Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the NK cell platform for cancer immunotherapy

Abstract

Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system that are capable of killing virally infected and/or cancerous cells. Nearly 20 years ago, NK cell-mediated immunotherapy emerged as a safe and effective treatment approach for patients with advanced-stage leukaemia. Subsequently, the field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. In general, the development of NK cell-directed therapies has two main focal points: optimizing the source of therapeutic NK cells for adoptive transfer and enhancing NK cell cytotoxicity and persistence in vivo. A wide variety of sources of therapeutic NK cells are currently being tested clinically, including haploidentical NK cells, umbilical cord blood NK cells, stem cell-derived NK cells, NK cell lines, adaptive NK cells, cytokine-induced memory-like NK cells and chimeric antigen receptor NK cells. A plethora of methods to augment the cytotoxicity and longevity of NK cells are also under clinical investigation, including cytokine-based agents, NK cell-engager molecules and immune-checkpoint inhibitors. In this Review, we highlight the variety of ways in which diverse NK cell products and their auxiliary therapeutics are being leveraged to target human cancers. We also identify future avenues for NK cell therapy research.

Key points

  • Natural killer (NK) cell-based therapies are emerging as safe and efficacious treatments for some cancers.

  • Generally, the two main considerations relating to NK cell therapies are the choice of NK cell source and the method of in vivo enhancement of NK cell function; determining approaches to optimize both of these aspects is of high clinical interest.

  • Therapeutic NK cells include haploidentical NK cells, chimeric antigen receptor NK cells, stem cell-derived NK cells, umbilical cord blood NK cells, NK cell lines, adaptive NK cells and cytokine-induced memory-like NK cells.

  • Auxiliary methods for enhancing the therapeutic activity of NK cells in vivo include cytokine-based agents, NK cell-engager molecules (such as TriKEs, ROCK engagers, NKCEs and TriNKETs) and immune-checkpoint inhibitors.

  • Potential advantages that NK cell therapies have over T cell therapies include more manageable safety profiles and fewer graft restrictions (for example, no requirement for autologous cells, providing opportunities for off-the-shelf products).

  • NK cell therapies remain subject to important immunosuppressive barriers in the tumour microenvironment; the future success of these therapies will require a better understanding of how these suppressive factors operate and how they can be overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NK cells respond to virally infected and transformed cells via balancing signals.
Fig. 2: Summary of the various approaches to enhancing NK cell effector function.

Similar content being viewed by others

References

  1. Herberman, R. B., Nunn, M. E., Holden, H. T. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    CAS  PubMed  Google Scholar 

  2. Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    CAS  PubMed  Google Scholar 

  3. Colonna, M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104–1117 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Scoville, S. D., Freud, A. G. & Caligiuri, M. A. Modeling human natural killer cell development in the era of innate lymphoid cells. Front. Immunol. 8, 360 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Male, V. et al. Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. J. Immunol. 185, 3913–3918 (2010).

    CAS  PubMed  Google Scholar 

  6. Cichocki, F., Grzywacz, B. & Miller, J. S. Human NK cell development: one road or many? Front. Immunol. 10, 2078 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Melsen, J. E., Lugthart, G., Lankester, A. C. & Schilham, M. W. Human circulating and tissue-resident CD56bright natural killer cell populations. Front. Immunol. 7, 262 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Wagner, J. A. et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J. Clin. Invest. 127, 4042–4058 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R. & Phillips, J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J. Immunol. 136, 4480–4486 (1986).

    CAS  PubMed  Google Scholar 

  10. Prager, I. et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J. Exp. Med. 216, 2113–2127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bryceson, Y. T., March, M. E., Ljunggren, H.-G. & Long, E. O. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol. Rev. 214, 73–91 (2006).

    CAS  PubMed  Google Scholar 

  12. Romee, R. et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121, 3599–3608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Barrow, A. D., Martin, C. J. & Colonna, M. The natural cytotoxicity receptors in health and disease. Front. Immunol. 10, 909 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zingoni, A. et al. NKG2D and its ligands: “one for all, all for one”. Front. Immunol. 9, 476 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Long, E. O. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol. Rev. 224, 70–84 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Parham, P., Norman, P. J., Abi-Rached, L. & Guethlein, L. A. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Phil. Trans. R. Soc. B 367, 800–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernardini, G., Antonangeli, F., Bonanni, V. & Santoni, A. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases. Front. Immunol. 7, 402 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Kärre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 55, 221–228 (2002).

    PubMed  Google Scholar 

  20. Weng, W.-K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    CAS  PubMed  Google Scholar 

  21. Varchetta, S. et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 67, 11991–11999 (2007).

    CAS  PubMed  Google Scholar 

  22. Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K. & Oliveira, M. J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Vitale, M., Cantoni, C., Pietra, G., Mingari, M. C. & Moretta, L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur. J. Immunol. 44, 1582–1592 (2014).

    CAS  PubMed  Google Scholar 

  24. Molgora, M. et al. The yin-yang of the interaction between myelomonocytic cells and NK cells. Scand. J. Immunol. 88, e12705 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Batlle, E. & Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaiatz-Bittencourt, V., Finlay, D. K. & Gardiner, C. M. Canonical TGF-β signaling pathway represses human NK cell metabolism. J. Immunol. 200, 3934–3941 (2018).

    CAS  PubMed  Google Scholar 

  27. Viel, S. et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 9, ra19 (2016).

    PubMed  Google Scholar 

  28. Otegbeye, F. et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One 13, e0191358 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Ravi, R. et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun. 9, 741 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Knudson, K. M. et al. M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 7, e1426519 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Terrén, I., Orrantia, A., Vitallé, J., Zenarruzabeitia, O. & Borrego, F. NK cell metabolism and tumor microenvironment. Front. Immunol. 10, 2278 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Parodi, M. et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front. Immunol. 9, 2358 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Doubrovina, E. S. et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J. Immunol. 171, 6891–6899 (2003).

    CAS  PubMed  Google Scholar 

  34. Wu, J. D. et al. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J. Clin. Invest. 114, 560–568 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferrari de Andrade, L. et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 359, 1537–1542 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bufler, P. et al. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc. Natl Acad. Sci. USA 99, 13723–13728 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarhan, D. et al. Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol. Res. 6, 766–775 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Molgora, M. et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 551, 110–114 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016).

    CAS  PubMed  Google Scholar 

  41. Veluchamy, J. P. et al. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front. Immunol. 8, 631 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Parkhurst, M. R., Riley, J. P., Dudley, M. E. & Rosenberg, S. A. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. 17, 6287–6297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Henig, I. & Zuckerman, T. Hematopoietic stem cell transplantation—50 years of evolution and future perspectives. Rambam Maimonides Med. J. 5, e0028 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Luznik, L. et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transpl. 14, 641–650 (2008).

    CAS  Google Scholar 

  45. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    CAS  PubMed  Google Scholar 

  46. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    CAS  PubMed  Google Scholar 

  47. Bachanova, V. et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 123, 3855–3863 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mills, C. D. & North, R. J. Expression of passively transferred immunity against an established tumor depends on generation of cytolytic T cells in recipient. Inhibition suppressor T cells. J. Exp. Med. 157, 1448–1460 (1983).

    CAS  PubMed  Google Scholar 

  49. Sorror, M. L. et al. Comparing morbidity and mortality of HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative and myeloablative conditioning: influence of pretransplantation comorbidities. Blood 104, 961–968 (2004).

    CAS  PubMed  Google Scholar 

  50. Dalle, J.-H. et al. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatric Res. 57, 649–655 (2005).

    CAS  Google Scholar 

  51. Luevano, M. et al. The unique profile of cord blood natural killer cells balances incomplete maturation and effective killing function upon activation. Hum. Immunol. 73, 248–257 (2012).

    CAS  PubMed  Google Scholar 

  52. Tanaka, H. et al. Analysis of natural killer (NK) cell activity and adhesion molecules on NK cells from umbilical cord blood. Eur. J. Haematol. 71, 29–38 (2003).

    CAS  PubMed  Google Scholar 

  53. Spanholtz, J. et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One 6, e20740 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Arai, S. et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10, 625–632 (2008).

    CAS  PubMed  Google Scholar 

  55. Gong, J. H., Maki, G. & Klingemann, H. G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8, 652–658 (1994).

    CAS  PubMed  Google Scholar 

  56. Suck, G. et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol. Immunother. 65, 485–492 (2016).

    CAS  PubMed  Google Scholar 

  57. Jochems, C. et al. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget 7, 86359–86373 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Knorr, D. A. et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2, 274–283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Woll, P. S. et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 113, 6094–6101 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hermanson, D. L. et al. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells 34, 93–101 (2016).

    CAS  PubMed  Google Scholar 

  61. Nagai, Y. et al. CD38 knockout primary NK cells to prevent fratricide and boost daratumumab activity [abstract]. Blood 134 (Suppl. 1), 870 (2019).

    Google Scholar 

  62. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    CAS  PubMed  Google Scholar 

  63. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. [No authors listed] Natural killer cells for cancer immunotherapy: a new CAR is catching up. EBioMedicine 39, 1–2 (2019).

  67. Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018).

    CAS  PubMed  Google Scholar 

  68. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Carlsten, M. & Childs, R. W. Genetic manipulation of NK cells for cancer immunotherapy: techniques and clinical implications. Front. Immunol. 6, 266 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fujisaki, H. et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 69, 4010–4017 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Denman, C. J. et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE 7, e30264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ojo, E. O. et al. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  74. Paust, S., Blish, C. A. & Reeves, R. K. Redefining memory: building the case for adaptive NK cells. J. Virol. 91, e00169-17 (2017).

  75. Rölle, A., Meyer, M., Calderazzo, S., Jäger, D. & Momburg, F. Distinct HLA-E peptide complexes modify antibody-driven effector functions of adaptive NK cells. Cell Rep. 24, 1967–1976.e4 (2018).

    PubMed  Google Scholar 

  76. Cichocki, F. et al. CD56dimCD57+NKG2C+NK cell expansion is associated with reduced leukemia relapse after reduced intensity HCT. Leukemia 30, 456–463 (2016).

    CAS  PubMed  Google Scholar 

  77. Cichocki, F. et al. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res. 77, 5664–5675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Berrien-Elliott, M. M., Wagner, J. A. & Fehniger, T. A. Human cytokine-induced memory-like (CIML) NK cells. J. Innate Immun. 7, 563–571 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl Med. 8, 357ra123 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. Williams, R. et al. Role of recipient CD8+ T cell exhaustion in the rejection of adoptively transferred haploidentical NK cells. Blood 128, 503 (2016).

    Google Scholar 

  81. Grimm, E. A., Mazumder, A., Zhang, H. Z. & Rosenberg, S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2- activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155, 1823–1841 (1982).

    CAS  PubMed  Google Scholar 

  82. Lotze, M. T. et al. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 41, 4420–4425 (1981).

    CAS  PubMed  Google Scholar 

  83. Mule, J. J., Shu, S., Schwarz, S. L. & Rosenberg, S. A. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225, 1487–1489 (1984).

    CAS  PubMed  Google Scholar 

  84. Rosenberg, S. A., Mulé, J. J., Spiess, P. J., Reichert, C. M. & Schwarz, S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J. Exp. Med. 161, 1169–1188 (1985).

    CAS  PubMed  Google Scholar 

  85. Lotze, M. T., Line, B. R., Mathisen, D. J. & Rosenberg, S. A. The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): implications for the adoptive immunotherapy of tumors. J. Immunol. 125, 1487–1493 (1980).

    CAS  PubMed  Google Scholar 

  86. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    CAS  PubMed  Google Scholar 

  87. Phillips, J. H., Gemlo, B. T., Myers, W. W., Rayner, A. A. & Lanier, L. L. In vivo and in vitro activation of natural killer cells in advanced cancer patients undergoing combined recombinant interleukin-2 and LAK cell therapy. J. Clin. Oncol. 5, 1933–1941 (1987).

    CAS  PubMed  Google Scholar 

  88. Hercend, T. et al. Characterization of natural killer cells with antileukemia activity following allogeneic bone marrow transplantation. Blood 67, 722–728 (1986).

    CAS  PubMed  Google Scholar 

  89. Burns, L. J. et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transpl. 32, 177–186 (2003).

    CAS  Google Scholar 

  90. Miller, J. S., Prosper, F. & McCullar, V. Natural killer (NK) cells are functionally abnormal and NK cell progenitors are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collection. Blood 90, 3098–3105 (1997).

    CAS  PubMed  Google Scholar 

  91. Soiffer, R. J., Murray, C., Gonin, R. & Ritz, J. Effect of low-dose interleukin-2 on disease relapse after T-cell depleted allogeneic bone marrow transplantation. Blood 84, 964–971 (1994).

    CAS  PubMed  Google Scholar 

  92. Smith, K. A. Interleukin-2: inception, impact, and implications. Science 240, 1169–1176 (1988).

    CAS  PubMed  Google Scholar 

  93. Rosenberg, S. A. et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889–897 (1987).

    CAS  PubMed  Google Scholar 

  94. Shah, M. H. et al. A phase I study of ultra low dose interleukin-2 and stem cell factor in patients with HIV infection or HIV and cancer. Clin. Cancer Res. 12, 3993–3996 (2006).

    CAS  PubMed  Google Scholar 

  95. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hirakawa, M. et al. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells. JCI Insight 1, e89278 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    CAS  PubMed  Google Scholar 

  98. Grabstein, K. H. et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965–968 (1994).

    CAS  PubMed  Google Scholar 

  99. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403 (1994).

    CAS  PubMed  Google Scholar 

  100. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    CAS  PubMed  Google Scholar 

  101. Bergamaschi, C. et al. Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood 120, e1–e8 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kobayashi, H. et al. Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105, 721–727 (2005).

    CAS  PubMed  Google Scholar 

  103. Tang, F. et al. Activity of recombinant human interleukin-15 against tumor recurrence and metastasis in mice. Cell Mol. Immunol. 5, 189–196 (2008).

    PubMed  PubMed Central  Google Scholar 

  104. Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 1969–1974 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cheever, M. A. Twelve immunotherapy drugs that could cure cancers. Immunol. Rev. 222, 357–368 (2008).

    CAS  PubMed  Google Scholar 

  106. Conlon, K. C. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33, 74–82 (2015).

    CAS  PubMed  Google Scholar 

  107. Miller, J. S. et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin. Cancer Res. 24, 1525–1535 (2018).

    CAS  PubMed  Google Scholar 

  108. Cooley, S. et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 3, 1970–1980 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, W. et al. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor αSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res. 73, 3075–3086 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, P. S. et al. IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 7, 16130–16145 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fehniger, T. A. et al. First-in-human phase I combination of the IL-15 receptor super agonist complex ALT-803 with a therapeutic (anti-CD20) monoclonal antibody (mAb) for patients with relapsed or refractory indolent non-Hodgkin lymphoma (iNHL) [abstract]. Cancer Res. 78 (Suppl. 13), CT146 (2018).

    Google Scholar 

  113. Melaiu, O., Lucarini, V., Cifaldi, L. & Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol. 10, 3038 (2020).

    PubMed  PubMed Central  Google Scholar 

  114. Vallera, D. A. et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sarhan, D. et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2, 1459–1469 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting nkp46 trigger protective tumor immunity. Cell 177, 1701–1713.e16 (2019).

    CAS  PubMed  Google Scholar 

  117. Genetic Engineering & Biotechnology News. Merck & Co. partners with Dragonfly on NK-based cancer immunotherapies. GEN https://www.genengnews.com/news/merck-co-partners-with-dragonfly-on-nk-based-cancer-immunotherapies (2018).

  118. André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Romagné, F. et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114, 2667–2677 (2009).

    PubMed  PubMed Central  Google Scholar 

  120. Benson, D. M. et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 118, 6387–6391 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Korde, N. et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica 99, e81–e83 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Carlsten, M. et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res. 22, 5211–5222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vey, N. et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120, 4317–4323 (2012).

    CAS  PubMed  Google Scholar 

  124. Armand, P. et al. A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia https://doi.org/10.1038/s41375-020-0939-1 (2020).

  125. Bristol Myers Squibb. Interim phase 1/2 data show encouraging clinical benefit for lirilumab in combination with Opdivo (nivolumab) in patients with advanced platinum refractory squamous cell carcinoma of the head and neck. BMS https://news.bms.com/press-release/bristolmyers/interim-phase-12-data-show-encouraging-clinical-benefit-lirilumab-combina (2016).

  126. Bevelacqua, V. et al. Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget 3, 882–892 (2012).

    PubMed  PubMed Central  Google Scholar 

  127. Gao, J., Zheng, Q., Xin, N., Wang, W. & Zhao, C. CD155, an onco-immunologic molecule in human tumors. Cancer Sci. 108, 1934–1938 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    CAS  PubMed  Google Scholar 

  129. Sun, H. et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology 70, 168–183 (2019).

    CAS  PubMed  Google Scholar 

  130. Blake, S. J. et al. Suppression of metastases using a new lymphocyte checkpoint target for cancer immunotherapy. Cancer Discov. 6, 446–459 (2016).

    CAS  PubMed  Google Scholar 

  131. Dong, W. et al. The mechanism of anti-PD-L1 antibody efficacy against PD-L1 negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov. 9, 1422–1437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Juliá, E. P., Amante, A., Pampena, M. B., Mordoh, J. & Levy, E. M. Avelumab, an IgG1 anti-PD-L1 immune checkpoint inhibitor, triggers NK cell-mediated cytotoxicity and cytokine production against triple negative breast cancer cells. Front. Immunol. 9, 2140 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Benson, D. M. Jr et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116, 2286–2294 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Beldi-Ferchiou, A. et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7, 72961–72977 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. Pesce, S. et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J. Allergy Clin. Immunol. 139, 335–346.e3 (2017).

    CAS  PubMed  Google Scholar 

  136. Li, Y. et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol. Cancer 15, 55 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Vari, F. et al. Immune evasion via PD-1/PD-L1 on NK-cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 131, 1809–1819 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Liu, Y. et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene 36, 6143–6153 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Türeci, Ö., Schmitt, H., Fadle, N., Pfreundschuh, M. & Sahin, U. Molecular definition of a novel human galectin which is immunogenic in patients with Hodgkin’s disease. J. Biol. Chem. 272, 6416–6422 (1997).

    PubMed  Google Scholar 

  141. Folgiero, V. et al. TIM-3/Gal-9 interaction induces IFNγ-dependent IDO1 expression in acute myeloid leukemia blast cells. J. Hematol. Oncol. 8, 36 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Xu, L. et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int. Immunopharmacol. 29, 635–641 (2015).

    CAS  PubMed  Google Scholar 

  143. da Silva, I. P. et al. Reversal of NK cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol. Res. 2, 410–422 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Triebel, F. et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405 (1990).

    CAS  PubMed  Google Scholar 

  145. Baixeras, E. et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med. 176, 327–337 (1992).

    CAS  PubMed  Google Scholar 

  146. Huard, B., Prigent, P., Tournier, M., Bruniquel, D. & Triebel, F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur. J. Immunol. 25, 2718–2721 (1995).

    CAS  PubMed  Google Scholar 

  147. Khan, M., Arooj, S. & Wang, H. NK cell-based immune checkpoint inhibition. Front. Immunol. 11, 167 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Workman, C. J. & Vignali, D. A. A. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J. Immunol. 174, 688–695 (2005).

    CAS  PubMed  Google Scholar 

  149. Woo, S.-R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS  PubMed  Google Scholar 

  150. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion during chronic viral infection by multiple inhibitory receptors. Nat. Immunol. 10, 29–37 (2009).

    CAS  PubMed  Google Scholar 

  151. Maçon-Lemaître, L. & Triebel, F. The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells. Immunology 115, 170–178 (2005).

    PubMed  PubMed Central  Google Scholar 

  152. Huard, B., Tournier, M. & Triebel, F. LAG-3 does not define a specific mode of natural killing in human. Immunol. Lett. 61, 109–112 (1998).

    CAS  PubMed  Google Scholar 

  153. Taborda, N. A. et al. Short communication: low expression of activation and inhibitory molecules on NK cells and CD4+ T cells is associated with viral control. AIDS Res. Hum. Retroviruses 31, 636–640 (2015).

    CAS  PubMed  Google Scholar 

  154. Miyazaki, T., Dierich, A., Benoist, C. & Mathis, D. Independent modes of natural killing distinguished in mice lacking Lag3. Science 272, 405–408 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.A.M. researched data for the article and was the primary author. J.S.M. made substantial contributions to writing and revising the article.

Corresponding author

Correspondence to Jeffrey S. Miller.

Ethics declarations

Competing interests

J.S.M. consults for and holds stock in Fate Therapeutics and GT Biopharma. These competing interests have been reviewed and managed by the University of Minnesota in accordance with its conflict of interest policy. J.A.M. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks E. Shpall and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, J.A., Miller, J.S. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 18, 85–100 (2021). https://doi.org/10.1038/s41571-020-0426-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0426-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research