Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Treatment-free remission in patients with chronic myeloid leukaemia

Abstract

In the past few years, international treatment guidelines for chronic myeloid leukaemia have incorporated recommendations for attempting discontinuation of treatment with tyrosine-kinase inhibitors (TKIs) outside of the setting of a clinical trial with the aim of a treatment-free remission (TFR). Physicians involved in the treatment of chronic myeloid leukaemia need to be sufficiently well informed to guide patients through decision-making about the discontinuation of treatment with TKIs targeting BCR–ABL1 by providing a balanced assessment of the potential risks and benefits of stopping or continuing therapy. These guidelines also seek to ensure that the risks associated with being off treatment are kept to a minimum. In this Review, we summarize the clinical studies of TFR and how their results can guide routine clinical practice with a focus on specific aspects such as molecular monitoring and the pregnancy-specific risks associated with a TFR attempt in female patients. We also address the development of predictors of outcome after TKI discontinuation and present strategies that warrant further consideration to enable more patients to enter TFR.

Key points

  • Effective treatment with tyrosine-kinase inhibitors (TKIs) leads the majority of patients with chronic myeloid leukaemia to achieve a deep molecular response after ≥5 years of treatment.

  • Approximately 50% of patients with a sustained deep molecular response can discontinue the TKI and remain in treatment-free remission.

  • The availability of sensitive, standardized quantitative reverse transcriptase PCR to detect BCR–ABL1 mRNA in peripheral blood, with rapid follow-up of results, is an essential requirement before TKI discontinuation can be offered to patients.

  • Loss of a major molecular response (BCR–ABL1 mRNA > 0.1%) should trigger the resumption of TKI treatment and leads to restoration of a deep molecular response in >90% of patients.

  • The biological and clinical factors that influence the outcome after TKI discontinuation are under investigation, with possible predictors including duration of treatment and/or response, depth of molecular response and immunological factors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hypothetical relationship between duration of disease and/or treatment and outcomes of treatment-free remission.
Fig. 2: Precision medicine approach to treatment-free remission in patients with CML receiving TKIs.

References

  1. 1.

    Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000).

    CAS  PubMed  Google Scholar 

  2. 2.

    Branford, S. et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia 33, 1835–1850 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Swerdlow, S. H. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edn (IARC, 2017).

  4. 4.

    Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    CAS  PubMed  Google Scholar 

  5. 5.

    Saussele, S. et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. Blood 126, 42–49 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hochhaus, A. et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 30, 1044–1054 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cortes, J. E. et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J. Clin. Oncol. 34, 2333–2340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lipton, J. H. et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 17, 612–621 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Hochhaus, A. et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Eng. J. Med. 376, 917–927 (2017).

    CAS  Google Scholar 

  10. 10.

    Goldman, J. & Gordon, M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk. Lymphoma 47, 1–7 (2006).

    CAS  PubMed  Google Scholar 

  11. 11.

    Guilhot, F. et al. French Chronic Myeloid Leukemia Study Group. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. N. Engl. J. Med. 337, 223–229 (1997).

    CAS  PubMed  Google Scholar 

  12. 12.

    O’Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    PubMed  Google Scholar 

  13. 13.

    Baccarani, M. et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia 33, 1173–1183 (2019).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hughes, T. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108, 28–37 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349, 1423–1432 (2003).

    CAS  PubMed  Google Scholar 

  16. 16.

    Branford, S. et al. BCR-ABL messenger RNA levels continue to decline in patients with chronic phase chronic myeloid leukemia treated with imatinib for more than 5 years and approximately half of all first-line treated patients have stable undetectable BCR-ABL using strict sensitivity criteria. Clin. Cancer Res. 13, 7080–7085 (2007).

    CAS  PubMed  Google Scholar 

  17. 17.

    Branford, S. et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia 20, 1925–1930 (2006).

    CAS  PubMed  Google Scholar 

  18. 18.

    Cross, N. C. et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia 29, 999–1003 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hehlmann, R. et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J. Clin. Oncol. 32, 415–423 (2014).

    PubMed  Google Scholar 

  20. 20.

    Rousselot, P. et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109, 58–60 (2007).

    CAS  PubMed  Google Scholar 

  21. 21.

    National Comprehensive Cancer Network. Chronic Myeloid Leukemia www.nccn.org (2017).

  22. 22.

    Hochhaus, A. et al. Chronic myeloid leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28 (Suppl. 4), iv41–iv51 (2017).

    Google Scholar 

  23. 23.

    Hughes, T. P. & Ross, D. M. Moving treatment-free remission into mainstream clinical practice in CML. Blood 128, 17–23 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Mahon, F. X. et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 11, 1029–1035 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Etienne, G. et al. Long-term follow-up of the French stop imatinib (STIM1) study in patients with chronic myeloid leukemia. J. Clin. Oncol. 35, 298–305 (2017).

    PubMed  Google Scholar 

  26. 26.

    Ross, D. M. et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 122, 515–522 (2013).

    CAS  PubMed  Google Scholar 

  27. 27.

    Ross, D. M. et al. Long-term treatment-free remission of chronic myeloid leukemia with falling levels of residual leukemic cells. Leukemia 32, 2572–2579 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Nicolini, F. E. et al. Evaluation of residual disease and tki duration are critical predictive factors for molecular recurrence after stopping imatinib first-line in chronic phase CML patients. Clin. Cancer Res. 25, 6606–6613 (2019).

    PubMed  Google Scholar 

  29. 29.

    Fujisawa, S. et al. Feasibility of the imatinib stop study in the Japanese clinical setting: delightedly overcome CML expert stop TKI trial (DOMEST Trial). Int. J. Clin. Oncol. 24, 445–453 (2019).

    CAS  PubMed  Google Scholar 

  30. 30.

    Rousselot, P. et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J. Clin. Oncol. 32, 424–430 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Lee, S. E. et al. Predictive factors for successful imatinib cessation in chronic myeloid leukemia patients treated with imatinib. Am. J. Hematol. 88, 449–454 (2013).

    CAS  PubMed  Google Scholar 

  32. 32.

    Mori, S. et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am. J. Hematol. 90, 910–914 (2015).

    CAS  PubMed  Google Scholar 

  33. 33.

    Takahashi, N. et al. Deeper molecular response is a predictive factor for treatment-free remission after imatinib discontinuation in patients with chronic phase chronic myeloid leukemia: the JALSG-STIM213 study. Int. J. Hematol. 107, 185–193 (2018).

    CAS  PubMed  Google Scholar 

  34. 34.

    Saussele, S. et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 19, 747–757 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Clark, R. E. et al. De-escalation of tyrosine kinase inhibitor dose in patients with chronic myeloid leukaemia with stable major molecular response (DESTINY): an interim analysis of a non-randomised, phase 2 trial. Lancet Haematol. 4, e310–e316 (2017).

    PubMed  Google Scholar 

  36. 36.

    Clark, R. E. et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 6, e375–e383 (2019).

    PubMed  Google Scholar 

  37. 37.

    Branford, S. et al. BCR-ABL1 doubling times more reliably assess the dynamics of CML relapse compared with the BCR-ABL1 fold rise: implications for monitoring and management. Blood 119, 4264–4271 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Lee, S. E. et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica 101, 717–723 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kimura, S. et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial): a single-arm, multicentre, phase 2 trial. Lancet Haematol. 7, e218–e225 (2020).

    PubMed  Google Scholar 

  40. 40.

    Imagawa, J. et al. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol. 2, e528–e535 (2015).

    PubMed  Google Scholar 

  41. 41.

    Okada, M. et al. Final 3-year results of the dasatinib discontinuation trial in patients with chronic myeloid leukemia who received dasatinib as a second-line treatment. Clin. Lymphoma Myeloma Leuk. 18, 353–360 (2018).

    PubMed  Google Scholar 

  42. 42.

    Kumagai, T. et al. Dasatinib cessation after deep molecular response exceeding 2 years and natural killer cell transition during dasatinib consolidation. Cancer Sci. 109, 182–192 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Shah, N. P. et al. Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study. Leuk. Lymphoma 61, 650–659 (2020).

    PubMed  Google Scholar 

  44. 44.

    Rea, D. et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood 129, 846–854 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Takahashi, N. et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia: STAT2 trial in Japan. Haematologica 103, 1835–1842 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mahon, F. X. et al. Treatment-free remission after second-line nilotinib treatment in patients with chronic myeloid leukemia in chronic phase: results from a single-group, phase 2, open-label study. Ann. Intern. Med. 168, 461–470 (2018).

    PubMed  Google Scholar 

  47. 47.

    Hochhaus, A. et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia 31, 1525–1531 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ross, D. M. et al. Durable treatment-free remission in patients with chronic myeloid leukemia in chronic phase following frontline nilotinib: 96-week update of the ENESTfreedom study. J. Cancer Res. Clin. Oncol. 144, 945–954 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Baccarani, M. et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 108, 1809–1820 (2006).

    CAS  PubMed  Google Scholar 

  50. 50.

    Baccarani, M. et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J. Clin. Oncol. 27, 6041–6051 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Baccarani, M. et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122, 872–884 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Radich, J. P. et al. Chronic Myeloid Leukemia, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 16, 1108–1135 (2018).

    PubMed  Google Scholar 

  53. 53.

    Shanmuganathan, N. et al. Modeling the safe minimum frequency of molecular monitoring for CML patients attempting treatment-free remission. Blood 134, 85–89 (2019).

    CAS  PubMed  Google Scholar 

  54. 54.

    Pagani, I. S. et al. BCR-ABL1 genomic DNA PCR response kinetics during first-line imatinib treatment of chronic myeloid leukemia. Haematologica 103, 2026–2032 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Falchi, L. et al. Significance of deeper molecular responses in patients with chronic myeloid leukemia in early chronic phase treated with tyrosine kinase inhibitors. Am. J. Hematol. 88, 1024–1029 (2013).

    CAS  PubMed  Google Scholar 

  56. 56.

    Goldman, J. M. et al. Relapse and late mortality in 5-year survivors of myeloablative allogeneic hematopoietic cell transplantation for chronic myeloid leukemia in first chronic phase. J. Clin. Oncol. 28, 1888–1895 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sekhri, A. et al. Very late relapse of chronic myelogenous leukemia after allogeneic bone marrow transplantation. Leuk. Res. 33, 1291–1293 (2009).

    PubMed  Google Scholar 

  58. 58.

    Papalexandri, A. et al. Blast crisis of CML after TKI discontinuation in a patient with previous stable deep molecular response: is it safe to stop? HemaSphere 2, e157 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Rea, D. et al. Prognostication of molecular relapses after dasatinib or nilotinib discontinuation in chronic myeloid leukemia (CML): a FI-LMC STOP 2G-TKI study update. Blood 134, 30 (2019).

    Google Scholar 

  60. 60.

    Benjamini, O. et al. Patient-driven discontinuation of tyrosine kinase inhibitors: single institution experience. Leuk. Lymphoma 55, 2879–2886 (2014).

    CAS  PubMed  Google Scholar 

  61. 61.

    Richter, J. et al. Musculoskeletal pain in patients with chronic myeloid leukemia after discontinuation of imatinib: a tyrosine kinase inhibitor withdrawal syndrome? J. Clin. Oncol. 32, 2821–2823 (2014).

    PubMed  Google Scholar 

  62. 62.

    Shah, N. P. et al. Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study. Leuk. Lymphoma 61, 650–659 (2020).

    PubMed  Google Scholar 

  63. 63.

    Berger, M. G. et al. Longer treatment duration and history of osteoarticular symptoms predispose to tyrosine kinase inhibitor withdrawal syndrome. Br. J. Haematol. 187, 337–346 (2019).

    CAS  PubMed  Google Scholar 

  64. 64.

    Katagiri, S. et al. Musculoskeletal pain after stopping tyrosine kinase inhibitor in patients with chronic myeloid leukemia: a questionnaire survey. Rinsho Ketsueki 57, 873–876 (2016).

    PubMed  Google Scholar 

  65. 65.

    Villemagne Sanchez, L. A. et al. Patient perceptions of treatment-free remission in chronic myeloid leukemia. Leuk. Lymphoma 59, 406–415 (2018).

    PubMed  Google Scholar 

  66. 66.

    Breccia, M. et al. Adherence and future discontinuation of tyrosine kinase inhibitors in chronic phase chronic myeloid leukemia. A patient-based survey on 1133 patients. Leuk. Res. 39, 1055–1059 (2015).

    PubMed  Google Scholar 

  67. 67.

    Jiang, Q., Liu, Z. C., Zhang, S. X. & Gale, R. P. Young age and high cost are associated with future preference for stopping tyrosine kinase inhibitor therapy in Chinese with chronic myeloid leukemia. J. Cancer Res. Clin. Oncol. 142, 1539–1547 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Barnes, D. J. et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res. 65, 8912–8919 (2005).

    CAS  PubMed  Google Scholar 

  69. 69.

    Legros, L. et al. Second tyrosine kinase inhibitor discontinuation attempt in patients with chronic myeloid leukemia. Cancer 123, 4403–4410 (2017).

    CAS  PubMed  Google Scholar 

  70. 70.

    Pye, S. M. et al. The effects of imatinib on pregnancy outcome. Blood 111, 5505–5508 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Cortes, J. E. et al. The impact of dasatinib on pregnancy outcomes. Am. J. Hematol. 90, 1111–1115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Berman, E., Druker, B. J. & Burwick, R. Chronic myelogenous leukemia: pregnancy in the era of stopping tyrosine kinase inhibitor therapy. J. Clin. Oncol. 36, 1250–1256 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Ross, D. M., Burbury, K. L., Grigg, A. P., Hughes, T. P. & Seymour, J. F. Management of pregnancy in women with chronic myeloid leukemia. J. Clin. Oncol. 36, 2657–2658 (2018).

    PubMed  Google Scholar 

  74. 74.

    Claudiani, S. et al. E14a2 BCR-ABL1 transcript is associated with a higher rate of treatment-free remission in individuals with chronic myeloid leukemia after stopping tyrosine kinase inhibitor therapy. Haematologica 102, e297–e299 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Sokal, J. E. et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood 63, 789–799 (1984).

    CAS  PubMed  Google Scholar 

  76. 76.

    Pfirrmann, M. et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia 30, 48–56 (2016).

    CAS  PubMed  Google Scholar 

  77. 77.

    D’Adda, M. et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer 125, 1674–1682 (2019).

    PubMed  Google Scholar 

  78. 78.

    Ross, D. M. et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 24, 1719–1724 (2010).

    CAS  PubMed  Google Scholar 

  79. 79.

    Score, J. et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia 24, 1742–1750 (2010).

    CAS  PubMed  Google Scholar 

  80. 80.

    Ohyashiki, K. et al. Increased natural killer cells and decreased CD3+CD8+CD62L+ T cells in CML patients who sustained complete molecular remission after discontinuation of imatinib. Br. J. Haematol. 157, 254–256 (2012).

    CAS  PubMed  Google Scholar 

  81. 81.

    Ilander, M. et al. Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia 31, 1108–1116 (2017).

    CAS  PubMed  Google Scholar 

  82. 82.

    Ross, D. M. et al. Lenalidomide maintenance treatment after imatinib discontinuation: results of a phase 1 clinical trial in chronic myeloid leukaemia. Br. J. Haematol. 186, e56–e60 (2019).

    PubMed  Google Scholar 

  83. 83.

    Schutz, C. et al. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia 32, 1054 (2018).

    CAS  PubMed  Google Scholar 

  84. 84.

    Pagani, I. S. et al. BCR-ABL1 genomic DNA PCR response kinetics during first-line imatinib treatment of chronic myeloid leukemia. Haematologica 103, 2026–2032 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Bocchia, M. et al. Residual peripheral blood CD26+ leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission. Front. Oncol. 8, 194 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Chomel, J. C. et al. Leukemic stem cell persistence in chronic myeloid leukemia patients in deep molecular response induced by tyrosine kinase inhibitors and the impact of therapy discontinuation. Oncotarget 7, 35293–35301 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Houshmand, M. et al. Chronic myeloid leukemia stem cells. Leukemia 33, 1543–1556 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Ross, D. M., Hughes, T. P. & Melo, J. V. Do we have to kill the last CML cell? Leukemia 25, 193–200 (2011).

    CAS  PubMed  Google Scholar 

  89. 89.

    Cheah, C. Y. et al. Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood 123, 3574–3577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Legrand, F. et al. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new insights based on a survey of 44 cases. Medicine 92, e1–e9 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Cerrano, M. et al. Long-term therapy-free remission in a patient with platelet-derived growth factor receptor beta-rearranged myeloproliferative neoplasm. Am. J. Hematol. 91, E353 (2016).

    PubMed  Google Scholar 

  92. 92.

    Helbig, G., Soja, A., Swiderska, A., Hus, M. & Kyrcz-Krzemien, S. Imatinib discontinuation for hypereosinophilic syndrome harboring the FIP1L1-PDGFRA transcript. Leuk. Lymphoma 57, 708–710 (2016).

    PubMed  Google Scholar 

  93. 93.

    Bidet, A. et al. Molecular monitoring of patients with ETV6-PDGFRB rearrangement: Implications for therapeutic adaptation. Br. J. Haematol. 182, 148–152 (2018).

    PubMed  Google Scholar 

  94. 94.

    McMahon, C. M. et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 9, 1050–1063 (2019).

    PubMed  Google Scholar 

  95. 95.

    Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Jansen, Y. J. L. et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: clinical outcomes in advanced melanoma. Ann. Oncol. 30, 1154–1161 (2019).

    CAS  PubMed  Google Scholar 

  97. 97.

    Tan, A. C. et al. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann. Oncol. 29, 2115–2120 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Seremet, T. et al. Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy. J. Transl Med. 17, 303 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Dahlen, T. et al. Cardiovascular events associated with use of tyrosine kinase inhibitors in chronic myeloid leukemia: a population-based cohort study. Ann. Intern. Med. 165, 161–166 (2016).

    PubMed  Google Scholar 

  100. 100.

    Yilmaz, M. et al. Estimated glomerular filtration rate changes in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Cancer 121, 3894–3904 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Shih, Y. T., Cortes, J. E. & Kantarjian, H. M. Treatment value of second-generation BCR-ABL1 tyrosine kinase inhibitors compared with imatinib to achieve treatment-free remission in patients with chronic myeloid leukaemia: a modelling study. Lancet Haematol. 6, e398–e408 (2019).

    PubMed  Google Scholar 

  102. 102.

    Loeliger, E. A., van den Besselaar, A. M. & Lewis, S. M. Reliability and clinical impact of the normalization of the prothrombin times in oral anticoagulant control. Thromb. Haemost. 53, 148–154 (1985).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive financial support from the South Australian Cancer Council’s Beat Cancer Project on behalf of its donors and the State Government through the Department of Health. The authors are grateful to the many patients with chronic myeloid leukaemia who have participated in clinical studies and especially to the pioneers who participated in the earliest treatment-free remission studies. We also thank the many international colleagues whose research is cited here, and the scientific and clinical colleagues in Australia who have been instrumental to our own studies.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to David M. Ross or Timothy P. Hughes.

Ethics declarations

Competing interests

D.M.R. receives research funding and honoraria from BMS and Novartis. T.P.H. receives research funding and honoraria from BMS and Novartis and is a member of the advisory board for BMS, Incyte and Novartis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ross, D.M., Hughes, T.P. Treatment-free remission in patients with chronic myeloid leukaemia. Nat Rev Clin Oncol 17, 493–503 (2020). https://doi.org/10.1038/s41571-020-0367-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing