Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advancing therapy for osteosarcoma

Abstract

Improving the survival of patients with osteosarcoma has long proved challenging, although the treatment of this disease is on the precipice of advancement. The increasing feasibility of molecular profiling together with the creation of both robust model systems and large, well-annotated tissue banks has led to an increased understanding of osteosarcoma biology. The historical invariability of survival outcomes and the limited number of agents known to be active in the treatment of this disease facilitate clinical trials designed to identify efficacious novel therapies using small cohorts of patients. In addition, trial designs will increasingly consider the genetic background of the tumour through biomarker-based patient selection, thereby enriching for clinical activity. Indeed, osteosarcoma cells are known to express a number of surface proteins that might be of therapeutic relevance, including B7-H3, GD2 and HER2, which can be targeted using antibody–drug conjugates and/or adoptive cell therapies. In addition, immune-checkpoint inhibition might augment the latter approach by helping to overcome the immunosuppressive tumour microenvironment. In this Review, we provide a brief overview of current osteosarcoma therapy before focusing on the biological insights from the molecular profiling and preclinical modelling studies that have opened new therapeutic opportunities in this disease.

Key points

  • Osteosarcoma is the most common primary malignant tumour of bone, with a peak incidence in adolescents and young adults coinciding with the pubertal growth spurt.

  • Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades.

  • Improved molecular characterization has revealed subcategories of osteosarcoma that might enable a precision medicine approach with agents targeting key alterations in a particular pathway.

  • Tumour-suppressor genes are commonly altered in this disease, particularly TP53 (>90%) and RB1 (30%). Molecular targets include receptor tyrosine kinases, CDK4/6, Aurora kinase B and DNA damage response pathways.

  • Immune-based targeted therapies, including monoclonal antibodies, antibody–drug conjugates and chimeric antigen receptor T cells targeting cell-surface proteins commonly overexpressed in osteosarcoma, are in active clinical development.

  • Owing to advances in biological understanding, the development of robust preclinical models, the feasibility of rapid clinical testing and novel treatment concepts, long-awaited improvements in the outcomes of patients with osteosarcoma are anticipated in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EFS with chemotherapy regimens comprising two, three or four drugs in patients with osteosarcoma.
Fig. 2: Molecular categories of osteosarcoma and responses to the corresponding molecularly targeted treatments in PPTC PDX models.
Fig. 3: Comparisons of the activity of ADCs and drugs similar to the ADC payloads in PDX models of osteosarcoma.
Fig. 4: Targeting the surfaceome of osteosarcoma.

Similar content being viewed by others

References

  1. Mirabello, L., Troisi, R. J. & Savage, S. A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115, 1531–1543 (2009).

    Article  PubMed  Google Scholar 

  2. Ottaviani, G. & Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 152, 3–13 (2009).

    Article  PubMed  Google Scholar 

  3. Bielack, S. S. et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776–790 (2002).

    Article  PubMed  Google Scholar 

  4. Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: current treatment and a collaborative pathway to success. J. Clin. Oncol. 33, 3029–3035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyers, P. A. et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children’s Oncology Group. J. Clin. Oncol. 26, 633–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Marina, N. M. et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 17, 1396–1408 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferrari, S. et al. Neoadjuvant chemotherapy with methotrexate, cisplatin, and doxorubicin with or without ifosfamide in nonmetastatic osteosarcoma of the extremity: an Italian sarcoma group trial ISG/OS-1. J. Clin. Oncol. 30, 2112–2118 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Daw, N. C. et al. Frontline treatment of localized osteosarcoma without methotrexate: results of the St. Jude Children’s Research Hospital OS99 trial. Cancer 117, 2770–2778 (2011).

    Article  PubMed  Google Scholar 

  9. Gaspar, N. et al. Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur. J. Cancer 88, 57–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Daw, N. C. et al. Recurrent osteosarcoma with a single pulmonary metastasis: a multi-institutional review. Br. J. Cancer 112, 278–282 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Buddingh, E. P. et al. Prognostic factors in pulmonary metastasized high-grade osteosarcoma. Pediatr. Blood Cancer 54, 216–221 (2010).

    PubMed  Google Scholar 

  12. Briccoli, A. et al. High grade osteosarcoma of the extremities metastatic to the lung: long-term results in 323 patients treated combining surgery and chemotherapy, 1985–2005. Surg. Oncol. 19, 193–199 (2010).

    Article  PubMed  Google Scholar 

  13. Goorin, A. M. et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J. Clin. Oncol. 20, 426–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Berrak, S. G., Pearson, M., Berberoglu, S., Ilhan, I. E. & Jaffe, N. High-dose ifosfamide in relapsed pediatric osteosarcoma: therapeutic effects and renal toxicity. Pediatr. Blood Cancer 44, 215–219 (2005).

    Article  PubMed  Google Scholar 

  15. Palmerini, E. et al. Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone. BMC Cancer 16, 280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lagmay, J. P. et al. Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through Children’s Cancer Group, Pediatric Oncology Group, and Children’s Oncology Group: learning from the past to move forward. J. Clin. Oncol. 34, 3031–3038 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arndt, C. A. et al. Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma: effects on disease-free survival and immunomodulation. a report from the Children’s Oncology Group. Clin. Cancer Res. 16, 4024–4030 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biegel, J. A., Womer, R. B. & Emanuel, B. S. Complex karyotypes in a series of pediatric osteosarcomas. Cancer Genet. Cytogenet. 38, 89–100 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Bridge, J. A. et al. Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet. Cytogenet. 95, 74–87 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Unni, K. K. & Dahlin, D. C. Osteosarcoma: pathology and classification. Semin. Roentgenol. 24, 143–152 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Dahlin, D. C. & Unni, K. K. Osteosarcoma of bone and its important recognizable varieties. Am. J. Surg. Pathol. 1, 61–72 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L. L. et al. Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children’s Oncology Group study. Br. J. Cancer 113, 57–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Slayton, W. B., Schultz, K. R., Silverman, L. B. & Hunger, S. P. How we approach Philadelphia chromosome-positive acute lymphoblastic leukemia in children and young adults. Pediatr. Blood Cancer 67, e28543 (2020).

    Article  PubMed  Google Scholar 

  25. Glover, J. et al. A summary of the osteosarcoma banking efforts: a report from the Children’s Oncology Group and the QuadW Foundation. Pediatr. Blood Cancer 62, 450–455 (2015).

    Article  PubMed  Google Scholar 

  26. Glover, J. et al. Osteosarcoma enters a post genomic era with in silico opportunities: generation of the High Dimensional Database for facilitating sarcoma biology research: a report from the Children’s Oncology Group and the QuadW Foundation. PLoS ONE 12, e0181204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Strauss, S. J. et al. Report from the 4th European Bone Sarcoma Networking meeting: focus on osteosarcoma. Clin. Sarcoma Res. 8, 17 (2018).

    Article  PubMed Central  Google Scholar 

  28. Wu, Z. L. et al. Development of a novel immune-related genes prognostic signature for osteosarcoma. Sci. Rep. 10, 18402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bousquet, M. et al. Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations. Ann. Oncol. 27, 738–744 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat. Commun. 8, 15936 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl Acad. Sci. USA 111, E5564–E5573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, C. C. & Livingston, J. A. Genomics and the immune landscape of osteosarcoma. Adv. Exp. Med. Biol. 1258, 21–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lorenz, S. et al. Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget 7, 5273–5288 (2016).

    Article  PubMed  Google Scholar 

  37. Wu, C. C. et al. Immuno-genomic landscape of osteosarcoma. Nat. Commun. 11, 1008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lau, C. et al. The Genomic Landscape of Osteosarcoma: a Target Report. 2019 CTOS Annual Meeting (2019).

  39. Sayles, L. C. et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 9, 46–63 (2019).

    CAS  PubMed  Google Scholar 

  40. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  PubMed  Google Scholar 

  41. Houghton, P. J. et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49, 928–940 (2007).

    Article  PubMed  Google Scholar 

  42. Rokita, J. L. et al. Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design. Cell Rep. 29, 1675–1689.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kopp, L. M. et al. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: a report from the Children’s Oncology Group. Eur. J. Cancer 121, 177–183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Isakoff, M. S. et al. A phase II study of eribulin in recurrent or refractory osteosarcoma: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 66, e27524 (2019).

    Article  PubMed  CAS  Google Scholar 

  45. Gill, J. et al. Dose-response effect of eribulin in preclinical models of osteosarcoma by the pediatric preclinical testing consortium. Pediatr. Blood Cancer 67, e28606 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Walkley, C. R. et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev. 22, 1662–1676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berman, S. D. et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc. Natl Acad. Sci. USA 105, 11851–11856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Feng, W. et al. Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther. Adv. Med. Oncol. 12, 1758835920922055 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Niu, J. et al. Identification of potential therapeutic targets and immune cell infiltration characteristics in osteosarcoma using bioinformatics strategy. Front. Oncol. 10, 1628 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Watanabe, A. et al. Osteosarcoma in Sprague-Dawley rats after long-term treatment with teriparatide (human parathyroid hormone (1-34)). J. Toxicol. Sci. 37, 617–629 (2012).

  52. He, Y. et al. cFOS-SOX9 axis reprograms bone marrow-derived mesenchymal stem cells into chondroblastic osteosarcoma. Stem Cell Rep. 8, 1630–1644 (2017).

    Article  CAS  Google Scholar 

  53. Zheng, B. et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 11, 16 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wagner, F. et al. Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma. Biomaterials 171, 230–246 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Angstadt, A. Y. et al. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: Signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosomes Cancer 50, 859–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Varshney, J., Scott, M. C., Largaespada, D. A. & Subramanian, S. Understanding the osteosarcoma pathobiology: a comparative oncology approach. Vet. Sci. 3, 3 (2016).

    Article  PubMed Central  Google Scholar 

  57. Gordon, I., Paoloni, M., Mazcko, C. & Khanna, C. The comparative oncology trials consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med. 6, e1000161 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Isakoff, M. S. et al. Rapid protocol enrollment in osteosarcoma: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 63, 370–371 (2016).

    Article  PubMed  Google Scholar 

  59. Grignani, G. et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann. Oncol. 23, 508–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Davis, L. E. et al. Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J. Clin. Oncol. 37, 1424–1431 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, M. et al. Abstract LB-353: pediatric preclinical testing program (PPTP) stage 1 evaluation of cabozantinib. Cancer Res. 73 (Suppl. 8), LB-353 (2013).

    Google Scholar 

  62. Italiano, A. et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 446–455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gaspar, N. et al. Single-agent expansion cohort of lenvatinib (LEN) and combination dose-finding cohort of LEN+etoposide (ETP)+ifosfamide (IFM) in patients (pts) aged 2 to ≤25 years with relapsed/refractory osteosarcoma (OS). J. Clin. Oncol. 36 (Suppl. 15), 11527 (2018).

    Article  Google Scholar 

  64. Aggerholm-Pedersen, N., Rossen, P., Rose, H. & Safwat, A. Pazopanib in the treatment of bone sarcomas: clinical experience. Transl Oncol. 13, 295–299 (2020).

    Article  PubMed  Google Scholar 

  65. Grignani, G. et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 16, 98–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Urciuoli, E. et al. Src nuclear localization and its prognostic relevance in human osteosarcoma. J. Cell Physiol. 233, 1658–1670 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Kolb, E. A. et al. Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 1198–1206 (2008).

    Article  PubMed  Google Scholar 

  68. Baird, K. et al. Results of a randomized, double-blinded, placebo-controlled, phase 2.5 study of saracatinib (AZD0530), in patients with recurrent osteosarcoma localized to lung. Sarcoma 2020, 7935475 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kubo, T. et al. Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer 112, 2119–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Chugh, R. et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J. Clin. Oncol. 27, 3148–3153 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kolb, E. A. et al. Preclinical evaluation of the combination of AZD1775 and irinotecan against selected pediatric solid tumors: a pediatric preclinical testing consortium report. Pediatr. Blood Cancer 67, e28098 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kreahling, J. M. et al. Wee1 inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gemcitabine in human sarcomas. PLoS ONE 8, e57523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. PosthumaDeBoer, J. et al. WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer 11, 156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou, Y. et al. Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1573–1582 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Higuchi, T. et al. Sorafenib and palbociclib combination regresses a cisplatinum-resistant osteosarcoma in a PDOX mouse model. Anticancer Res. 39, 4079 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Tavanti, E. et al. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma. Br. J. Cancer 109, 2607–2618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maris, J. M. et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the pediatric preclinical testing program (PPTP). Pediatr. Blood Cancer 55, 26–34 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. Zhao, Z. et al. Aurora B kinase as a novel molecular target for inhibition the growth of osteosarcoma. Mol. Carcinog. 58, 1056–1067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mossé, Y. P. et al. A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: Children’s Oncology Group Phase I and Pilot Consortium (ADVL0921). Clin. Cancer Res. 25, 3229 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fu, W. et al. The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol. Cancer Ther. 10, 1018–1027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gorlick, R. et al. Initial testing (stage 1) of the cyclin dependent kinase inhibitor SCH 727965 (dinaciclib) by the pediatric preclinical testing program. Pediatr. Blood Cancer 59, 1266–1274 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li, X. et al. Inhibition of ATR-Chk1 signaling blocks DNA double-strand-break repair and induces cytoplasmic vacuolization in metastatic osteosarcoma. Ther. Adv. Med. Oncol. 12, 1758835920956900 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kleinerman, E. S., Murray, J. L., Snyder, J. S., Cunningham, J. E. & Fidler, I. J. Activation of tumoricidal properties in monocytes from cancer patients following intravenous administration of liposomes containing muramyl tripeptide phosphatidylethanolamine. Cancer Res. 49, 4665–4670 (1989).

    CAS  PubMed  Google Scholar 

  84. Gordon, N. et al. Fas expression in lung metastasis from osteosarcoma patients. J. Pediatr. Hematol. Oncol. 27, 611–615 (2005).

    Article  PubMed  Google Scholar 

  85. Gordon, N. & Kleinerman, E. S. The role of Fas/FasL in the metastatic potential of osteosarcoma and targeting this pathway for the treatment of osteosarcoma lung metastases. Cancer Treat. Res. 152, 497–508 (2009).

    Article  PubMed  Google Scholar 

  86. Koshkina, N. V., Rao-Bindal, K. & Kleinerman, E. S. Effect of the histone deacetylase inhibitor SNDX-275 on Fas signaling in osteosarcoma cells and the feasibility of its topical application for the treatment of osteosarcoma lung metastases. Cancer 117, 3457–3467 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Gross, A. C. et al. IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight 3, e99791 (2018).

    Article  PubMed Central  Google Scholar 

  88. Liu, J. F. et al. CXCL13/CXCR5 interaction facilitates VCAM-1-dependent migration in human osteosarcoma. Int. J. Mol. Sci. 21, 6095 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  89. Morrow, J. J. et al. Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat. Med. 24, 176–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Murgai, M. et al. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med. 23, 1176–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Charan, M. et al. Tumor secreted ANGPTL2 facilitates recruitment of neutrophils to the lung to promote lung pre-metastatic niche formation and targeting ANGPTL2 signaling affects metastatic disease. Oncotarget 11, 510–522 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 3, 1–48 (1910).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jeys, L. M., Grimer, R. J., Carter, S. R., Tillman, R. M. & Abudu, A. Post operative infection and increased survival in osteosarcoma patients: are they associated? Ann. Surg. Oncol. 14, 2887–2895 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Chen, Y. U., Xu, S. F., Xu, M. & Yu, X. C. Postoperative infection and survival in osteosarcoma patients: reconsideration of immunotherapy for osteosarcoma. Mol. Clin. Oncol. 3, 495–500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koirala, P. et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci. Rep. 6, 30093 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koirala, P. et al. HHLA2, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival. Sci. Rep. 6, 31154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wolf-Dennen, K., Gordon, N. & Kleinerman, E. S. Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions. Oncoimmunology 9, 1747677 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Corre, I., Verrecchia, F., Crenn, V., Redini, F. & Trichet, V. The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells 9, 976 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  99. Kleinerman, E. S., Erickson, K. L., Schroit, A. J., Fogler, W. E. & Fidler, I. J. Activation of tumoricidal properties in human blood monocytes by liposomes containing lipophilic muramyl tripeptide. Cancer Res. 43, 2010–2014 (1983).

    CAS  PubMed  Google Scholar 

  100. Gisch, N., Buske, B., Heine, H., Lindner, B. & Zähringer, U. Synthesis of biotinylated muramyl tripeptides with NOD2-stimulating activity. Bioorg. Med. Chem. Lett. 21, 3362–3366 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Anderson, P. M. et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments. Pediatr. Blood Cancer 61, 238–244 (2014).

    Article  PubMed  Google Scholar 

  102. Bielack, S. S. et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J. Clin. Oncol. 33, 2279–2287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu, J. F. et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models. Oncotarget 6, 23662–23670 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Theruvath, J. et al. Abstract PR07: GD2 is a macrophage checkpoint molecule and combined GD2/CD47 blockade results in synergistic effects and tumor clearance in xenograft models of neuroblastoma and osteosarcoma. Cancer Res. 80 (Suppl. 14), PR07 (2020).

    Google Scholar 

  106. Harjunpaa, H., Llort Asens, M., Guenther, C. & Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang, A. Y.-C. Targeting VCAM1-a4b1 signaling to ameliorate pulmonary osteosarcoma metastasis. NIH https://grantome.com/grant/NIH/R21-CA218790-01 (2017).

  108. Fritzsching, B. et al. CD8+/FOXP3+-ratio in osteosarcoma microenvironment separates survivors from non-survivors: a multicenter validated retrospective study. Oncoimmunology 4, e990800 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Geukes Foppen, M. H., Donia, M., Svane, I. M. & Haanen, J. B. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 9, 1918–1935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guma, S. R. et al. Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr. Blood Cancer 61, 618–626 (2014).

    Article  PubMed  Google Scholar 

  111. Kiany, S., Huang, G. & Kleinerman, E. S. Effect of entinostat on NK cell-mediated cytotoxicity against osteosarcoma cells and osteosarcoma lung metastasis. Oncoimmunology 6, e1333214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tullius B. P., Setty B. A., Lee D. A. in Current Advances in Osteosarcoma: Clinical Perspectives: Past, Present and Future (eds Kleinerman E. S. & Gorlick R.) 141–154 (Springer International Publishing, 2020).

  113. Habib, S., Tariq, S. M. & Tariq, M. Chimeric antigen receptor-natural killer cells: the future of cancer immunotherapy. Ochsner J. 19, 186–187 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang, L. et al. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS ONE 8, e70689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McEachron, T. A., Triche, T. J., Sorenson, L., Parham, D. M. & Carpten, J. D. Profiling targetable immune checkpoints in osteosarcoma. Oncoimmunology 7, e1475873 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Le Cesne, A. et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study. Eur. J. Cancer 119, 151–157 (2019).

    Article  PubMed  CAS  Google Scholar 

  117. Tawbi, H. A. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18, 1493–1501 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Davis, K. L. et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 21, 541–550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  PubMed  CAS  Google Scholar 

  120. Dhupkar, P., Gordon, N., Stewart, J. & Kleinerman, E. S. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 7, 2654–2664 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hong, Y. K. et al. Epigenetic modulation enhances immunotherapy for hepatocellular carcinoma. Cell Immunol. 336, 66–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Lhuillier, C. et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J. Clin. Invest. 131, e138740 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  123. Zhang, B. CD73: a novel target for cancer immunotherapy. Cancer Res. 70, 6407–6411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roth, M. et al. Targeting glycoprotein NMB with antibody-drug conjugate, glembatumumab vedotin, for the treatment of osteosarcoma. Pediatr. Blood Cancer 63, 32–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Kolb, E. A. et al. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr. Blood Cancer 61, 1816–1821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cui, J. C. et al. Expression and clinical implications of leucine-rich repeat containing 15 (LRRC15) in osteosarcoma. J. Orthop. Res. 38, 2362–2372 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Hingorani, P. et al. ABBV-085, antibody-drug conjugate targeting LRRC15, is effective in osteosarcoma: a report by the Pediatric Preclinical Testing Consortium. Mol. Cancer Ther. 20, 535–540 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Gill J. H. P. et al. Evaluation of ABBV-085, an antibody-drug conjugate targeting LRRC15, in osteosarcoma by the Pediatric Preclinical Testing Consortium. Connective Tissue Oncology Society Meeting (Poster). 137 (2019).

  129. Demetri, G. D. et al. First-in-human phase 1 study of ABBV-085, an antibody-drug conjugate (ADC) targeting LRRC15, in sarcomas and other advanced solid tumors. J. Clin. Oncol. 37, 3004–3004 (2019).

    Article  Google Scholar 

  130. Gorlick, R. et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J. Clin. Oncol. 17, 2781–2788 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Gorlick, S. et al. HER-2 expression is not prognostic in osteosarcoma; a Children’s Oncology Group prospective biology study. Pediatr. Blood Cancer 61, 1558–1564 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gill J., Geller D., & Gorlick, R. in Current Advances in Osteosarcoma (ed. Kleinerman, M. D. E. S.) 161–177 (Springer International Publishing, 2014).

  133. Ebb, D. et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the Children’s Oncology Group. J. Clin. Oncol. 30, 2545–2551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Navai S. et al. Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas (AACR Annual Meeting, 2019).

  136. Modi, S. et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J. Clin. Oncol. 38, 1887–1896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hingorani, P. et al. Abstract LB-217: preclinical evaluation of trastuzumab deruxtecan (T-DXd; DS-8201a), a HER2 antibody-drug conjugate, in pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC). Cancer Res. 80 (Suppl. 16), LB-217 (2020).

    Google Scholar 

  138. Roth, M. et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer 120, 548–554 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Poon, V. I. et al. Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin. Sarcoma Res. 5, 4 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Keyel, M. E. & Reynolds, C. P. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics 13, 1–12 (2019).

    CAS  PubMed  Google Scholar 

  141. Hingorani, P. et al. Phase II study of antidisialoganglioside antibody, dinutuximab, in combination with GM-CSF in patients with recurrent osteosarcoma (AOST1421): a report from the Children’s Oncology Group. J. Clin. Oncol. 38 (Suppl. 15), 10508 (2020).

    Article  Google Scholar 

  142. Picarda, E., Ohaegbulam, K. C. & Zang, X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res. 22, 3425–3431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Onda, M., Wang, Q. C., Guo, H. F., Cheung, N. K. & Pastan, I. In vitro and in vivo cytotoxic activities of recombinant immunotoxin 8H9(Fv)-PE38 against breast cancer, osteosarcoma, and neuroblastoma. Cancer Res. 64, 1419–1424 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Kurmasheva, R. et al. Abstract C003: initial testing of m276-PBD CD276 antibody-drug conjugate in preclinical models of pediatric cancers by the Pediatric Preclinical Testing Consortium (PPTC). Mol. Cancer Ther. 18 (Suppl. 12), C003 (2019).

    Google Scholar 

  145. Seaman, S. et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31, 501–515.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Scribner, J. A. et al. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol. Cancer Ther. https://doi.org/10.1158/1535-7163.Mct-20-0116 (2020).

    Article  PubMed  Google Scholar 

  147. Powderly, J. D. et al. Preliminary dose escalation results from a phase I/II, first-in-human study of MGC018 (anti-B7-H3 antibody-drug conjugate) in patients with advanced solid tumors. J. Clin. Oncol. 38 (Suppl. 15), 3071–3071 (2020).

    Article  Google Scholar 

  148. Majzner, R. G. et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin. Cancer Res. 25, 2560–2574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hassan, S. E. et al. Cell surface receptor expression patterns in osteosarcoma. Cancer 118, 740–749 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Sevelda, F. et al. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J. Exp. Clin. Cancer Res. 34, 134 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Huang, Z. et al. Clinicopathological and prognostic values of ErbB receptor family amplification in primary osteosarcoma. Scand. J. Clin. Lab. Invest. 79, 601–612 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Schultz, L. Chimeric antigen receptor T cell therapy for pediatric B-ALL: narrowing the gap between early and long-term outcomes. Front. Immunol. 11, 1985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Moriarity, B. S. et al. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat. Genet. 47, 615–624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Parra, E. R., Francisco-Cruz, A. & Wistuba, I. I. State-of-the-art of profiling immune contexture in the era of multiplexed staining and digital analysis to study paraffin tumor tissues. Cancers 11, 247 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  157. Anninga, J. K. et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur. J. Cancer 47, 2431–2445 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Fuchs, N. et al. Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group’s protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann. Oncol. 9, 893–899 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Bacci, G. et al. Neoadjuvant chemotherapy for osteosarcoma of the extremity: long-term results of the Rizzoli’s 4th protocol. Eur. J. Cancer 37, 2030–2039 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Goorin, A. M. et al. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. J. Clin. Oncol. 21, 1574–1580 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Chou, A. J. et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer 115, 5339–5348 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Serra, M. et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int. J. Oncol. 29, 1459–1468 (2006).

    CAS  PubMed  Google Scholar 

  163. Whelan, J. S. et al. Survival from high-grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann. Oncol. 23, 1607–1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Link, M. P. et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N. Engl. J. Med. 314, 1600–1606 (1986).

    Article  CAS  PubMed  Google Scholar 

  165. Marec-Berard, P. et al. Methotrexate-etoposide-ifosfamide compared with doxorubicin-cisplatin-ifosfamide chemotherapy in osteosarcoma treatment, patients aged 18–25 years. J. Adolesc. Young Adult Oncol. 9, 172–182 (2020).

    Article  PubMed  Google Scholar 

  166. Winkler, K. et al. Neoadjuvant chemotherapy for osteogenic sarcoma: results of a Cooperative German/Austrian study. J. Clin. Oncol. 2, 617–624 (1984).

    Article  CAS  PubMed  Google Scholar 

  167. Winkler, K. et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J. Clin. Oncol. 6, 329–337 (1988).

    Article  CAS  PubMed  Google Scholar 

  168. Bramwell, V. H. et al. A randomized comparison of two short intensive chemotherapy regimens in children and young adults with osteosarcoma: results in patients with metastases: a Study of the European Osteosarcoma Intergroup. Sarcoma 1, 155–160 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Le Deley, M. C. et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur. J. Cancer 43, 752–761 (2007).

    Article  PubMed  CAS  Google Scholar 

  170. Ferrari, S. et al. Nonmetastatic osteosarcoma of the extremity: results of a neoadjuvant chemotherapy protocol (IOR/OS-3) with high-dose methotrexate, intraarterial or intravenous cisplatin, doxorubicin, and salvage chemotherapy based on histologic tumor response. Tumori 85, 458–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  171. Smeland, S. et al. Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders. Eur. J. Cancer 39, 488–494 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of R.G. is supported by The University of Texas MD Anderson Cancer Center as the H. Grant Taylor, M.D., W.W. Sutow, M.D. and Margaret P. Sullivan, M.D. Distinguished Chair in Pediatrics. J.G. and R.G. both acknowledge support from The Foster Foundation, Swim Across America, the Osteosarcoma Institute, the QuadW Foundation and the Barbara Epstein Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Richard Gorlick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks Bruno Fuchs, Dominique Heymann, Massimo Serra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bone Cancer Research Trust: https://www.bcrt.org.uk/

Children’s Oncology Group (COG): https://childrensoncologygroup.org/index.php/childrens-oncology-group

Count Me In: https://www.broadinstitute.org/count-me-in

EuroBoNeT: https://cordis.europa.eu/project/id/18814

ITCC P4: https://www.itccp4.eu

National Cancer Institute (NCI) Therapeutically Applicable Research to Generate Effective Treatments (TARGET) Osteosarcoma project: https://ocg.cancer.gov/programs/target/projects/osteosarcoma

NCI Paediatric Preclinical Testing Consortium: http://www.ncipptc.org/

Osteosarcoma Project: http://www.osproject.org

QuadW Foundation: http://www.quadw.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, J., Gorlick, R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol 18, 609–624 (2021). https://doi.org/10.1038/s41571-021-00519-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00519-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer