Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical development and potential of photothermal and photodynamic therapies for cancer

Abstract

Light-activated, photosensitizer-based therapies have been established as safe modalities of tumour ablation for numerous cancer indications. Two main approaches are available: photodynamic therapy, which results in localized chemical damage in the target lesions, and photothermal therapy, which results in localized thermal damage. Whereas the administration of photosensitizers is a key component of photodynamic therapy, exogenous photothermal contrast agents are not required for photothermal therapy but can enhance the efficiency and efficacy of treatment. Over the past decades, great strides have been made in the development of phototherapeutic drugs and devices as cancer treatments, but key challenges have restricted their widespread clinical use outside of certain dermatological indications. Improvements in the tumour specificity of photosensitizers, achieved through targeting or localized activation, could provide better outcomes with fewer adverse effects, as could combinations with chemotherapies or immunotherapies. In this Review, we provide an overview of the current clinical progress of phototherapies for cancer and discuss the emerging preclinical bioengineering approaches that have the potential to overcome challenges in this area and thus improve the efficiency and utility of such treatments.

Key points

  • Photodynamic therapy is predicated on the localized activation of photosensitizers within tumours in order to induce chemical damage and thus the death of tumour cells; this approach has been used in the clinic for >40 years for the treatment of diverse cancers, including superficial skin lesions and oesophageal and lung tumours.

  • Photothermal therapy (PTT) agents, which can be used to increase the efficiency of localized light-based heating and ablation of tumour tissues, have not yet been tested in large clinical trials; laser ablation without PTT agents has been used clinically.

  • Relative to single-modality approaches, drug–device combinations complicate clinical development; therefore, compelling efficacy and safety benefits are needed to support the use of such platforms in favour of competing ablative therapies.

  • Novel preclinical phototherapy agents have been engineered with advanced targeting and activation mechanisms.

  • These next-generation molecules and nanomaterials hold the potential to reduce adverse effects and/or improve the effectiveness of photodynamic therapy and PTT, leading to better outcomes and increased clinical adoption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General procedure and mechanisms of action for PTT and PDT.
Fig. 2: Timeline of select approvals of PDT photosensitizers for cancer indications.
Fig. 3: The use of nanoparticles and ligands to target cancers through PTT and PDT.
Fig. 4: Activatable photosensitizers for cancer-specific PDT.
Fig. 5: Potential combinations of PDT and/or PTT with other cancer therapies.

Similar content being viewed by others

References

  1. Ackroyd, R., Kelty, C., Brown, N. & Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol. 74, 656–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Daniell, M. D. & Hill, J. S. A history of photodynamic therapy. Aust. N. Z. J. Surg. 61, 340–348 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Finsen, N. R. Phototherapy (Edward Arnold Publishers Ltd., 1901).

  4. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article  Google Scholar 

  5. Kapany, N. S., Peppers, N. A., Zweng, H. C. & Flocks, M. Retinal photocoagulation by lasers. Nature 199, 146–149 (1963).

    Article  CAS  PubMed  Google Scholar 

  6. Goldman, L. A review: applications of the laser beam in cancer biology. Int. J. Cancer 1, 309–318 (1966).

    Article  Google Scholar 

  7. Sultan, R. A. Tumour ablation by laser in general surgery. Lasers Med. Sci. 5, 185–193 (1990).

    Article  Google Scholar 

  8. Perry, R. R., Smith, P. D., Evans, S. & Pass, H. I. Intravenous vs intraperitoneal sensitizer: implications for intraperitoneal photodynamic therapy. Photochem. Photobiol. 53, 335–340 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Knavel, E. M. & Brace, C. L. Tumor ablation: common modalities and general practices. Tech. Vasc. Interv. Radiol. 16, 192–200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Juarranz, A., Jaen, P., Sanz-Rodriguez, F., Cuevas, J. & Gonzalez, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl Oncol. 10, 148–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110, 2795–2838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jung, H. S. et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47, 2280–2297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, Y., Bhattarai, P., Dai, Z. & Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48, 2053–2108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chitgupi, U., Qin, Y. & Lovell, J. F. Targeted nanomaterials for phototherapy. Nanotheranostics 1, 38–58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sharman, W. M., Allen, C. M. & van Lier, J. E. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today 4, 507–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Li, X. et al. Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord. Chem. Rev. 379, 147–160 (2019).

    Article  CAS  Google Scholar 

  19. Ethirajan, M., Chen, Y., Joshi, P. & Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Garland, M. J., Cassidy, C. M., Woolfson, D. & Donnelly, R. F. Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Med. Chem. 1, 667–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Wainwright, M. Non-porphyrin photosensitizers in biomedicine. Chem. Soc. Rev. 25, 351–359 (1996).

    Article  CAS  Google Scholar 

  22. Kamkaew, A. et al. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 42, 77–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Lucky, S. S., Soo, K. C. & Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990–2042 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Li, X., Kim, J., Yoon, J. & Chen, X. Cancer-associated, stimuli-driven, turn on theranostics for multimodality imaging and therapy. Adv. Mater. 29, 1606857 (2017).

    Article  CAS  Google Scholar 

  25. Feng, G. X. & Liu, B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc. Chem. Res. 51, 1404–1414 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Pogue, B. W. et al. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys. Med. Biol. 61, R57–R89 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, J. T. Progress of medical lasers: fundamentals and applications. Med. Devices Diagn. Eng. 1, 36–41 (2016).

    Google Scholar 

  28. van den Bergh, H. On the evolution of some endoscopic light delivery systems for photodynamic therapy. Endoscopy 30, 392–407 (1998).

    Article  PubMed  Google Scholar 

  29. Shafirstein, G. et al. Interstitial photodynamic therapy – a focused review. Cancers 9, 12 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  30. Panjehpour, M., Overholt, B. F., Denovo, R. C., Sneed, R. E. & Petersen, M. G. Centering balloon to improve esophageal photodynamic therapy. Lasers Surg. Med. 12, 631–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Moseley, H. Light distribution and calibration of commercial PDT LED arrays. Photochem. Photobiol. Sci. 4, 911–914 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Fitzmaurice, S. & Eisen, D. B. Daylight photodynamic therapy: what is known and what is yet to be determined. Dermatol. Surg. 42, 286–295 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Allison, R. R., Sibata, C. H., Downie, G. H. & Cuenca, R. E. A clinical review of PDT for cutaneous malignancies. Photodiagnosis Photodyn. Ther. 3, 214–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Casas, A., Di Venosa, G., Hasan, T. & Al, B. Mechanisms of resistance to photodynamic therapy. Curr. Med. Chem. 18, 2486–2515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo, D., Carter, K. A., Miranda, D. & Lovell, J. F. Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci. 4, 1600106 (2017).

    Article  CAS  Google Scholar 

  36. Ng, C. W., Li, J. C. & Pu, K. Y. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater. 28, 1804688 (2018).

    Article  CAS  Google Scholar 

  37. Wan, M. T. & Lin, J. Y. Current evidence and applications of photodynamic therapy in dermatology. Clin. Cosmet. Investig. Dermatol. 7, 145–163 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Baskaran, R., Lee, J. & Yang, S.-G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 22, 25 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dougherty, T. J. et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38, 2628–2635 (1978).

    CAS  PubMed  Google Scholar 

  40. Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Allison, R. R., Mota, H. C. & Sibata, C. H. Clinical PD/PDT in North America: an historical review. Photodiagnosis Photodyn. Ther. 1, 263–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, Z. An update on the regulatory status of PDT photosensitizers in China. Photodiagnosis Photodyn. Ther. 5, 285–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Ormond, A. B. & Freeman, H. S. Dye sensitizers for photodynamic therapy. Materials 6, 817–840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Advanz Pharma. Advanz Pharma, June 2019 Corporate Presentation https://www.advanzpharma.com/media/uploads/ADVANZ-PHARMA_Corporate-Presentation_June-2019_VF.pdf (2019).

  45. Dougherty, T. J., Cooper, M. T. & Mang, T. S. Cutaneous phototoxic occurrences in patients receiving Photofrin®. Lasers Surg. Med. 10, 485–488 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Hamblin, M. R. Photodynamic therapy for cancer: what's past is prologue. Photochem. Photobiol. 96, 506–516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oliveira, J. et al. A first in human study using photodynamic therapy with Redaporfin in advanced head and neck cancer. J. Clin. Oncol. 35, e14056 (2017).

    Article  Google Scholar 

  48. Pandey, R. K. et al. Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy. Lasers Surg. Med. 38, 445–467 (2006).

    Article  PubMed  Google Scholar 

  49. Fisher, C. et al. Photodynamic therapy for the treatment of vertebral metastases: a phase I clinical trial. Clin. Cancer. Res. 25, 5766–5776 (2019).

    Article  PubMed  Google Scholar 

  50. van Straten, D., Mashayekhi, V., de Bruijn, H. S., Oliveira, S. & Robinson, D. J. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers 9, 19 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  51. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  52. Qumseya, B. J., David, W. & Wolfsen, H. C. Photodynamic therapy for Barrett's esophagus and esophageal carcinoma. Clin. Endosc. 46, 30–37 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ferguson, M. K., Martin, T. R., Reeder, L. B. & Olak, J. Mortality after esophagectomy: risk factor analysis. World J. Surg. 21, 599–604 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Lightdale, C. J. et al. Photodynamic therapy with porfimer sodium versus thermal ablation therapy with Nd:YAG laser for palliation of esophageal cancer: a multicenter randomized trial. Gastrointest. Endosc. 42, 507–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Litle, V. R. et al. Photodynamic therapy as palliation for esophageal cancer: experience in 215 patients. Ann. Thorac. Surg. 76, 1687–1692 (2003).

    Article  PubMed  Google Scholar 

  56. Sibille, A., Lambert, R., Souquet, J.-C., Sabben, G. & Descos, F. Long-term survival after photodynamic therapy for esophageal cancer. Gastroenterology 108, 337–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Wolfsen, H. C., Hemminger, L. L., Wallace, M. B. & DeVault, K. R. Clinical experience of patients undergoing photodynamic therapy for Barrett's dysplasia or cancer. Aliment. Pharmacol. Ther. 20, 1125–1131 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Overholt, B. F. et al. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett's esophagus: international, partially blinded, randomized phase III trial. Gastrointest. Endosc. 62, 488–498 (2005).

    Article  PubMed  Google Scholar 

  59. Kohoutova, D. et al. Long-term outcomes of the randomized controlled trial comparing 5-aminolaevulinic acid and Photofrin photodynamic therapy for Barrett’s oesophagus related neoplasia. Scand. J. Gastroenterol. 53, 527–532 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Kato, H. et al. Photodynamic therapy (PDT) of lung cancer: experience of the Tokyo medical university. Photodiagnosis Photodyn. Ther. 1, 49–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Yano, T. et al. Phase I study of photodynamic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer. Radiat. Oncol. 7, 113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, H., Minamide, T. & Yano, T. Role of photodynamic therapy in the treatment of esophageal cancer. Dig. Endosc. 31, 508–516 (2019).

    Article  PubMed  Google Scholar 

  63. Panjehpour, M., Overholt, B. F., Haydek, J. M. & Lee, S. G. Results of photodynamic therapy for ablation of dysplasia and early cancer in Barrett’s esophagus and effect of oral steroids on stricture formation. Am. J. Gastroenterol. 95, 2177–2184 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Simone, C. B. II & Cengel, K. A. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin. Oncol. 41, 820–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Balchum, O. J., Doiron, D. R. & Huth, G. C. HpD photodynamic therapy for obstructing lung cancer. Prog. Clin. Biol. Res. 170, 727–745 (1984).

    CAS  PubMed  Google Scholar 

  66. Moghissi, K. et al. The place of bronchoscopic photodynamic therapy in advanced unresectable lung cancer: experience of 100 cases1. Eur. J. Cardiothorac. Surg. 15, 1–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Lam, S. et al. A randomized comparative study of the safety and efficacy of photodynamic therapy using photofrin II combined with palliative radiotherapy versus palliative radiotherapy alone in patients with inoperable obstructive non-small cell bronchogenic carcinoma. Photochem. Photobiol. 46, 893–897 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Diaz-Jimenez, J. P. et al. Efficacy and safety of photodynamic therapy versus Nd-YAG laser resection in NSCLC with airway obstruction. Eur. Respir. J. 14, 800–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Furuse, K. et al. A prospective phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J. Clin. Oncol. 11, 1852–1857 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Kato, H., Okunaka, T. & Shimatani, H. Photodynamic therapy for early stage bronchogenic carcinoma. J. Clin. Laser Med. Surg. 14, 235–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Furukawa, K. et al. Locally recurrent central-type early stage lung cancer <1.0 cm in diameter after complete remission by photodynamic therapy. Chest 128, 3269–3275 (2005).

    Article  PubMed  Google Scholar 

  72. Wang, S., Bromley, E., Xu, L., Chen, J. C. & Keltner, L. Talaporfin sodium. Expert. Opin. Pharmacother. 11, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Kato, H. et al. Phase II clinical study of photodynamic therapy using mono-l-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer 42, 103–111 (2003).

    Article  PubMed  Google Scholar 

  74. Okunaka, T. et al. Photodynamic therapy for peripheral lung cancer. Lung Cancer 43, 77–82 (2004).

    Article  PubMed  Google Scholar 

  75. Pass, H. I. et al. Phase III randomized trial of surgery with or without intraoperative photodynamic therapy and postoperative immunochemotherapy for malignant pleural mesothelioma. Ann. Surg. Oncol. 4, 628–633 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Biel, M. A. Photodynamic therapy of head and neck cancers. Methods Mol. Biol. 635, 281–293 (2010).

    Article  PubMed  Google Scholar 

  77. Nyst, H. J., Tan, I. B., Stewart, F. A. & Balm, A. J. M. Is photodynamic therapy a good alternative to surgery and radiotherapy in the treatment of head and neck cancer? Photodiagnosis Photodyn. Ther. 6, 3–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Jerjes, W., Upile, T., Akram, S. & Hopper, C. The surgical palliation of advanced head and neck cancer using photodynamic therapy. Clin. Oncol. 22, 785–791 (2010).

    Article  CAS  Google Scholar 

  79. Wile, A. G., Novotny, J., Mason, G. R., Passy, V. & Berns, M. W. Photoradiation therapy of head and neck cancer. Prog. Clin. Biol. Res. 170, 681–691 (1984).

    CAS  PubMed  Google Scholar 

  80. Biel, M. A. Photodynamic therapy treatment of early oral and laryngeal cancers†. Photochem. Photobiol. 83, 1063–1068 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Hopper, C. et al. mTHPC-mediated photodynamic therapy for early oral squamous cell carcinoma. Int. J. Cancer 111, 138–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Meulemans, J., Delaere, P. & Vander Poorten, V. Photodynamic therapy in head and neck cancer: indications, outcomes, and future prospects. Curr. Opin. Otolaryngol. Head Neck Surg. 27, 136–141 (2019).

    Article  PubMed  Google Scholar 

  83. Tan, I. B. et al. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study. Head Neck 32, 1597–1604 (2010).

    Article  PubMed  Google Scholar 

  84. D'Cruz, A. K., Robinson, M. H. & Biel, M. A. mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study of 128 patients. Head Neck 26, 232–240 (2004).

    Article  PubMed  Google Scholar 

  85. Hopper, C., Niziol, C. & Sidhu, M. The cost-effectiveness of Foscan mediated photodynamic therapy (Foscan-PDT) compared with extensive palliative surgery and palliative chemotherapy for patients with advanced head and neck cancer in the UK. Oral. Oncol. 40, 372–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Morton, C. A., Szeimies, R. M., Sidoroff, A. & Braathen, L. R. European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen's disease, basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 27, 536–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Morton, C. A. et al. Comparison of photodynamic therapy with cryotherapy in the treatment of Bowen's disease. Br. J. Dermatol. 135, 766–771 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Ohgari, Y. et al. Mechanisms involved in δ-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem. Pharmacol. 71, 42–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Kennedy, J. C., Pottier, R. H. & Pross, D. C. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. J. Photochem. Photobiol. B Biol. 6, 143–148 (1990).

    Article  CAS  Google Scholar 

  90. Jeffes, E. W. et al. Photodynamic therapy of actinic keratosis with topical 5-aminolevulinic acid: a pilot dose-ranging study. Arch. Dermatol. 133, 727–732 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Cohen, D. K. & Lee, P. K. Photodynamic therapy for non-melanoma skin cancers. Cancers 8, 90 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  92. Gaullier, J. M. et al. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 57, 1481–1486 (1997).

    CAS  PubMed  Google Scholar 

  93. Moloney, F. J. & Collins, P. Randomized, double-blind, prospective study to compare topical 5-aminolaevulinic acid methylester with topical 5-aminolaevulinic acid photodynamic therapy for extensive scalp actinic keratosis. Br. J. Dermatol. 157, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Dirschka, T. et al. Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a multicentre, randomized, observer-blind phase III study in comparison with a registered methyl-5-aminolaevulinate cream and placebo. Br. J. Dermatol. 166, 137–146 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, I. et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: results of a phase III clinical trial. Br. J. Dermatol. 144, 832–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Szeimies, R. M. et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8–20 mm), with a 12-month follow-up. J. Eur. Acad. Dermatol. Venereol. 22, 1302–1311 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Rhodes, L. E. et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma: results of a multicenter randomized prospective trial. Arch. Dermatol. 140, 17–23 (2004).

    CAS  PubMed  Google Scholar 

  98. Morton, C. A. et al. A randomized, multinational, noninferiority, phase III trial to evaluate the safety and efficacy of BF-200 aminolaevulinic acid gel vs. methyl aminolaevulinate cream in the treatment of nonaggressive basal cell carcinoma with photodynamic therapy. Br. J. Dermatol. 179, 309–319 (2018).

    CAS  PubMed  Google Scholar 

  99. Wang, B.-C., Fu, C., Qin, L., Zeng, X.-Y. & Liu, Q. Photodynamic therapy with methyl-5-aminolevulinate for basal cell carcinoma: a systematic review and meta-analysis. Photodiagnosis Photodyn. Ther. 29, 101667 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Wiegell, S. R. et al. A randomized, multicentre study of directed daylight exposure times of 1½ vs. 2½ h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp. Br. J. Dermatol. 164, 1083–1090 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Morton, C. A. & Braathen, L. R. Daylight photodynamic therapy for actinic keratoses. Am. J. Clin. Dermatol. 19, 647–656 (2018).

    Article  PubMed  Google Scholar 

  102. See, J.-A. et al. Consensus recommendations on the use of daylight photodynamic therapy with methyl aminolevulinate cream for actinic keratoses in Australia. Australas. J. Dermatol. 57, 167–174 (2016).

    Article  PubMed  Google Scholar 

  103. Banerjee, S. M. et al. Photodynamic therapy: Inception to application in breast cancer. Breast 31, 105–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Leggett, C. L. et al. Photodynamic therapy for unresectable cholangiocarcinoma: a comparative effectiveness systematic review and meta-analyses. Photodiagnosis Photodyn. Ther. 9, 189–195 (2012).

    Article  PubMed  Google Scholar 

  105. Lee, T. Y., Cheon, Y. K., Shim, C. S. & Cho, Y. D. Photodynamic therapy prolongs metal stent patency in patients with unresectable hilar cholangiocarcinoma. World J. Gastroenterol. 18, 5589–5594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fan, B.-G. & Andrén-Sandberg, Å. Photodynamic therapy for pancreatic cancer. Pancreas 34, 385–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Bown, S. G. Photodynamic therapy for cancer of the pancreas – The story so far. Photonics Lasers Med. 5, 91 (2016).

    Article  Google Scholar 

  108. Allison, R. R. et al. PD/PDT for gynecological disease: a clinical review. Photodiagnosis Photodyn. Ther. 2, 51–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Baldea, I. & Filip, A. G. Photodynamic therapy in melanoma–an update. J. Physiol. Pharmacol. 63, 109–118 (2012).

    CAS  PubMed  Google Scholar 

  110. Dougherty, T. J. Photodynamic therapy. Photochem. Photobiol. 58, 895–900 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Jichlinski, P. & Leisinger, H.-J. Photodynamic therapy in superficial bladder cancer: past, present and future. Urol. Res. 29, 396–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Jocham, D. et al. [BCG versus photodynamic therapy (PDT) for nonmuscle invasive bladder cancer-a multicentre clinical phase III study [In German]. Aktuelle Urol. 40, 91–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Filonenko, E. V. et al. 5-Aminolevulinic acid in intraoperative photodynamic therapy of bladder cancer (results of multicenter trial). Photodiagnosis Photodyn. Ther. 16, 106–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Bader, M. J. et al. Photodynamic therapy of bladder cancer - a phase I study using hexaminolevulinate (HAL). Urol. Oncol. 31, 1178–1183 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Lapini, A. et al. A comparison of hexaminolevulinate (Hexvix®) fluorescence cystoscopy and white-light cystoscopy for detection of bladder cancer: results of the HeRo observational study. Surg. Endosc. 26, 3634–3641 (2012).

    Article  PubMed  Google Scholar 

  116. Fisher, C. J. & Lilge, L. Photodynamic therapy in the treatment of intracranial gliomas: a review of current practice and considerations for future clinical directions. J. Innovative Optical Health Sci. 08, 1530005 (2015).

    Article  CAS  Google Scholar 

  117. Stylli, S. S., Kaye, A. H., MacGregor, L., Howes, M. & Rajendra, P. Photodynamic therapy of high grade glioma – long term survival. J. Clin. Neurosci. 12, 389–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Quirk, B. J. et al. Photodynamic therapy (PDT) for malignant brain tumors – where do we stand? Photodiagnosis Photodyn. Ther. 12, 530–544 (2015).

    Article  PubMed  Google Scholar 

  119. Mahmoudi, K. et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J. Neurooncol. 141, 595–607 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Lau, D. et al. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J. Neurosurg. 124, 1300–1309 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Eljamel, M. S., Goodman, C. & Moseley, H. ALA and Photofrin® fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre phase III randomised controlled trial. Lasers Med. Sci. 23, 361–367 (2008).

    Article  PubMed  Google Scholar 

  123. Johansson, A. et al. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Lasers Surg. Med. 45, 225–234 (2013).

    Article  PubMed  Google Scholar 

  124. Lakomkin, N. & Hadjipanayis, C. G. Fluorescence-guided surgery for high-grade gliomas. J. Surg. Oncol. 118, 356–361 (2018).

    Article  PubMed  Google Scholar 

  125. Moore, C. M., Pendse, D. & Emberton, M. Photodynamic therapy for prostate cancer — a review of current status and future promise. Nat. Clin. Pract. Urol. 6, 18–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Williams, S. B. et al. Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer. BJU Int. 110, E92–E98 (2012).

    Article  PubMed  Google Scholar 

  127. Gheewala, T., Skwor, T. & Munirathinam, G. Photosensitizers in prostate cancer therapy. Oncotarget 8, 30524–30538 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Nathan, T. R. et al. Photodynamic therapy for prostate cancer recurrence after radiotherapy: a phase I study. J. Urol. 168, 1427–1432 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Azzouzi, A.-R. et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 18, 181–191 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Hansen, G. & Sundset, A. Transbronchial laser ablation of benign and malignant tumors. Minim. Invasive Ther. Allied Technol. 15, 4–8 (2006).

    Article  PubMed  Google Scholar 

  131. Wenger, H., Yousuf, A., Oto, A. & Eggener, S. Laser ablation as focal therapy for prostate cancer. Curr. Opin. Urol. 24, 236–240 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gough-Palmer, A. L. & Gedroyc, W. M. W. Laser ablation of hepatocellular carcinoma — a review. World J. Gastroenterol. 14, 7170–7174 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Vogl, T. J., Straub, R., Eichler, K., Söllner, O. & Mack, M. G. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy — local tumor control rate and survival data. Radiology 230, 450–458 (2004).

    Article  PubMed  Google Scholar 

  134. Vogl, T. J., Straub, R., Eichler, K., Woitaschek, D. & Mack, M. G. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: experience with complications in 899 patients (2,520 lesions). Radiology 225, 367–377 (2002).

    Article  PubMed  Google Scholar 

  135. Arienti, V. et al. Complications of laser ablation for hepatocellular carcinoma: a multicenter study. Radiology 246, 947–955 (2008).

    Article  PubMed  Google Scholar 

  136. Belykh, E. et al. Laser application in neurosurgery. Surg. Neurol. Int. 8, 274–274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hawasli, A. H., Kim, A. H., Dunn, G. P., Tran, D. D. & Leuthardt, E. C. Stereotactic laser ablation of high-grade gliomas. Neurosurg. Focus 37, E1 (2014).

    Article  PubMed  Google Scholar 

  138. Lagman, C. et al. Laser neurosurgery: a systematic analysis of magnetic resonance-guided laser interstitial thermal therapies. J. Clin. Neurosci. 36, 20–26 (2017).

    Article  PubMed  Google Scholar 

  139. Bozinov, O., Yang, Y., Oertel, M. F., Neidert, M. C. & Nakaji, P. Laser interstitial thermal therapy in gliomas. Cancer Lett. 474, 151–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Schwartzberg, B. et al. Phase 2 open-label trial investigating percutaneous laser ablation for treatment of early-stage breast cancer: MRI, pathology, and outcome correlations. Ann. Surg. Oncol. 25, 2958–2964 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Rastinehad, A. R. et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl Acad. Sci. USA 116, 18590–18596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, W. R., Adams, R. L., Carubelli, R. & Nordquist, R. E. Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 115, 25–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Delaey, E. et al. A comparative study of the photosensitizing characteristics of some cyanine dyes. J. Photochem. Photobiol. B Biol. 55, 27–36 (2000).

    Article  CAS  Google Scholar 

  145. Li, X. et al. Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochem. Photobiol. Sci. 10, 817–821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Del. Rev. 63, 136–151 (2011).

    Article  CAS  Google Scholar 

  147. Allison, R. R., Mota, H. C., Bagnato, V. S. & Sibata, C. H. Bio-nanotechnology and photodynamic therapy — state of the art review. Photodiagnosis Photodyn. Ther. 5, 19–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Bertrand, N., Wu, J., Xu, X. Y., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Rel. 244, 108–121 (2016).

    Article  CAS  Google Scholar 

  151. Li, Z. M. et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharm. 7, 94–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15, 1128–1138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kotagiri, N., Sudlow, G. P., Akers, W. J. & Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 10, 370–379 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, K. K. et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 6, 27421 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Shieh, Y. A., Yang, S. J., Wei, M. F. & Shieh, M. J. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4, 1433–1442 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Ryu, T. K., Baek, S. W., Kang, R. H. & Choi, S. W. Selective photothermal tumor therapy using nanodiamond-based nanoclusters with folic acid. Adv. Funct. Mater. 26, 6428–6436 (2016).

    Article  CAS  Google Scholar 

  157. Li, X. et al. Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy. J. Am. Chem. Soc. 139, 10880–10886 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Yoon, H. Y. et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 33, 3980–3989 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Mew, D., Wat, C. K., Towers, G. H. & Levy, J. G. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J. Immunol. 130, 1473–1477 (1983).

    CAS  PubMed  Google Scholar 

  160. Oseroff, A. R. et al. Strategies for selective cancer photochemotherapy: antibody-targeted and selective carcinoma cell photolysis. Photochem. Photobiol. 46, 83–96 (1987).

    Article  CAS  PubMed  Google Scholar 

  161. Schmidt, S., Wagner, U., Oehr, P. & Krebs, D. Clinical use of photodynamic therapy in gynecologic tumor patients — antibody-targeted photodynamic laser therapy as a new oncologic treatment procedure [In German]. Zentralbl. Gynakol. 114, 307–311 (1992).

    CAS  PubMed  Google Scholar 

  162. Mitsunaga, M. et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17, 1685–1691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cheng, L. et al. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33, 2215–2222 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Zhou, Z. G. et al. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35, 7470–7478 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Yu, J. et al. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5, 931–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sharman, W. M., Allen, C. M. & van Lier, J. E. Role of activated oxygen species in photodynamic therapy. Methods Enzymol. 319, 376–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Kessel, D. & Reiners, J. J. Jr Promotion of proapoptotic signals by lysosomal photodamage. Photochem. Photobiol. 91, 931–936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Akhlynina, T. V. et al. Nuclear targeting of chlorin e6 enhances its photosensitizing activity. J. Biol. Chem. 272, 20328–20331 (1997).

    Article  CAS  PubMed  Google Scholar 

  169. Morgan, J. & Oseroff, A. R. Mitochondria-based photodynamic anti-cancer therapy. Adv. Drug Deliv. Rev. 49, 71–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Vankayala, R., Kuo, C. L., Nuthalapati, K., Chiang, C. S. & Hwang, K. C. Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv. Funct. Mater. 25, 5934–5945 (2015).

    Article  CAS  Google Scholar 

  171. Chen, W. et al. A C5N2 nanoparticle based direct nucleus delivery platform for synergistic cancer therapy. Angew. Chem. Int. Ed. 58, 6290–6294 (2019).

    Article  CAS  Google Scholar 

  172. Høgset, A. et al. Photochemical internalisation in drug and gene delivery. Adv. Drug Del. Rev. 56, 95–115 (2004).

    Article  CAS  Google Scholar 

  173. Berg, K. et al. Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization. Photochem. Photobiol. Sci. 10, 1637–1651 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Norum, O.-J., Selbo, P. K., Weyergang, A., Giercksky, K.-E. & Berg, K. Photochemical internalization (PCI) in cancer therapy: from bench towards bedside medicine. J. Photochem. Photobiol. B Biol. 96, 83–92 (2009).

    Article  CAS  Google Scholar 

  175. Sultan, A. A. et al. Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalisation of bleomycin in patients with solid malignancies: a phase 1, dose-escalation, first-in-man trial. Lancet Oncol. 17, 1217–1229 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Håkerud, M. et al. Intradermal photosensitisation facilitates stimulation of MHC class-I restricted CD8 T-cell responses of co-administered antigen. J. Controlled Rel. 174, 143–150 (2014).

    Article  CAS  Google Scholar 

  177. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Oleinick, N. L. & Evans, H. H. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat. Res. 150, S146–S156 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Simpson, C. R., Kohl, M., Essenpreis, M. & Cope, M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys. Med. Biol. 43, 2465–2478 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Bolze, F., Jenni, S., Sour, A. & Heitz, V. Molecular photosensitisers for two-photon photodynamic therapy. Chem. Commun. 53, 12857–12877 (2017).

    Article  CAS  Google Scholar 

  181. Chen, G. Y., Qju, H. L., Prasad, P. N. & Chen, X. Y. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhu, S. J., Tian, R., Antaris, A. L., Chen, X. Y. & Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, e1900321 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ge, X. G. et al. Photoacoustic imaging and photothermal therapy in the second near-infrared window. New J. Chem. 43, 8835–8851 (2019).

    Article  CAS  Google Scholar 

  184. Fan, W. P., Huang, P. & Chen, X. Y. Overcoming the Achilles' heel of photodynamic therapy. Chem. Soc. Rev. 45, 6488–6519 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Ni, K. Y. et al. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat. Commun. 9, 4321 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Xu, X. Q. et al. A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Sci. Adv. 5, eaat2953 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Abdurahman, R., Yang, C.-X. & Yan, X.-P. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem. Commun. 52, 13303–13306 (2016).

    Article  CAS  Google Scholar 

  188. Fan, W. et al. Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy. ACS Nano 11, 5864–5872 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Brown, J. M. & William, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4, 437–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Li, X. S., Kwon, N., Guo, T., Liu, Z. & Yoon, J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew. Chem. Int. Ed. 57, 11522–11531 (2018).

    Article  CAS  Google Scholar 

  191. Song, X. J., Feng, L. Z., Liang, C., Yang, K. & Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 16, 6145–6153 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Turan, I. S., Yildiz, D., Turksoy, A., Gunaydin, G. & Akkaya, E. U. A bifunctional photosensitizer for enhanced fractional photodynamic therapy: singlet oxygen generation in the presence and absence of light. Angew. Chem. Int. Ed. 55, 2875–2878 (2016).

    Article  CAS  Google Scholar 

  193. Li, X. S., Lee, D. Y., Huang, J. D. & Yoon, J. Y. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photoreactions in photodynamic therapy. Angew. Chem. Int. Ed. 57, 9885–9890 (2018).

    Article  CAS  Google Scholar 

  194. Feng, L. et al. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano 11, 927–937 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Li, X. et al. Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy. ACS Nano 12, 681–688 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 4, 283–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Vrouenraets, M. B., Visser, G. W. M., Snow, G. B. & van Dongen, G. A. M. S. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res. 23, 505–522 (2003).

    CAS  PubMed  Google Scholar 

  198. Lovell, J. F., Liu, T. W. B., Chen, J. & Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Li, X. S., Kolemen, S., Yoon, J. & Akkaya, E. U. Activatable photosensitizers: agents for selective photodynamic therapy. Adv. Funct. Mater. 27, 1604053 (2017).

    Article  CAS  Google Scholar 

  200. Li, X. S. et al. A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics 7, 2746–2756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li, X. S. et al. Sequential protein-responsive nanophotosensitizer complex for enhancing tumor-specific therapy. ACS Nano 13, 6702–6710 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Tian, B., Wang, C., Zhang, S., Feng, L. Z. & Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5, 7000–7009 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Xiao, Q. F. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 135, 13041–13048 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Tang, Z. M. et al. Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Mater. Horiz. 5, 946–952 (2018).

    Article  CAS  Google Scholar 

  205. Wang, S. J. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 25, 3055–3061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Yang, T. et al. Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano 11, 10012–10024 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Younis, M. R. et al. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 13, 2544–2557 (2019).

    CAS  PubMed  Google Scholar 

  208. He, C. B., Liu, D. M. & Lin, W. B. Self-assembled core-shell nanoparticles for combined chemotherapy and photodynamic therapy of resistant head and neck cancers. ACS Nano 9, 991–1003 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Wang, Z. G., Ma, R., Yan, L., Chen, X. F. & Zhu, G. Y. Combined chemotherapy and photodynamic therapy using a nanohybrid based on layered double hydroxides to conquer cisplatin resistance. Chem. Commun. 51, 11587–11590 (2015).

    Article  CAS  Google Scholar 

  210. Ullah, M. F. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac. J. Cancer Prev. 9, 1–6 (2008).

    PubMed  Google Scholar 

  211. He, Q. J. et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 32, 7711–7720 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Gao, Y. et al. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5, 9788–9798 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Duan, X. P. et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7, 5858–5869 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Zhao, C. Y., Cheng, R., Yang, Z. & Tian, Z. M. Nanotechnology for cancer therapy based on chemotherapy. Molecules 23, 826 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  215. Moulder, J. E. & Rockwell, S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 5, 313–341 (1987).

    Article  CAS  PubMed  Google Scholar 

  216. Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Naylor, M. F., Chen, W. R., Teague, T. K., Perry, L. A. & Nordquist, R. E. In situ photoimmunotherapy: a tumour-directed treatment for melanoma. Br. J. Dermatol. 155, 1287–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Mroz, P., Hashmi, J. T., Huang, Y. Y., Lang, N. & Hamblin, M. R. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 7, 75–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chen, Q. et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Santos, L. L., Oliveira, J., Monteiro, E., Santos, J. & Sarmento, C. Treatment of head and neck cancer with photodynamic therapy with redaporfin: a clinical case report. Case Rep. Oncol. 11, 769–776 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the National Research Foundation of Korea (NRF), which is funded by the Korean government Ministry of Science (grant 2012R1A3A2048814 to J.Y.), the US NIH (grants R01EB017270 and DP5OD017898 to J.F.L.), the US National Science Foundation (grant 1555220 to J.F.L.), and the Intramural Research Program (IRP) of the NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB) (X.C.). The authors would like to thank Dr David Kessel for providing valuable feedback on the manuscript and Tian Guo and Rui Wang for their assistance in formatting the manuscript.

Reviewer information

Nature Reviews Clinical Oncology thanks Liang Cheng, Michael R. Hamblin, Zhuang Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

X.L., J.F.L. and X.C. made substantial contributions to discussions of content, all authors contributed to the writing of the manuscript, and J.F.L., J.Y. and X.C. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jonathan F. Lovell, Juyoung Yoon or Xiaoyuan Chen.

Ethics declarations

Competing interests

J.F.L. holds stocks in POP Biotechnologies. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chromophores

Light-absorbing molecules that impart colour.

Photosensitizers

Chromophores that generate reactive oxygen species upon irradiation.

Singlet state

A molecular quantum state in which all the electron spins are paired.

Triplet state

A molecular quantum state in which an excited electron spin is unpaired.

Fluence rate

The radiant energy incident per second crossing a sectional area of an irradiated spot, equating to the light power transferred per unit area, for example, in W/cm2 (1 W = 1 J/s).

Total fluence

The total energy of light crossing a sectional area of an irradiated spot (exposed light energy per unit area, J/cm2).

Aptamers

Oligonucleotides or peptides that bind to a specific target molecule.

Absorption maxima

The specific wavelength of light that chromophores absorb most intensely.

Two-photon excitation

Simultaneous excitation by two photons at double the excitation wavelength.

Upconverting nanoparticles

Particles that convert near-infrared excitation light into visible and ultraviolet emission light.

Quenching moiety

A molecule that attenuates the fluorescence or singlet oxygen generation of a fluorophore or photosensitizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lovell, J.F., Yoon, J. et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17, 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0410-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer