies to target MYC-driven cancers.

Similar content being viewed by others

References

  1. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    CAS  PubMed  Google Scholar 

  2. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schaub, F. X. et al. Pan-cancer alterations of the MYC oncogene and its proximal network across The Cancer Genome Atlas. Cell Syst. 6, 282–300.e2 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalkat, M. et al. MYC deregulation in primary human cancers. Genes 8, 151 (2017).

    PubMed Central  Google Scholar 

  5. Kress, T. R., Sabò, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer 15, 593–607 (2015).

    CAS  PubMed  Google Scholar 

  6. Conacci-Sorrell, M., McFerrin, L. & Eisenman, R. N. An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med. 4, a014357 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Williamson, D. et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol. 23, 880–888 (2005).

    CAS  PubMed  Google Scholar 

  8. Williams, R. D. et al. Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in Wilms tumor. Genes Chromosomes Cancer 50, 982–995 (2011).

    CAS  PubMed  Google Scholar 

  9. Berger, A. et al. N-Myc–mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J. Clin. Invest. 129, 3924–3940 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Rickman, D. S., Schulte, J. H. & Eilers, M. The expanding world of N-MYC–driven tumors. Cancer Discov. 8, 150–163 (2018).

    CAS  PubMed  Google Scholar 

  11. Cheng, J. et al. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis. PLoS Pathog. 13, e1006668 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Ohshima, K. et al. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors. Sci. Rep. 7, 641 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    CAS  PubMed  Google Scholar 

  14. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    CAS  PubMed  Google Scholar 

  15. Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA 79, 7824–7827 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stock, C., Kager, L., Fink, F. M., Gadner, H. & Ambros, P. F. Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer 28, 329–336 (2000).

    CAS  PubMed  Google Scholar 

  18. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    CAS  PubMed  Google Scholar 

  19. Shroff, E. H. et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl Acad. Sci. USA 112, 6539–6544 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    CAS  PubMed  Google Scholar 

  21. Wu, C.-H. et al. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. USA 104, 13028–13033 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lourenco, C. et al. Modelling the MYC-driven normal-to-tumour switch in breast cancer. Dis. Model. Mech. 12, dmm038083 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sodir, N. M. et al. MYC instructs and maintains pancreatic adenocarcinoma phenotype. Cancer Discov. 10, 588–607 (2020).

    CAS  PubMed  Google Scholar 

  24. Soucek, L. et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 27, 504–513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jung, L. A. et al. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 36, 1911–1924 (2017).

    CAS  PubMed  Google Scholar 

  26. Demma, M. J. et al. Omomyc reveals new mechanisms to inhibit the MYC oncogene.Mol. Cell. Biol. 39, e00248-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Weinstein, I. B. Cancer: addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    CAS  PubMed  Google Scholar 

  28. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  29. Carroll, P. A., Freie, B. W., Mathsyaraja, H. & Eisenman, R. N. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front. Med. 12, 412–425 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Casey, S. C., Baylot, V. & Felsher, D. W. The MYC oncogene is a global regulator of the immune response. Blood 131, 2007–2015 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Casey, S. C., Baylot, V. & Felsher, D. W. MYC: master regulator of immune privilege. Trends Immunol. 38, 298–305 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Casacuberta-Serra, S. & Soucek, L. Myc and Ras, the Bonnie and Clyde of immune evasion. Transl. Cancer Res. 7 (Suppl. 4), S457–S459 (2018).

    PubMed  Google Scholar 

  34. Baluapuri, A., Wolf, E. & Eilers, M. Target gene-independent functions of MYC oncoproteins. Nat. Rev. Mol. Cell Biol. 21, 255–267 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bernard, S. & Eilers, M. Control of cell proliferation and growth by Myc proteins. Results Probl. Cell. Differ. 42, 329–342 (2006).

    CAS  PubMed  Google Scholar 

  37. Bretones, G., Delgado, M. D. & León, J. Myc and cell cycle control. Biochim. Biophys. Acta 1849, 506–516 (2015).

    CAS  PubMed  Google Scholar 

  38. Levens, D. ‘You don’t muck with MYC’. Genes Cancer 1, 547–554 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Boxer, L. M. & Dang, C. V. Translocations involving c-myc and c-myc function. Oncogene 20, 5595–5610 (2001).

    CAS  PubMed  Google Scholar 

  43. Drach, J. et al. The biology of multiple myeloma. J. Cancer Res. Clin. Oncol. 126, 441–447 (2000).

    CAS  PubMed  Google Scholar 

  44. Dudley, J. P., Mertz, J. A., Rajan, L., Lozano, M. & Broussard, D. R. What retroviruses teach us about the involvement of c-Myc in leukemias and lymphomas. Leukemia 16, 1086–1098 (2002).

    CAS  PubMed  Google Scholar 

  45. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    CAS  PubMed  Google Scholar 

  47. Yagi, K. et al. c-myc is a downstream target of the Smad pathway. J. Biol. Chem. 277, 854–861 (2002).

    CAS  PubMed  Google Scholar 

  48. Allen-Petersen, B. L. & Sears, R. C. Mission possible: advances in MYC therapeutic targeting in cancer. BioDrugs 33, 539–553 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Arnold, H. K. & Sears, R. C. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol. Cell. Biol. 26, 2832–2844 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Farrell, A. S. et al. MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nat. Commun. 8, 1728 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Wang, X. et al. Phosphorylation regulates c-Myc’s oncogenic activity in the mammary gland. Cancer Res. 71, 925–936 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Reavie, L. et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23, 362–375 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruvolo, P. P. The broken ‘Off’ switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 6, 87–99 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Kauko, O. et al. PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Sci. Transl. Med. 10, eaaq1093 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Zhou, X. Z. & Lu, K. P. The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat. Rev. Cancer 16, 463–478 (2016).

    CAS  PubMed  Google Scholar 

  57. Cheng, C.-W. & Tse, E. PIN1 in cell cycle control and cancer. Front. Pharmacol. 9, 1367 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. King, B. et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153, 1552–1566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yeh, C.-H., Bellon, M. & Nicot, C. FBXW7: a critical tumor suppressor of human cancers. Mol. Cancer 17, 115 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Cao, J., Ge, M.-H. & Ling, Z.-Q. Fbxw7 tumor suppressor: a vital regulator contributes to human tumorigenesis. Medicine 95, e2496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    CAS  PubMed  Google Scholar 

  62. Edelmann, J. et al. Frequent evolution of copy number alterations in CLL following first-line treatment with FC(R) is enriched with TP53 alterations: results from the CLL8 trial. Leukemia 31, 734–738 (2017).

    CAS  PubMed  Google Scholar 

  63. Yang, G. & Hurlin, P. J. MNT and emerging concepts of MNT-MYC antagonism. Genes 8, 83 (2017).

    PubMed Central  Google Scholar 

  64. Fredlund, E., Ringnér, M., Maris, J. M. & Påhlman, S. High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc. Natl Acad. Sci. USA 105, 14094–14099 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Diolaiti, D., McFerrin, L., Carroll, P. A. & Eisenman, R. N. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. Biochim. Biophys. Acta 1849, 484–500 (2015).

    CAS  PubMed  Google Scholar 

  66. Gabay, M., Li, Y. & Felsher, D. W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4, a014241 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Bailey, S. T. et al. MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nat. Commun. 8, 15770 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    CAS  PubMed  Google Scholar 

  69. Teitz, T. et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med. 6, 529–535 (2000).

    CAS  PubMed  Google Scholar 

  70. Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nat. Genet. 21, 220–224 (1999).

    CAS  PubMed  Google Scholar 

  71. Hofmann, J. W. et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell 160, 477–488 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Seton-Rogers, S. Driving immune evasion. Nat. Rev. Cancer 18, 67–67 (2018).

    CAS  PubMed  Google Scholar 

  73. Chappell, J. & Dalton, S. Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb. Perspect. Med. 3, a014381 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Pelengaris, S. & Khan, M. The many faces of c-MYC. Arch. Biochem. Biophys. 416, 129–136 (2003).

    CAS  PubMed  Google Scholar 

  75. de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    PubMed  Google Scholar 

  76. Bettess, M. D. et al. c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol. Cell. Biol. 25, 7868–7878 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    CAS  PubMed  Google Scholar 

  78. Shi, Y. et al. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257, 212–214 (1992).

    CAS  PubMed  Google Scholar 

  79. Kaczmarek, L., Hyland, J. K., Watt, R., Rosenberg, M. & Baserga, R. Microinjected c-myc as a competence factor. Science 228, 1313–1315 (1985).

    CAS  PubMed  Google Scholar 

  80. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Karn, J., Watson, J. V., Lowe, A. D., Green, S. M. & Vedeckis, W. Regulation of cell cycle duration by c-myc levels. Oncogene 4, 773–787 (1989).

    CAS  PubMed  Google Scholar 

  82. Rosenwald, I. B. Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2α in transformed cells. Cancer Lett. 102, 113–123 (1996).

    CAS  PubMed  Google Scholar 

  83. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmidt, E. V. The role of c-myc in cellular growth control. Oncogene 18, 2988–2996 (1999).

    CAS  PubMed  Google Scholar 

  85. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 7, 295–302 (2005).

    CAS  PubMed  Google Scholar 

  86. Dong, Y., Tu, R., Liu, H. & Qing, G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduct. Target. Ther. 5, 124 (2020).

    PubMed  PubMed Central  Google Scholar 

  87. Kim, J.-W. et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol. 24, 5923–5936 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Osthus, R. C. et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000).

    CAS  PubMed  Google Scholar 

  89. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    CAS  PubMed  Google Scholar 

  91. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  92. García-Gutiérrez, L., Delgado, M. D. & León, J. MYC oncogene contributions to release of cell cycle brakes. Genes 10, 244 (2019).

    PubMed Central  Google Scholar 

  93. Li, Z. et al. c-Myc suppression of DNA double-strand break repair. Neoplasia 14, 1190–1202 (2012).

    PubMed  PubMed Central  Google Scholar 

  94. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuzyk, A. & Mai, S. c-MYC-induced genomic instability. Cold Spring Harb. Perspect. Med. 4, a014373 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Karlsson, A. et al. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc. Natl Acad. Sci. USA 100, 9974–9979 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

    CAS  PubMed  Google Scholar 

  98. Dang, C. V., Li, F. & Lee, L. A. Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability? Cell Cycle 4, 1465–1466 (2005).

    CAS  PubMed  Google Scholar 

  99. Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110, 2996–3004 (2007).

    CAS  PubMed  Google Scholar 

  100. Beer, S. et al. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol. 2, e332 (2004).

    PubMed  PubMed Central  Google Scholar 

  101. Ray, S. et al. MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res. 66, 6598–6605 (2006).

    CAS  PubMed  Google Scholar 

  102. Baudino, T. A. et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 16, 2530–2543 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Shchors, K. et al. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1β. Genes Dev. 20, 2527–2538 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dews, M. et al. The Myc–miR-17-92 axis blunts TGFβ signaling and production of multiple TGFβ-dependent antiangiogenic factors. Cancer Res. 70, 8233–8246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Giuriato, S. et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc. Natl Acad. Sci. USA 103, 16266–16271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kortlever, R. M. et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171, 1301–1315.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Swaminathan, S. et al. MYC functions as a switch for natural killer cell-mediated immune surveillance of lymphoid malignancies. Nat. Commun. 11, 2860 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Maeda, T. et al. MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Res. 78, 205–215 (2018).

    CAS  PubMed  Google Scholar 

  111. Muthalagu, N. et al. Repression of the type I interferon pathway underlies MYC & KRAS-dependent evasion of NK & B cells in pancreatic ductal adenocarcinoma. Cancer Discov. 10, 872–887 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dhanasekaran, R. et al. MYC and Twist1 cooperate to drive metastasis by eliciting crosstalk between cancer and innate immunity. eLife 9, e50731 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bernards, R., Dessain, S. K. & Weinberg, R. A. N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell 47, 667–674 (1986).

    CAS  PubMed  Google Scholar 

  114. Braun, J., Felsher, D. W. & Goodglick, L. A. c-myc, MHCI, and NK resistance in immunodeficiency lymphomas. Ann. N. Y. Acad. Sci. 651, 467–469 (1992).

    CAS  PubMed  Google Scholar 

  115. Versteeg, R., Noordermeer, I. A., Krüse-Wolters, M., Ruiter, D. J. & Schrier, P. I. c-myc down-regulates class I HLA expression in human melanomas. EMBO J. 7, 1023–1029 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. van Riggelen, J. et al. The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev. 24, 1281–1294 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Reimann, M. et al. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17, 262–272 (2010).

    CAS  PubMed  Google Scholar 

  118. Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Vartuli, R. L. et al. Eya3 promotes breast tumor-associated immune suppression via threonine phosphatase-mediated PD-L1 upregulation. J. Clin. Invest. 128, 2535–2550 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Dhanasekaran, R. et al. MYC and Twist1 cooperate to drive metastasis by eliciting crosstalk between cancer and innate immunity. eLife 9, e50731 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    CAS  PubMed  Google Scholar 

  122. Tran, P. T. et al. Combined inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung adenocarcinomas and lymphomas. PLoS One 3, e2125 (2008).

    PubMed  PubMed Central  Google Scholar 

  123. Tran, P. T. et al. Survival and death signals can predict tumor response to therapy after oncogene inactivation. Sci. Transl. Med. 3, 103ra99 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. Bui, T. V. & Mendell, J. T. Myc: maestro of microRNAs. Genes Cancer 1, 568–575 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, Y., Choi, P. S., Casey, S. C., Dill, D. L. & Felsher, D. W. MYC through miR-17-92 Suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26, 262–272 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Chang, T.-C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet. 40, 43–50 (2008).

    CAS  PubMed  Google Scholar 

  127. Adams, C. M., Hiebert, S. W. & Eischen, C. M. Myc induces miRNA-mediated apoptosis in response to HDAC inhibition in hematologic malignancies. Cancer Res. 76, 736–748 (2016).

    CAS  PubMed  Google Scholar 

  128. Zhou, L. et al. Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res. 70, 8199–8210 (2010).

    CAS  PubMed  Google Scholar 

  129. Swaminathan, S. et al. MYC functions as a master switch for natural killer cell-mediated immune surveillance of lymphoid malignancies. Blood 132, 2619–2619 (2018).

    Google Scholar 

  130. Casey, S. C., Li, Y., Fan, A. C. & Felsher, D. W. Oncogene withdrawal engages the immune system to induce sustained cancer regression. J. Immunother. Cancer 2, 24 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Sharma, S. V., Fischbach, M. A., Haber, D. A. & Settleman, J. ‘Oncogenic shock’: explaining oncogene addiction through differential signal attenuation. Clin. Cancer Res. 12, 4392s–4395s (2006).

    CAS  PubMed  Google Scholar 

  132. Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249–3262 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kohl, N. E. et al. Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc. Natl Acad. Sci. USA 91, 9141–9145 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    CAS  PubMed  Google Scholar 

  135. Hori, S. S. et al. A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation. Sci. Rep. 11, 1341 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat. Med. 13, 1211–1218 (2007).

    CAS  PubMed  Google Scholar 

  137. Mahauad-Fernandez, W. D. & Felsher, D. W. The Myc and Ras partnership in cancer: indistinguishable alliance or contextual relationship? Cancer Res. 80, 3799–3802 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sun, L. et al. Gastric cancer mesenchymal stem cells derived IL-8 induces PD-L1 expression in gastric cancer cells via STAT3/mTOR-c-Myc signal axis. Cell Death Dis. 9, 928 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Kharma, B. et al. STAT1 drives tumor progression in serous papillary endometrial cancer. Cancer Res. 74, 6519–6530 (2014).

    CAS  PubMed  Google Scholar 

  140. Topper, M. J. et al. Epigenetic therapy Ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171, 1284–1300.e21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Melaiu, O. et al. PD-L1 is a therapeutic target of the bromodomain inhibitor JQ1 and, combined with HLA Class I, a promising prognostic biomarker in neuroblastoma. Clin. Cancer Res. 23, 4462–4472 (2017).

    CAS  PubMed  Google Scholar 

  143. Atsaves, V. et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31, 1633–1637 (2017).

    CAS  PubMed  Google Scholar 

  144. Pai, S. et al. CD47-SIRPα signaling induces epithelial-mesenchymal transition and cancer stemness and links to a poor prognosis in patients with oral squamous cell carcinoma. Cells 8, 1658 (2019).

    CAS  PubMed Central  Google Scholar 

  145. Kaur, S. et al. Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci. Rep. 3, 1673 (2013).

    PubMed  PubMed Central  Google Scholar 

  146. Li, W. et al. Targeting MYC activity in double-hit lymphoma with MYC and BCL2 and/or BCL6 rearrangements with epigenetic bromodomain inhibitors. J. Hematol. Oncol. 12, 73 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Kamijo, H. et al. Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47. Leukemia 34, 845–856 (2020).

    CAS  PubMed  Google Scholar 

  148. Felsher, D. W., Rhim, S. H. & Braun, J. A murine model for B-cell lymphomagenesis in immunocompromised hosts: natural killer cells are an important component of host resistance to premalignant B-cell lines. Cancer Res. 50, 7050–7056 (1990).

    CAS  PubMed  Google Scholar 

  149. El-Jawhari, J. J. et al. Blocking oncogenic RAS enhances tumour cell surface MHC class I expression but does not alter susceptibility to cytotoxic lymphocytes. Mol. Immunol. 58, 160–168 (2014).

    CAS  PubMed  Google Scholar 

  150. Ji, H. et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 25, 2105–2112 (2006).

    CAS  PubMed  Google Scholar 

  151. Van Dang, C. & Kim, J.-W. Convergence of cancer metabolism and immunity: an overview. Biomol. Ther. 26, 4–9 (2018).

    Google Scholar 

  152. Gouw A. M., Hsieh A. L., Stine Z. E. & Dang C.V. In: Tumor Cell Metabolism (Mazurek S., Shoshan M. eds) 101–122 (Springer, 2015).

  153. Dang, C. V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 3, a014217 (2013).

    PubMed  PubMed Central  Google Scholar 

  154. Gouw, A. M. et al. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab. 30, 556–572.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ricciardi, S. et al. The translational machinery of human CD4 T cells is poised for activation and controls the switch from quiescence to metabolic remodeling. Cell Metab. 28, 895–906.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Friesen, L. R., Gu, B. & Kim, C. H. A ligand-independent fast function of RARα promotes exit from metabolic quiescence upon T cell activation and controls T cell differentiation. Mucosal Immunol. 14, 100–112 (2021).

    CAS  PubMed  Google Scholar 

  157. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    CAS  PubMed  Google Scholar 

  158. Kapur, S. & Pal, A. Immune cell activation: stimulation, costimulation, and regulation of cellular activation. Immune Response Activation Immunomodul. https://doi.org/10.5772/intechopen.81568 (2019).

    Article  Google Scholar 

  159. Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Briggs, K. J. et al. Paracrine Induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166, 126–139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Bott, A. J. et al. Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 22, 1068–1077 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gerriets, V. A. & Rathmell, J. C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Verbist, K. C. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532, 389–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Eberlin, L. S. et al. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc. Natl Acad. Sci. USA 111, 10450–10455 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Allison, K. E., Coomber, B. L. & Bridle, B. W. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Immunology 152, 175–184 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kouidhi, S., Ben Ayed, F. & Elgaaied, A. B. Targeting tumor metabolism: a new challenge to improve immunotherapy. Front. Immunol. 9, 353 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. Massó-Vallés, D. & Soucek, L. Blocking myc to treat cancer: reflecting on two decades of omomyc. Cells 9, 883 (2020).

    PubMed Central  Google Scholar 

  169. Wolf, E. & Eilers, M. Targeting MYC proteins for tumor therapy. Annu. Rev. Cancer Biol. 4, 61–75 (2020).

    Google Scholar 

  170. McKeown, M. R. & Bradner, J. E. Therapeutic strategies to inhibit MYC. Cold Spring Harb. Perspect. Med. 4, a014266 (2014).

    PubMed  PubMed Central  Google Scholar 

  171. Fletcher, S. & Prochownik, E. V. Small-molecule inhibitors of the Myc oncoprotein. Biochim. Biophys. Acta 1849, 525–543 (2015).

    CAS  PubMed  Google Scholar 

  172. Whitfield, J. R., Beaulieu, M.-E. & Soucek, L. Strategies to inhibit myc and their clinical applicability. Front. Cell Dev. Biol. 5, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Carabet, L. A., Rennie, P. S. & Cherkasov, A. Therapeutic inhibition of myc in cancer. structural bases and computer-aided drug discovery approaches. Int. J. Mol. Sci. 20, 120 (2018).

    PubMed Central  Google Scholar 

  174. Madden, S. K., de Araujo, A. D., Gerhardt, M., Fairlie, D. P. & Mason, J. M. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer 20, 3 (2021).

    PubMed  PubMed Central  Google Scholar 

  175. Thng, D. K. H., Toh, T. B. & Chow, E. K.-H. Capitalizing on synthetic lethality of MYC to treat cancer in the digital age. Trends Pharmacol. Sci. 42, 166–182 (2021).

    CAS  PubMed  Google Scholar 

  176. Cascon, A. & Robledo, M. MAX and MYC: a heritable breakup. Cancer Res. 72, 3119–3124 (2012).

    CAS  PubMed  Google Scholar 

  177. Han, H. et al. Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36, 483–497.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Struntz, N. B. et al. Stabilization of the max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem. Biol. 26, 711–723.e14 (2019).

    CAS  PubMed  Google Scholar 

  179. Lustig, L. C. et al. Inhibiting MYC binding to the E-box DNA motif by ME47 decreases tumour xenograft growth. Oncogene 36, 6830–6837 (2017).

    CAS  PubMed  Google Scholar 

  180. Boike, L. et al. Discovery of a functional covalent ligand targeting an iIntrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13.e17 (2021).

    CAS  PubMed  Google Scholar 

  181. Pourdehnad, M. et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc. Natl Acad. Sci. USA 110, 11988–11993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wiegering, A. et al. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov. 5, 768–781 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Gustafson, W. C. et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26, 414–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Yang, D. et al. Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc. Natl Acad. Sci. USA 107, 13836–13841 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Xiao, D. et al. Polo-like kinase-1 regulates myc stabilization and activates a feedforward circuit promoting tumor cell survival. Mol. Cell 64, 493–506 (2016).

    CAS  PubMed  Google Scholar 

  186. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318 (2004).

    CAS  PubMed  Google Scholar 

  187. Farrell, A. S. et al. Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol. Cell. Biol. 33, 2930–2949 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Koh, C. M., Sabò, A. & Guccione, E. Targeting MYC in cancer therapy: RNA processing offers new opportunities. Bioessays 38, 266–275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ricker, J. L., Mata, J. E., Iversen, P. L. & Gattone, V. H. c-myc antisense oligonucleotide treatment ameliorates murine ARPKD. Kidney Int. 61 (Suppl. 1), S125–S131 (2002).

    PubMed  Google Scholar 

  192. Yu, B. W., Nguyen, D., Anderson, S. & Allegra, C. A. Phosphorothioated antisense c-myc oligonucleotide inhibits the growth of human colon carcinoma cells. Anticancer. Res. 17, 4407–4413 (1997).

    CAS  PubMed  Google Scholar 

  193. Cotter, F. E. Antisense oligonucleotides: considerations for lymphoma therapy. Hematology 1, 53–57 (1996).

    CAS  PubMed  Google Scholar 

  194. Dhanasekaran, R. et al. MYC ASO impedes tumorigenesis and elicits oncogene addiction in autochthonous transgenic mouse models of HCC and RCC. Mol. Ther. Nucleic Acids 21, 850–859 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Raina, K. et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 113, 7124–7129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Felsenstein, K. M. et al. Small molecule microarrays enable the identification of a selective, quadruplex-binding inhibitor of MYC expression. ACS Chem. Biol. 11, 139–148 (2016).

    CAS  PubMed  Google Scholar 

  198. Brown, R. V., Danford, F. L., Gokhale, V., Hurley, L. H. & Brooks, T. A. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J. Biol. Chem. 286, 41018–41027 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Dutta, D. et al. Cell penetrating thiazole peptides inhibit c-MYC expression via site-specific targeting of c-MYC G-quadruplex. Nucleic Acids Res. 46, 5355–5365 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Hu, M.-H. et al. Discovery of a new four-leaf clover-like ligand as a potent c-MYC transcription inhibitor specifically targeting the promoter G-quadruplex. J. Med. Chem. 61, 2447–2459 (2018).

    CAS  PubMed  Google Scholar 

  201. Panda, D., Saha, P., Das, T. & Dash, J. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat. Commun. 8, 16103 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Harbor, C. S., Dang, C. V. & Eisenman, R. N. Myc and the pathway to cancer (Cold Spring Harbor Laboratory Press, 2014).

  203. Harrison, C. Synthetic lethality enables targeting of MYC. Nat. Rev. Drug Discov. 11, 602–602 (2012).

    Google Scholar 

  204. Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012).

    CAS  PubMed  Google Scholar 

  205. Wang, Y. et al. Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 5, 501–512 (2004).

    CAS  PubMed  Google Scholar 

  206. Chen, L. et al. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J. Clin. Invest. 128, 446–462 (2018).

    PubMed  Google Scholar 

  207. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Krüger, K. et al. Multiple DNA damage-dependent and DNA damage-independent stress responses define the outcome of ATR/Chk1 targeting in medulloblastoma cells. Cancer Lett. 430, 34–46 (2018).

    PubMed  Google Scholar 

  210. Murga, M. et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat. Struct. Mol. Biol. 18, 1331–1335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Roeschert, I. et al. Combined inhibition of Aurora-A and ATR kinases results in regression of MYCN-amplified neuroblastoma. Nat. Cancer 2, 312–326 (2021).

    PubMed  PubMed Central  Google Scholar 

  212. Dammert, M. A. et al. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat. Commun. 10, 3485 (2019).

    PubMed  PubMed Central  Google Scholar 

  213. Kelly, G. L. et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev. 28, 58–70 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Kretzner, L. et al. Combining histone deacetylase inhibitor vorinostat with aurora kinase inhibitors enhances lymphoma cell killing with repression of c-Myc, hTERT, and microRNA levels. Cancer Res. 71, 3912–3920 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Pei, Y. et al. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 29, 311–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Lernoux, M. et al. Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCR-ABL/MYC-signaling: effect on imatinib resistance and stem cells. Clin. Epigenet. 12, 69 (2020).

    CAS  Google Scholar 

  217. Zhao, X. et al. Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia 27, 2341–2350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    PubMed  Google Scholar 

  219. Dhanasekaran, R. et al. Anti-miR-17 therapy delays tumorigenesis in MYC-driven hepatocellular carcinoma (HCC). Oncotarget 9, 5517–5528 (2018).

    PubMed  Google Scholar 

  220. Lai, I. et al. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J. Immunother. Cancer 6, 125 (2018).

    PubMed  PubMed Central  Google Scholar 

  221. Pan, Y. et al. Synergistic inhibition of pancreatic cancer with anti-PD-L1 and c-Myc inhibitor JQ1. Oncoimmunology 8, e1581529 (2019).

    PubMed  PubMed Central  Google Scholar 

  222. Devi, G. R. et al. In vivo bioavailability and pharmacokinetics of a c-MYC antisense phosphorodiamidate morpholino oligomer, AVI-4126, in solid tumors. Clin. Cancer Res. 11, 3930–3938 (2005).

    CAS  PubMed  Google Scholar 

  223. Tolcher, A. W. et al. Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J. Clin. Orthod. 33, 11006–11006 (2015).

    Google Scholar 

  224. Villanueva, M. T. Long path to MYC inhibition approaches clinical trials. Nat. Rev. Drug Discov. https://doi.org/10.1038/d41573-019-00055-2 (2019).

    Article  PubMed  Google Scholar 

  225. Shachaf, C. M. et al. Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. Cancer Res. 68, 5132–5142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Jung, M. et al. A myc activity signature predicts poor clinical outcomes in myc-associated cancers. Cancer Res. 77, 971–981 (2017).

    CAS  PubMed  Google Scholar 

  227. Tran, D. et al. Functional genomics analysis reveals a myc signature associated with a poor clinical prognosis in liposarcomas. Am. J. Pathol. 185, 717–728 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.D. receives grant support from the NIH (grant CA222676). A.D. has received support from Lymphoma Research Foundation. A.S.H. has received support from Lundbreck Foundation. A.M.G. has received support from the NIH (grant CA196585). D.W.F. receives grant support from the NIH (grants CA208735, CA253180, CA188383 and CA184384).

Author information

Authors and Affiliations

Authors

Contributions

R.D. and D.W.F. researched data for this manuscript. All authors contributed to the discussion of content and preparation of the manuscript.

Corresponding author

Correspondence to Dean W. Felsher.

Ethics declarations

Competing interests

D.W.F. is a consultant for Revolution Medicines, a company developing MYC pathway therapies, co-founder of Bachus and Molecular Decisions, and has had advisory roles for American Gene Technologies, Geron, Moderna and Regulus. The other authors declare no conflicts of interest.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks M. Eilers, C.M. Eischen, E.V. Prochownik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekaran, R., Deutzmann, A., Mahauad-Fernandez, W.D. et al. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 19, 23–36 (2022). https://doi.org/10.1038/s41571-021-00549-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00549-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer