Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunogenicity of CAR T cells in cancer therapy

Abstract

Patient-derived T cells genetically reprogrammed to express CD19-specific chimeric antigen receptors (CARs) have shown remarkable clinical responses and are commercially available for the treatment of patients with certain advanced-stage B cell malignancies. Nonetheless, several trials have revealed pre-existing and/or treatment-induced immune responses to the mouse-derived single-chain variable fragments included in these constructs. These responses might have contributed to both treatment failure and the limited success of redosing strategies observed in some patients. Data from early phase clinical trials suggest that CAR T cells are also associated with immunogenicity-related events in patients with solid tumours. Generally, the clinical implications of anti-CAR immune responses are poorly understood and highly variable between different CAR constructs and malignancies. These observations highlight an urgent need to uncover the mechanisms of immunogenicity in patients receiving CAR T cells and develop validated assays to enable clinical detection. In this Review, we describe the current clinical evidence of anti-CAR immune responses and discuss how new CAR T cell technologies might impact the risk of immunogenicity. We then suggest ways to reduce the risks of anti-CAR immune responses to CAR T cell products that are advancing towards the clinic. Finally, we summarize measures that investigators could consider in order to systematically monitor and better comprehend the possible effects of immunogenicity during trials involving CAR T cells as well as in routine clinical practice.

Key points

  • Pre-existing and/or treatment-induced immunity to chimeric antigen receptor (CAR) constructs containing mouse-derived single-chain variable fragments are associated with treatment failure in certain patients and might limit the success of redosing strategies.

  • The possible effects of immunogenicity on CAR T cell persistence and function are currently poorly understood.

  • Novel technologies designed to enhance CAR T cell performance and/or the application of allogeneic CAR T cells might further amplify the likelihood of anti-CAR immune responses, thus necessitating strategies to overcome such risks.

  • Various monitoring, mitigation and management approaches can be used to reduce the risk of anti-CAR immunity, although validated assays enabling adequate assessments of anti-CAR immune responses remain an unmet need.

  • We advocate for the inclusion of CAR-associated immunogenicity analysis in both preclinical and clinical investigations of CAR T cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of action of anti-CAR immune responses.
Fig. 2: Differences in anti-CAR immune responses following the targeting of B cell versus solid-tumour antigens.
Fig. 3: Engineering CAR T cells to reduce their inherent immunogenicity.
Fig. 4: Strategies to avoid immune elimination of allogeneic CAR T cells.
Fig. 5: Monitoring, mitigation and management of anti-CAR immunity in the clinic.

Similar content being viewed by others

References

  1. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    PubMed  Google Scholar 

  3. MacKay, M. et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat. Biotechnol. 38, 233–244 (2020).

    CAS  PubMed  Google Scholar 

  4. Elsallab, M., Levine, B. L., Wayne, A. S. & Abou-El-Enein, M. CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncol. 21, e104–e116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4, 132ra53 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Brudno, J. N. & Kochenderfer, J. N. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 34, 45–55 (2019).

    CAS  PubMed  Google Scholar 

  7. Fucá, G., Reppel, L., Landoni, E., Savoldo, B. & Dotti, G. Enhancing chimeric antigen receptor T cell efficacy in solid tumors. Clin. Cancer Res. 26, 2444–2451 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Schmidts, A. & Maus, M. V. Making CAR T cells a solid option for solid tumors. Front. Immunol. 9, 2593 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Jensen, M. C. et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant. 16, 1245–1256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamers, C. H. J. et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117, 72–82 (2011).

    CAS  PubMed  Google Scholar 

  11. Riddell, S. R. et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. 2, 216–223 (1996).

    CAS  PubMed  Google Scholar 

  12. Klee, G. G. Human anti-mouse antibodies. Arch. Pathol. Lab. Med. 124, 921–923 (2000).

    CAS  PubMed  Google Scholar 

  13. Blanco, I. et al. Antiidiotypic response against murine monoclonal antibodies reactive with tumor-associated antigen TAG-72. J. Clin. Immunol. 17, 96–106 (1997).

    CAS  PubMed  Google Scholar 

  14. Jaffers, G. J. et al. Monoclonal antibody therapy. Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation 41, 572–578 (1986).

    CAS  PubMed  Google Scholar 

  15. Sege, K. & Peterson, P. A. Use of anti-idiotypic antibodies as cell-surface receptor probes. Proc. Natl Acad. Sci. USA 75, 2443–2447 (1978).

    CAS  PubMed  Google Scholar 

  16. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maus, M. V. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 1, 26–31 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baudouin, V. et al. Anaphylactic shock caused by immunoglobulin E sensitization after retreatment with the chimeric anti–interleukin-2 receptor monoclonal antibody basiliximab. Transplantation 76, 459–463 (2003).

    CAS  PubMed  Google Scholar 

  19. Awasthi, R. et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 4, 560–572 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. European Medicines Agency. EMA - Yescarta / axicabtagene ciloleucel - Assessment report. https://www.ema.europa.eu/en/documents/assessment-report/yescarta-epar-public-assessment-report_en.pdf (2018).

  21. Mueller, K. T. et al. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin. Cancer Res. 24, 6175–6184 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. European Medicines Agency. EMA - Kymriah / tisagenlecleucel - Assessment Report. https://www.ema.europa.eu/en/documents/assessment-report/kymriah-epar-public-assessment-report_en.pdf (2018).

  23. Kite Pharma. Kite Pharma - Tecartus / brexucabtagene autoleucel - Full prescribing information. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel (2020).

  24. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

    CAS  PubMed  Google Scholar 

  25. Till, B. G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  PubMed  Google Scholar 

  27. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahadeo, K. M. et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat. Rev. Clin. Oncol. 16, 45–63 (2019).

    CAS  PubMed  Google Scholar 

  33. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  Google Scholar 

  34. Majzner, R. G. & Mackall, C. L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8, 1219–1226 (2018).

    CAS  PubMed  Google Scholar 

  35. Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B cell malignancies. Blood https://doi.org/10.1182/blood.2020006770 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ali, S. A. et al. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    CAS  PubMed  Google Scholar 

  39. Brudno, J. N. et al. T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36, 2267–2280 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, J. et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl Acad. Sci. USA 116, 9543–9551 (2019).

    CAS  PubMed  Google Scholar 

  41. Yan, Z. et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 6, e521–e529 (2019).

    PubMed  Google Scholar 

  42. Zhao, W.-H. et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 11, 141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maciocia, P. M. et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat. Med. 23, 1416–1423 (2017).

    CAS  PubMed  Google Scholar 

  44. Gomes-Silva, D. et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285–296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rasaiyaah, J., Georgiadis, C., Preece, R., Mock, U. & Qasim, W. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy. JCI Insight 3, e99442 (2018).

    PubMed Central  Google Scholar 

  46. Mamonkin, M., Rouce, R. H., Tashiro, H. & Brenner, M. K. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126, 983–992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hill, L. C. et al. Safety and anti-tumor activity of CD5 CAR T-cells in patients with relapsed/refractory T-cell malignancies. Blood 134, 199–199 (2019).

    Google Scholar 

  48. Hege, K. M. et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer 5, 22 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonzales, N. Minimizing immunogenicity of the SDR-grafted humanized antibody CC49 by genetic manipulation of the framework residues. Mol. Immunol. 40, 337–349 (2003).

    CAS  PubMed  Google Scholar 

  51. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    CAS  PubMed  Google Scholar 

  52. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    CAS  PubMed  Google Scholar 

  53. Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahmed, N. et al. HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma. JAMA Oncol. 3, 1094–1101 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Moritz, D., Wels, W., Mattern, J. & Groner, B. Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc. Natl Acad. Sci. USA 91, 4318–4322 (1994).

    CAS  PubMed  Google Scholar 

  59. Wels, W., Harwerth, I. M., Mueller, M., Groner, B. & Hynes, N. E. Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res. 52, 6310–6317 (1992).

    CAS  PubMed  Google Scholar 

  60. Hegde, M. et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 11, 3549 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gargett, T. et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol. Ther. 24, 1135–1149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Haas, A. R. et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol. Ther. 27, 1919–1929 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Junghans, R. P. et al. Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76, 1257–1270 (2016).

    CAS  PubMed  Google Scholar 

  64. Maude, S. L. et al. Durable remissions with humanized CD19-targeted chimeric antigen receptor (CAR)-modified T cells in CAR-naive and CAR-exposed children and young adults with relapsed/refractory acute lymphoblastic leukemia. Blood 130, 1319–1319 (2017).

    Google Scholar 

  65. Cao, J. et al. Potent anti-leukemia activities of humanized CD19-targeted chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia. Am. J. Hematol. 93, 851–858 (2018).

    CAS  PubMed  Google Scholar 

  66. Zhao, Y. et al. Treatment with humanized selective CD19CAR-T cells shows efficacy in highly treated B-ALL patients who have relapsed after receiving murine-based CD19CAR-T therapies. Clin. Cancer Res. 25, 5595–5607 (2019).

    CAS  PubMed  Google Scholar 

  67. Holliger, P. & Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23, 1126–1136 (2005).

    CAS  PubMed  Google Scholar 

  68. Clarke, S. C. et al. Multispecific antibody development platform based on human heavy chain antibodies. Front. Immunol. 9, 3037 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. Li, N., Fu, H., Hewitt, S. M., Dimitrov, D. S. & Ho, M. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc. Natl Acad. Sci. USA 114, E6623–E6631 (2017).

    CAS  PubMed  Google Scholar 

  70. Schneider, D. et al. A unique human immunoglobulin heavy chain variable domain-only CD33 CAR for the treatment of acute myeloid leukemia. Front. Oncol. 8, 539 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Mikkilineni, L. et al. T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor with a fully-human heavy-chain-only antigen recognition domain induce remissions in patients with relapsed multiple myeloma. Blood 134, 3230–3230 (2019).

    Google Scholar 

  72. Lam, N. et al. Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat. Commun. 11, 283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, T., Barber, A. & Sentman, C. L. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 66, 5927–5933 (2006).

    CAS  PubMed  Google Scholar 

  74. Frazao, A. et al. NKG2D/NKG2-ligand pathway offers new opportunities in cancer treatment. Front. Immunol. 10, 661 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Deng, X. et al. Antitumor activity of NKG2D CAR-T cells against human colorectal cancer cells in vitro and in vivo. Am. J. Cancer Res. 9, 945–958 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kahlon, K. S. et al. Specific recognition and killing of glioblastoma multiforme by interleukin 13-Zetakine redirected cytolytic T cells. Cancer Res. 64, 9160–9166 (2004).

    CAS  PubMed  Google Scholar 

  77. Sengupta, S., Thaci, B., Crawford, A. C. & Sampath, P. Interleukin-13 receptor alpha 2-targeted glioblastoma immunotherapy. BioMed. Res. Int. 2014, 952128 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pameijer, C. R. J. et al. Conversion of a tumor-binding peptide identified by phage display to a functional chimeric T cell antigen receptor. Cancer Gene Ther. 14, 91–97 (2007).

    CAS  PubMed  Google Scholar 

  80. Whilding, L. M. et al. Targeting of aberrant αvβ6 integrin expression in solid tumors using chimeric antigen receptor-engineered T cells. Mol. Ther. 25, 259–273 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Muniappan, A., Banapour, B., Lebkowski, J. & Talib, S. Ligand-mediated cytolysis of tumor cells: use of heregulin-ζ chimeras to redirect cytotoxic T lymphocytes. Cancer Gene Ther. 7, 128–134 (2000).

    CAS  PubMed  Google Scholar 

  82. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lohmueller, J. J., Ham, J. D., Kvorjak, M. & Finn, O. J. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology 7, e1368604 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Hudecek, M. et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19, 3153–3164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Guest, R. D. et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors. J. Immunother. 28, 203–211 (2005).

    CAS  PubMed  Google Scholar 

  86. Till, B. G. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112, 2261–2271 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jonnalagadda, M. et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid Fc receptor binding and improve T cell persistence and antitumor efficacy. Mol. Ther. 23, 757–768 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hombach, A., Hombach, A. A. & Abken, H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther. 17, 1206–1213 (2010).

    CAS  PubMed  Google Scholar 

  89. Shum, T., Kruse, R. L. & Rooney, C. M. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opin. Biol. Ther. 18, 653–664 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Conlon, K. C. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33, 74–82 (2015).

    CAS  PubMed  Google Scholar 

  91. Chen, Y. et al. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin. Cancer Res. 25, 2915–2924 (2019).

    CAS  PubMed  Google Scholar 

  92. Hu, B. et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 20, 3025–3033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, T.-S. & Shin, E.-C. The activation of bystander CD8+ T cells and their roles in viral infection. Exp. Mol. Med. 51, 1–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Pacheco, Y. et al. Bystander activation and autoimmunity. J. Autoimmun. 103, 102301 (2019).

    CAS  PubMed  Google Scholar 

  96. Heczey, A. et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nat. Med. 26, 1686–1690 (2020).

    PubMed  Google Scholar 

  97. Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7, 1238–1247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Berger, C., Flowers, M. E., Warren, E. H. & Riddell, S. R. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107, 2294–2302 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    PubMed  PubMed Central  Google Scholar 

  101. Zhou, X. et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood 125, 4103–4113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, X. et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118, 1255–1263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Arber, C. et al. The immunogenicity of virus-derived 2A sequences in immunocompetent individuals. Gene Ther. 20, 958–962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mizuguchi, H., Xu, Z., Ishii-Watabe, A., Uchida, E. & Hayakawa, T. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol. Ther. 1, 376–382 (2000).

    CAS  PubMed  Google Scholar 

  105. Wiebking, V. et al. Metabolic engineering generates a transgene-free safety switch for cell therapy. Nat. Biotechnol. 38, 1441–1450 (2020).

    PubMed  Google Scholar 

  106. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS  PubMed  Google Scholar 

  107. Lu, Y. et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat. Med. 26, 732–740 (2020).

    CAS  PubMed  Google Scholar 

  108. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    CAS  PubMed  Google Scholar 

  109. Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    PubMed  Google Scholar 

  110. Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kagoya, Y. et al. Genetic ablation of HLA class I, class II, and the T cell receptor enables allogeneic T cells to be used for adoptive T cell therapy. Cancer Immunol. Res. 8, 926–936 (2020).

    CAS  PubMed  Google Scholar 

  112. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10, 105–112 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, X.-H., Tee, L. Y., Wang, X.-G., Huang, Q.-S. & Yang, S.-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4, e264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Abou-El-Enein, M. et al. Human genome editing in the clinic: new challenges in regulatory benefit-risk assessment. Cell Stem Cell 21, 427–430 (2017).

    CAS  PubMed  Google Scholar 

  117. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    CAS  PubMed  Google Scholar 

  118. Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).

    CAS  PubMed  Google Scholar 

  119. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    CAS  Google Scholar 

  120. Suchin, E. J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981 (2001).

    CAS  PubMed  Google Scholar 

  121. DeWolf, S. et al. Quantifying size and diversity of the human T cell alloresponse. JCI Insight 3, e121256 (2018).

    PubMed Central  Google Scholar 

  122. Spierings, E. et al. Multicenter analyses demonstrate significant clinical effects of minor histocompatibility antigens on GvHD and GvL after HLA-matched related and unrelated hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 19, 1244–1253 (2013).

    CAS  PubMed  Google Scholar 

  123. Benjamin, R. et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396, 1885–1894 (2020).

    CAS  PubMed  Google Scholar 

  124. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, H. et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e7 (2019).

    CAS  PubMed  Google Scholar 

  126. Lanza, R., Russell, D. W. & Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 19, 723–733 (2019).

    CAS  PubMed  Google Scholar 

  127. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).

    CAS  PubMed  Google Scholar 

  129. Muranski, P. et al. Increased intensity lymphodepletion and adoptive immunotherapy — how far can we go? Nat. Clin. Pract. Oncol. 3, 668–681 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    CAS  PubMed  Google Scholar 

  131. Tzannou, I. et al. Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein-Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 35, 3547–3557 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Leen, A. M. et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121, 5113–5123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Melenhorst, J. J. et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood 116, 4700–4702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Heczey, A. et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124, 2824–2833 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Deniger, D. C. et al. Bispecific T-cells expressing polyclonal repertoire of endogenous γδ T-cell receptors and introduced CD19-specific chimeric antigen receptor. Mol. Ther. 21, 638–647 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yakoub-Agha, I. et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 105, 297–316 (2020).

    PubMed  PubMed Central  Google Scholar 

  139. Kansagra, A. J. et al. Clinical utilization of chimeric antigen receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL) – an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transpl. 54, 1868–1880 (2019).

    CAS  Google Scholar 

  140. Jain, T. et al. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transpl. 25, 2305–2321 (2019).

    CAS  Google Scholar 

  141. Ramos, C. A. et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J. Clin. Invest. 127, 3462–3471 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Potthoff, B., McBlane, F., Spindeldreher, S. & Sickert, D. A cell-based immunogenicity assay to detect antibodies against chimeric antigen receptor expressed by tisagenlecleucel. J. Immunol. Methods 476, 112692 (2020).

    CAS  PubMed  Google Scholar 

  143. Jahn, E.-M. & Schneider, C. K. How to systematically evaluate immunogenicity of therapeutic proteins - regulatory considerations. N. Biotechnol. 25, 280–286 (2009).

    CAS  PubMed  Google Scholar 

  144. European Medicines Agency. Immunogenicity assessment of biotechnology-derived therapeutic proteins (EMEA/CHMP/BMWP/14327/2006). https://www.ema.europa.eu/en/immunogenicity-assessment-biotechnology-derived-therapeutic-proteins (2018).

  145. Shankar, G. et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. AAPS J. 16, 658–673 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. US Food and Drug Administration. Immunogenicity Testing of Therapeutic Protein Products — Developing and Validating Assays for Anti-Drug Antibody Detection (FDA-2009-D-0539; 03/15/2019). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-testing-therapeutic-protein-products-developing-and-validating-assays-anti-drug (2020).

  147. Zhang, H. et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat. Med. 11, 1238–1243 (2005).

    CAS  PubMed  Google Scholar 

  148. Maude, S. L. et al. Efficacy and safety of humanized chimeric antigen receptor (CAR)-modified T cells targeting CD19 in children with relapsed/refractory ALL. Blood 126, 683 (2015).

    Google Scholar 

  149. Li, M.-Y. et al. Secondary donor-derived humanized CD19-modified CAR-T cells induce remission in relapsed/refractory mixed phenotype acute leukemia after allogeneic hematopoietic stem cell transplantation: a case report. Biomark. Res. 8, 36 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Shah, N. N. et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38, 1938–1950 (2020).

    CAS  PubMed  Google Scholar 

  151. Pan, J. et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia 33, 2854–2866 (2019).

    CAS  PubMed  Google Scholar 

  152. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    CAS  PubMed  Google Scholar 

  153. Yang, Y. & Wilson, J. M. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J. Immunol. 155, 2564–2570 (1995).

    CAS  PubMed  Google Scholar 

  154. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Scott, A. M., Allison, J. P. & Wolchok, J. D. Monoclonal antibodies in cancer therapy. Cancer Immunol. Res. 12 (2012).

  156. Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2, 112–120 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of N.A. and M.H. is supported by the US NIH PHS grant U54-CA23256 and by Stand Up to Cancer–St Baldrick’s Paediatric Dream Team Translational Research Grant (SU2C-AACR-DT1113). The work of A.S.W. is supported by the US National Cancer Institute [P30CA014089]. The content of this publication does not necessarily reflect the views of policies of the Department of Health and Human Services nor does its mention of trade names, commercial products or organizations imply endorsement by the U.S. Government. The authors thank Catherine Gillespie (Baylor College of Medicine, USA) for her assistance in editing the manuscript and thank Naomi Taylor and Christopher Chien (Pediatric Oncology Branch, National Cancer Institute, NIH, USA) for their critical review of the figures.

Review criteria

We conducted a literature screen and identified 120 clinical trial publications describing the use of chimeric antigen receptor (CAR) T cells, out of which 34 reported on the investigation of immunogenicity using laboratory assays (Box 1). A complete list of these trials, including information on the assays used to characterize immunogenicity, CAR design, trial outcomes and preconditioning regimens, is available in Supplementary Table 1. Data cut-off July 15, 2020.

Author information

Authors and Affiliations

Authors

Contributions

D.L.W., E.F. and M.A. researched data for the manuscript. All authors made a contribution to discussions of content. D.L.W., E.F., M.A.P., N.A., M.H.a., M.H.e., B.S., N.N.S., C.J.T., A.S.W. and M.A. wrote the manuscript. All authors edited and/or reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Mohamed Abou-el-Enein.

Ethics declarations

Competing interests

M.A.P. has acted as an advisor for Mesoblast and Novartis, has received research funding from Adaptive and Miltenyi, and has received honoraria for educational activities from Miltenyi and Novartis. N.A. has acted as a consultant for Adaptimmune and continues to consult for Equillium (pro bono) and The Children’s Cancer Hospital Egypt 57357 on medical education and research development, has received one-time royalties from Celgene and Cell Medica, and is a named inventor on patents and patent applications in the field of chimeric antigen receptor (CAR) T cell therapy owned by Baylor College of Medicine. M. Hamieh is listed on patents relating to CAR technologies and has received royalties from Atara Biotherapeutics, Fate Therapeutics and Takeda Pharmaceuticals. M. Hegde is a named inventor on patents and patent applications in the field of CAR T cell therapy owned by Baylor College of Medicine. M.R. has acted as a consultant of AbClon, Bristol-Myers Squibb (BMS), Mesoblast, NanoString, and Novartis, has received research support from Adaptive and Miltenyi, and is listed on patents relating to CAR technologies and receives royalties from Novartis and Tmunity. B.S. has acted as a consultant of Tessa Therapeutics, has received research funding from Bellicum Pharmaceuticals, Bluebird Bio, Cell Medica and Tessa Therapeutics, and is listed on patents in the field of CAR and T cell receptor (TCR) therapy. C.J.T. has served on the scientific advisory boards of ArsenalBio, Caribou Biosciences, Century Therapeutics, Eureka Therapeutics, Myeloid Therapeutics, Precision Biosciences and T-CURX, has acted as an ad hoc consultant of Allogene, Amgen, AstraZeneca, Nektar Therapeutics and PACT Pharma, has stock/options in ArsenalBio, Caribou Biosciences, Eureka Therapeutics, Myeloid Therapeutics and Precision Biosciences, has received research funding from AstraZeneca, Juno Therapeutics/BMS, Minerva, Nektar Therapeutics and TCR2 Therapeutics, and is listed on a patent licensed to Juno Therapeutics. A.S.W. has received research support from Kite Pharma and Institut de Recherches Internationales Servier. E.F., D.L.W., N.N.S. and M.A. declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks Marcela Maus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, D.L., Fritsche, E., Pulsipher, M.A. et al. Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol 18, 379–393 (2021). https://doi.org/10.1038/s41571-021-00476-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00476-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer