Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rising incidence of early-onset colorectal cancer — a call to action

Abstract

The incidence of early-onset colorectal cancer (CRC), which occurs in individuals <50 years of age, has been increasing worldwide and particularly in high-income countries. The reasons for this increase remain unknown but plausible hypotheses include greater exposure to potential risk factors, such as a Western-style diet, obesity, physical inactivity and antibiotic use, especially during the early prenatal to adolescent periods of life. These exposures can not only cause genetic and epigenetic alterations in colorectal epithelial cells but also affect the gut microbiota and host immunity. Early-onset CRCs have differential clinical, pathological and molecular features compared with later-onset CRCs. Certain existing resources can be utilized to elucidate the aetiology of early-onset CRC and inform the development of effective prevention, early detection and therapeutic strategies; however, additional life-course cohort studies spanning childhood and young adulthood, integrated with prospective biospecimen collections, omics biomarker analyses and a molecular pathological epidemiology approach, are needed to better understand and manage this disease entity. In this Perspective, we summarize our current understanding of early-onset CRC and discuss how we should strategize future research to improve its prevention and clinical management.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Examples of life-course exposures with potential effects on CRC tumorigenesis.

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  2. Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691 (2017).

    PubMed  Google Scholar 

  3. Global Burden of Disease Cancer Collaboration et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer Groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 3, 524–548 (2017).

    PubMed Central  Google Scholar 

  4. Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. & Wallace, M. B. Colorectal cancer. Lancet 394, 1467–1480 (2019).

    PubMed  Google Scholar 

  5. Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16, 713–732 (2019).

    PubMed  Google Scholar 

  6. Siegel, R. L. et al. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70, 145–164 (2020).

    PubMed  Google Scholar 

  7. Siegel, R. L. et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 68, 2179–2185 (2019).

    PubMed  Google Scholar 

  8. Vuik, F. E. et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 68, 1820–1826 (2019).

    PubMed  Google Scholar 

  9. Lui, R. N. et al. Global increasing incidence of young-onset colorectal cancer across 5 continents: a joinpoint regression analysis of 1,922,167 cases. Cancer Epidemiol. Biomarkers Prev. 28, 1275–1282 (2019).

    PubMed  Google Scholar 

  10. Saad El Din, K. et al. Trends in the epidemiology of young-onset colorectal cancer: a worldwide systematic review. BMC Cancer 20, 288 (2020).

    PubMed  Google Scholar 

  11. Meester, R. G. S., Mannalithara, A., Lansdorp-Vogelaar, I. & Ladabaum, U. Trends in incidence and stage at diagnosis of colorectal cancer in adults aged 40 through 49 years, 1975–2015. JAMA 321, 1933–1934 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Siegel, R. L. et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J. Natl Cancer Inst. 109, djw322 (2017).

    PubMed Central  Google Scholar 

  13. Chung, R. Y. et al. A population-based age-period-cohort study of colorectal cancer incidence comparing Asia against the West. Cancer Epidemiol. 59, 29–36 (2019).

    PubMed  Google Scholar 

  14. Brenner, D. R. et al. Increasing colorectal cancer incidence trends among younger adults in Canada. Prev. Med. 105, 345–349 (2017).

    PubMed  Google Scholar 

  15. Feletto, E. et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: analysis of data on over 375,000 cases. Cancer Epidemiol. Biomarkers Prev. 28, 83–90 (2019).

    PubMed  Google Scholar 

  16. Stoffel, E. M. & Murphy, C. C. Epidemiology and mechanisms of the increasing incidence of colon and rectal cancers in young adults. Gastroenterology 158, 341–353 (2020).

    PubMed  Google Scholar 

  17. Sung, J. J. Y. et al. Increasing trend in young-onset colorectal cancer in Asia: more cancers in men and more rectal cancers. Am. J. Gastroenterol. 114, 322–329 (2019).

    PubMed  Google Scholar 

  18. Sung, H., Siegel, R. L., Rosenberg, P. S. & Jemal, A. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 4, e137–e147 (2019).

    PubMed  Google Scholar 

  19. Gupta, S. et al. International trends in the incidence of cancer among adolescents and young adults. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djaa007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rosato, V. et al. Risk factors for young-onset colorectal cancer. Cancer Causes Control. 24, 335–341 (2013).

    PubMed  Google Scholar 

  21. Gausman, V. et al. Risk factors associated with early-onset colorectal cancer. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2019.10.009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Low, E. E. et al. Risk factors for early-onset colorectal cancer. Gastroenterology 159, 492–501.e7 (2020).

    CAS  PubMed  Google Scholar 

  23. Nguyen, L. H. et al. Sedentary behaviors, TV viewing time, and risk of young-onset colorectal cancer. JNCI Cancer Spectr. 2, pky073 (2018).

    PubMed  Google Scholar 

  24. Liu, P. H. et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5, 37–44 (2019).

    PubMed  Google Scholar 

  25. Liang, P. S., Mayer, J. D., Wakefield, J. & Ko, C. W. Temporal trends in geographic and sociodemographic disparities in colorectal cancer among medicare patients, 1973–2010. J. Rural Health 33, 361–370 (2017).

    PubMed  Google Scholar 

  26. Murphy, C. C., Wallace, K., Sandler, R. S. & Baron, J. A. Racial disparities in incidence of young-onset colorectal cancer and patient survival. Gastroenterology 156, 958–965 (2019).

    PubMed  Google Scholar 

  27. Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 376, 1419–1429 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Ogden, C. L. et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA 315, 2292–2299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Holowatyj, A. N., Ruterbusch, J. J., Rozek, L. S., Cote, M. L. & Stoffel, E. M. Racial/Ethnic disparities in survival among patients with young-onset colorectal cancer. J. Clin. Oncol. 34, 2148–2156 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Archambault, A. N. et al. Cumulative burden of colorectal cancer-associated genetic variants is more strongly associated with early-onset vs late-onset cancer. Gastroenterology 158, 1274–1286.e12 (2020).

    CAS  PubMed  Google Scholar 

  31. Wang, L. et al. Risk factor profiles differ for cancers of different regions of the colorectum. Gastroenterology 159, 241–256.e13 (2020).

    PubMed  Google Scholar 

  32. Kneuertz, P. J. et al. Overtreatment of young adults with colon cancer: more intense treatments with unmatched survival gains. JAMA Surg. 150, 402–409 (2015).

    PubMed  Google Scholar 

  33. Myers, E. A. et al. Colorectal cancer in patients under 50 years of age: a retrospective analysis of two institutions’ experience. World J. Gastroenterol. 19, 5651–5657 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Chen, F. W., Sundaram, V., Chew, T. A. & Ladabaum, U. Advanced-stage colorectal cancer in persons younger than 50 years not associated with longer duration of symptoms or time to diagnosis. Clin. Gastroenterol. Hepatol. 15, 728–737.e3 (2017).

    PubMed  Google Scholar 

  35. Deng, S. X. et al. Factors influencing diagnosis of colorectal cancer: a hospital-based survey in China. J. Dig. Dis. 13, 517–524 (2012).

    PubMed  Google Scholar 

  36. Ben-Ishay, O. et al. Diagnosis of colon cancer differs in younger versus older patients despite similar complaints. Isr. Med. Assoc. J. 15, 284–287 (2013).

    PubMed  Google Scholar 

  37. Liang, J. T. et al. Clinicopathological and molecular biological features of colorectal cancer in patients less than 40 years of age. Br. J. Surg. 90, 205–214 (2003).

    CAS  PubMed  Google Scholar 

  38. Siegel, R. L., Jakubowski, C. D., Fedewa, S. A., Davis, A. & Azad, N. S. Colorectal cancer in the young: epidemiology, prevention, management. Am. Soc. Clin. Oncol. Educ. Book 40, 1–14 (2020).

    PubMed  Google Scholar 

  39. Stoffel, E. M. et al. Germline genetic features of young individuals with colorectal cancer. Gastroenterology 154, 897–905.e1 (2018).

    CAS  PubMed  Google Scholar 

  40. Pearlman, R. et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 3, 464–471 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Mork, M. E. et al. High prevalence of hereditary cancer syndromes in adolescents and young adults with colorectal cancer. J. Clin. Oncol. 33, 3544–3549 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Valle, L., Vilar, E., Tavtigian, S. V. & Stoffel, E. M. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J. Pathol. 247, 574–588 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Koskenvuo, L., Ryynänen, H. & Lepistö, A. Timing of prophylactic colectomy in familial adenomatous polyposis. Colorectal Dis. https://doi.org/10.1111/codi.15151 (2020).

  44. Ogino, S. et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 67, 1168–1180 (2018).

    CAS  PubMed  Google Scholar 

  45. Yamauchi, M. et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61, 847–854 (2012).

    CAS  PubMed  Google Scholar 

  46. Yamauchi, M. et al. Colorectal cancer: a tale of two sides or a continuum? Gut 61, 794–797 (2012).

    PubMed  Google Scholar 

  47. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin. Transl Gastroenterol. 7, e200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Holowatyj, A. N. et al. Clinicopathologic and racial/ethnic differences of colorectal cancer among adolescents and young adults. Clin. Transl Gastroenterol. 10, e00059 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Willauer, A. N. et al. Clinical and molecular characterization of early-onset colorectal cancer. Cancer 125, 2002–2010 (2019).

    CAS  PubMed  Google Scholar 

  50. Perea, J. et al. Age at onset should be a major criterion for subclassification of colorectal cancer. J. Mol. Diagn. 16, 116–126 (2014).

    CAS  PubMed  Google Scholar 

  51. Berg, M. et al. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol. Cancer 9, 100 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Arriba, M. et al. DNA copy number profiling reveals different patterns of chromosomal instability within colorectal cancer according to the age of onset. Mol. Carcinog. 55, 705–716 (2016).

    CAS  PubMed  Google Scholar 

  53. Yeo, H. et al. Early-onset colorectal cancer is distinct from traditional colorectal cancer. Clin. Colorectal Cancer 16, 293–299.e6 (2017).

    PubMed  Google Scholar 

  54. Soliman, B. G., Karagkounis, G., Church, J. M., Plesec, T. & Kalady, M. F. Mucinous histology signifies poor oncologic outcome in young patients with colorectal cancer. Dis. Colon Rectum 61, 547–553 (2018).

    PubMed  Google Scholar 

  55. Rodriguez, L. et al. Disease characteristics, clinical management, and outcomes of young patients with colon cancer: a population-based study. Clin. Colorectal Cancer 17, e651–e661 (2018).

    PubMed  Google Scholar 

  56. Nagtegaal, I., Arends, M. & Salto-Tellez, M. in WHO Classification of Tumours, 5th edition: Digestive System Tumours (ed. WHO Classification of Tumours Editorial Board) Vol. 180 (World Health Organization, 2019).

  57. Inamura, K. et al. Prognostic significance and molecular features of signet-ring cell and mucinous components in colorectal carcinoma. Ann. Surg. Oncol. 22, 1226–1235 (2015).

    PubMed  Google Scholar 

  58. Lieu, C. H. et al. Comprehensive genomic landscapes in early and later onset colorectal cancer. Clin. Cancer Res. 25, 5852–5858 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Antelo, M. et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS ONE 7, e45357 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Feinberg, A. P. The key role of epigenetics in human disease prevention and mitigation. N. Engl. J. Med. 378, 1323–1334 (2018).

    CAS  PubMed  Google Scholar 

  61. Baba, Y. et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol. Cancer 9, 125 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lieu, C. H. et al. Association of age with survival in patients with metastatic colorectal cancer: analysis from the ARCAD Clinical Trials Program. J. Clin. Oncol. 32, 2975–2984 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sultan, I. et al. Distinct features of colorectal cancer in children and adolescents: a population-based study of 159 cases. Cancer 116, 758–765 (2010).

    PubMed  Google Scholar 

  65. Kim, T. J., Kim, E. R., Hong, S. N., Chang, D. K. & Kim, Y. H. Long-term outcome and prognostic factors of sporadic colorectal cancer in young patients: a large institutional-based retrospective study. Medicine 95, e3641 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chou, C. L., Tseng, C. J. & Shiue, Y. L. The impact of young age on the prognosis for colorectal cancer: a population-based study in Taiwan. Jpn. J. Clin. Oncol. 47, 1010–1018 (2017).

    PubMed  Google Scholar 

  67. Blanke, C. D. et al. Impact of young age on treatment efficacy and safety in advanced colorectal cancer: a pooled analysis of patients from nine first-line phase III chemotherapy trials. J. Clin. Oncol. 29, 2781–2786 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Pokharkar, A. B. et al. Young vs old colorectal cancer in indian subcontinent: a tertiary care center experience. Indian J. Surg. Oncol. 8, 491–498 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Rho, Y. S. et al. Comparing clinical characteristics and outcomes of young-onset and late-onset colorectal cancer: an international collaborative study. Clin. Colorectal Cancer 16, 334–342 (2017).

    PubMed  Google Scholar 

  70. Yang, Z. et al. Characteristics and long-term survival of colorectal cancer patients aged 44 years and younger. Clin. Transl Oncol. 14, 896–904 (2012).

    PubMed  Google Scholar 

  71. McMillan, D. C. & McArdle, C. S. The impact of young age on cancer-specific and non-cancer-related survival after surgery for colorectal cancer: 10-year follow-up. Br. J. Cancer 101, 557–560 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Manjelievskaia, J. et al. Chemotherapy use and survival among young and middle-aged patients with colon cancer. JAMA Surg. 152, 452–459 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Schellerer, V. S. et al. Despite aggressive histopathology survival is not impaired in young patients with colorectal cancer: CRC in patients under 50 years of age. Int. J. Colorectal Dis. 27, 71–79 (2012).

    PubMed  Google Scholar 

  74. Wang, M. J. et al. The prognostic factors and multiple biomarkers in young patients with colorectal cancer. Sci. Rep. 5, 10645 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Quah, H. M. et al. Young age influences treatment but not outcome of colon cancer. Ann. Surg. Oncol. 14, 2759–2765 (2007).

    CAS  PubMed  Google Scholar 

  76. Boyce, S. et al. Young-onset colorectal cancer in New South Wales: a population-based study. Med. J. Aust. 205, 465–470 (2016).

    PubMed  Google Scholar 

  77. O’Connell, J. B. et al. Do young colon cancer patients have worse outcomes? World J. Surg. 28, 558–562 (2004).

    PubMed  Google Scholar 

  78. Hubbard, J. et al. Benefits and adverse events in younger versus older patients receiving adjuvant chemotherapy for colon cancer: findings from the Adjuvant Colon Cancer Endpoints data set. J. Clin. Oncol. 30, 2334–2339 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Kolarich, A. et al. Rectal cancer patients younger than 50 years lack a survival benefit from NCCN guideline-directed treatment for stage II and III disease. Cancer 124, 3510–3519 (2018).

    PubMed  Google Scholar 

  80. Abdelsattar, Z. M. et al. Colorectal cancer outcomes and treatment patterns in patients too young for average-risk screening. Cancer 122, 929–934 (2016).

    PubMed  Google Scholar 

  81. Orsini, R. G. et al. Comparable survival for young rectal cancer patients, despite unfavourable morphology and more advanced-stage disease. Eur. J. Cancer 51, 1675–1682 (2015).

    PubMed  Google Scholar 

  82. Hofseth, L. J. et al. Early-onset colorectal cancer: initial clues and current views. Nat. Rev. Gastroenterol. Hepatol. 17, 352–364 (2020).

    PubMed  Google Scholar 

  83. Ruder, E. H. et al. Adolescent and mid-life diet: risk of colorectal cancer in the NIH-AARP Diet and Health Study. Am. J. Clin. Nutr. 94, 1607–1619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. van der Pols, J. C. et al. Childhood dairy intake and adult cancer risk: 65-y follow-up of the Boyd Orr cohort. Am. J. Clin. Nutr. 86, 1722–1729 (2007).

    PubMed  Google Scholar 

  85. Bjørge, T., Engeland, A., Tverdal, A. & Smith, G. D. Body mass index in adolescence in relation to cause-specific mortality: a follow-up of 230,000 Norwegian adolescents. Am. J. Epidemiol. 168, 30–37 (2008).

    PubMed  Google Scholar 

  86. Hughes, L. A. et al. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS ONE 4, e7951 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Hughes, L. A. et al. Childhood and adolescent energy restriction and subsequent colorectal cancer risk: results from the Netherlands Cohort Study. Int. J. Epidemiol. 39, 1333–1344 (2010).

    PubMed  Google Scholar 

  88. Boice J. D. Jr in Cancer Epidemiology and Prevention (eds Schottenfeld, D. & Fraumeni, J. F. Jr) 259–293 (Oxford University Press, 2006).

  89. Sigurdson, A. J. et al. Primary thyroid cancer after a first tumour in childhood (the childhood cancer survivor study): a nested case-control study. Lancet 365, 2014–2023 (2005).

    PubMed  Google Scholar 

  90. Caprio, S. et al. Central adiposity and its metabolic correlates in obese adolescent girls. Am. J. Physiol. 269, E118–E126 (1995).

    CAS  PubMed  Google Scholar 

  91. Chiarelli, F. & Marcovecchio, M. L. Insulin resistance and obesity in childhood. Eur. J. Endocrinol. 159 (Suppl. 1), S67–S74 (2008).

    CAS  PubMed  Google Scholar 

  92. Loeb, L. A. Human cancers express a mutator phenotype: hypothesis, origin, and consequences. Cancer Res. 76, 2057–2059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012).

    PubMed  Google Scholar 

  95. Stephen, A. M. & Wald, N. J. Trends in individual consumption of dietary fat in the United States, 1920–1984. Am. J. Clin. Nutr. 52, 457–469 (1990).

    CAS  PubMed  Google Scholar 

  96. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Google Scholar 

  97. Centers for Disease Control and Prevention (CDC). Achievements in public health, 1900–1999: healthier mothers and babies. Morbidity Mortal. Wkly. Rep. 48, 849–858 (1999).

    Google Scholar 

  98. Simmons, H. E. & Stolley, P. D. This is medical progress? Trends and consequences of antibiotic use in the United States. JAMA 227, 1023–1028 (1974).

    CAS  PubMed  Google Scholar 

  99. O’Sullivan, A., Farver, M. & Smilowitz, J. T. The influence of early infant-feeding practices on the intestinal microbiome and body composition in infants. Nutr. Metab. Insights 8 (Suppl. 1), 1–9 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Lu, Y. H., Wang, N. & Jin, F. Long-term follow-up of children conceived through assisted reproductive technology. J. Zhejiang Univ. Sci. B 14, 359–371 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Sandall, J. et al. Short-term and long-term effects of caesarean section on the health of women and children. Lancet 392, 1349–1357 (2018).

    PubMed  Google Scholar 

  102. Zhou, Q. et al. Risk of colorectal cancer in ulcerative colitis patients: a systematic review and meta-analysis. Gastroenterol. Res. Pract. 2019, 5363261 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Ghione, S. et al. Dramatic increase in incidence of ulcerative colitis and Crohn’s disease (1988–2011): a population-based study of french adolescents. Am. J. Gastroenterol. 113, 265–272 (2018).

    PubMed  Google Scholar 

  104. Shendure, J. & Akey, J. M. The origins, determinants, and consequences of human mutations. Science 349, 1478–1483 (2015).

    CAS  PubMed  Google Scholar 

  105. Strum, W. B. & Boland, C. R. Clinical and genetic characteristics of colorectal cancer in persons under 50 years of age: a review. Dig. Dis. Sci. 64, 3059–3065 (2019).

    PubMed  Google Scholar 

  106. Poon, S. L., McPherson, J. R., Tan, P., Teh, B. T. & Rozen, S. G. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention. Genome Med. 6, 24 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Ogino, S., Nowak, J. A., Hamada, T., Milner, D. A. Jr & Nishihara, R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu. Rev. Pathol. 14, 83–103 (2019).

    CAS  PubMed  Google Scholar 

  108. Hur, K. et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63, 635–646 (2014).

    CAS  PubMed  Google Scholar 

  109. Cho, Y. H. et al. LINE-1 hypomethylation is associated with radiation-induced genomic instability in industrial radiographers. Env. Mol. Mutagen. 60, 174–184 (2019).

    CAS  Google Scholar 

  110. Gogna, P., O’Sullivan, D. E. & King, W. D. The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation. Epigenomics 10, 785–796 (2018).

    CAS  PubMed  Google Scholar 

  111. Martin, E. M. & Fry, R. C. Environmental influences on the epigenome: exposure- associated DNA methylation in human populations. Annu. Rev. Public Health 39, 309–333 (2018).

    PubMed  Google Scholar 

  112. Yan, H. H. N. et al. Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut https://doi.org/10.1136/gutjnl-2019-320019 (2020).

    Article  PubMed  Google Scholar 

  113. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    CAS  PubMed  Google Scholar 

  115. Chen, B., Du, G., Guo, J. & Zhang, Y. Bugs, drugs, and cancer: can the microbiome be a potential therapeutic target for cancer management? Drug. Discov. Today 24, 1000–1009 (2019).

    CAS  PubMed  Google Scholar 

  116. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980 (2016).

    CAS  PubMed  Google Scholar 

  117. Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643 (2017).

    CAS  PubMed  Google Scholar 

  121. Phipps, A. I., Chan, A. T. & Ogino, S. Anatomic subsite of primary colorectal cancer and subsequent risk and distribution of second cancers. Cancer 119, 3140–3147 (2013).

    PubMed  Google Scholar 

  122. Mima, K. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1, 653–661 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Kosumi, K. et al. The amount of bifidobacterium genus in colorectal carcinoma tissue in relation to tumor characteristics and clinical outcome. Am. J. Pathol. 188, 2839–2852 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, J. Y. et al. Different risk factors for advanced colorectal neoplasm in young adults. World J. Gastroenterol. 22, 3611–3620 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Blaser, M. J. & Dominguez-Bello, M. G. The human microbiome before birth. Cell Host Microbe 20, 558–560 (2016).

    CAS  PubMed  Google Scholar 

  126. Esaiassen, E., Fjalstad, J. W., Juvet, L. K., van den Anker, J. N. & Klingenberg, C. Antibiotic exposure in neonates and early adverse outcomes: a systematic review and meta-analysis. J. Antimicrob. Chemother. 72, 1858–1870 (2017).

    CAS  PubMed  Google Scholar 

  127. Azad, M. B. et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 123, 983–993 (2016).

    CAS  PubMed  Google Scholar 

  128. Klein, E. Y. et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl Acad. Sci. USA 115, E3463–E3470 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Park, J. E., Jardine, L., Gottgens, B., Teichmann, S. A. & Haniffa, M. Prenatal development of human immunity. Science 368, 600–603 (2020).

    CAS  PubMed  Google Scholar 

  130. Cao, Y. et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut 67, 672–678 (2018).

    CAS  PubMed  Google Scholar 

  131. Zhang, J. et al. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989–2012: a matched case-control study. Gut 68, 1971–1978 (2019).

    CAS  PubMed  Google Scholar 

  132. Kilkkinen, A. et al. Antibiotic use predicts an increased risk of cancer. Int. J. Cancer 123, 2152–2155 (2008).

    CAS  PubMed  Google Scholar 

  133. Mauri, G. et al. Early-onset colorectal cancer in young individuals. Mol. Oncol. 13, 109–131 (2019).

    PubMed  Google Scholar 

  134. Ganal-Vonarburg, S. C., Hornef, M. W. & Macpherson, A. J. Microbial-host molecular exchange and its functional consequences in early mammalian life. Science 368, 604–607 (2020).

    CAS  PubMed  Google Scholar 

  135. Abualkhair, W. H. et al. Trends in incidence of early-onset colorectal cancer in the United States among those approaching screening age. JAMA Netw. Open 3, e1920407 (2020).

    PubMed  PubMed Central  Google Scholar 

  136. Ladabaum, U., Dominitz, J. A., Kahi, C. & Schoen, R. E. Strategies for colorectal cancer screening. Gastroenterology 158, 418–432 (2020).

    CAS  PubMed  Google Scholar 

  137. Enwerem, N. et al. Systematic review of prevalence, risk factors, and risk for metachronous advanced neoplasia in patients with young-onset colorectal adenoma. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2020.04.092 (2020).

  138. Rex, D. K. et al. Colorectal cancer screening: recommendations for physicians and patients from the US multi-society task force on colorectal cancer. Gastroenterology 153, 307–323 (2017).

    PubMed  Google Scholar 

  139. Levin, B. et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology 134, 1570–1595 (2008).

    CAS  PubMed  Google Scholar 

  140. Giardiello, F. M. et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Am. J. Gastroenterol. 109, 1159–1179 (2014).

    PubMed  Google Scholar 

  141. Wolf, A. M. D. et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J. Clin. 68, 250–281 (2018).

    PubMed  Google Scholar 

  142. Fedewa, S. A., Siegel, R. L., Goding Sauer, A., Bandi, P. & Jemal, A. Colorectal cancer screening patterns after the American Cancer Society’s recommendation to initiate screening at age 45 years. Cancer 126, 1351–1353 (2020).

    PubMed  Google Scholar 

  143. U. S. Preventive Services Task Force. et al. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA 315, 2564–2575 (2016).

    Google Scholar 

  144. Peterse, E. F. P. et al. The impact of the rising colorectal cancer incidence in young adults on the optimal age to start screening: microsimulation analysis I to inform the American Cancer Society colorectal cancer screening guideline. Cancer 124, 2964–2973 (2018).

    PubMed  Google Scholar 

  145. Ogino, S., Chan, A. T., Fuchs, C. S. & Giovannucci, E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 60, 397–411 (2011).

    PubMed  Google Scholar 

  146. Hughes, L. A. E., Simons, C., van den Brandt, P. A., van Engeland, M. & Weijenberg, M. P. Lifestyle, diet, and colorectal cancer risk according to (Epi)genetic instability: current evidence and future directions of molecular pathological epidemiology. Curr. Colorectal Cancer Rep. 13, 455–469 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Gunter, M. J. et al. Meeting report from the joint IARC-NCI international cancer seminar series: a focus on colorectal cancer. Ann. Oncol. 30, 510–519 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Carr, P. R. et al. Lifestyle factors and risk of sporadic colorectal cancer by microsatellite instability status: a systematic review and meta-analyses. Ann. Oncol. 29, 825–834 (2018).

    CAS  PubMed  Google Scholar 

  149. Inamura, K. Roles of microbiota in response to cancer immunotherapy. Semin. Cancer Biol. 65, 164–175 (2020).

    CAS  PubMed  Google Scholar 

  150. Rescigno, T., Micolucci, L., Tecce, M. F. & Capasso, A. Bioactive nutrients and nutrigenomics in age-related diseases. Molecules 22, 105 (2017).

    PubMed Central  Google Scholar 

  151. Wang, S. T. et al. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J. Gastroenterol. 26, 562–597 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Amitay, E. L. et al. Association of aspirin and nonsteroidal anti-inflammatory drugs with colorectal cancer risk by molecular subtypes. J. Natl Cancer Inst. 111, 475–483 (2019).

    PubMed  Google Scholar 

  153. Luo, K. et al. Fusobacterium nucleatum, the communication with colorectal cancer. Biomed. Pharmacother. 116, 108988 (2019).

    CAS  PubMed  Google Scholar 

  154. Murphy, N., Jenab, M. & Gunter, M. J. Adiposity and gastrointestinal cancers: epidemiology, mechanisms and future directions. Nat. Rev. Gastroenterol. Hepatol. 15, 659–670 (2018).

    CAS  PubMed  Google Scholar 

  155. Rajpoot, M., Sharma, A. K., Sharma, A. & Gupta, G. K. Understanding the microbiome: emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Semin. Cancer Biol. 52, 1–8 (2018).

    CAS  PubMed  Google Scholar 

  156. Chavarro, J. E. et al. Contributions of the nurses’ health studies to reproductive health research. Am. J. Public Health 106, 1669–1676 (2016).

    PubMed  PubMed Central  Google Scholar 

  157. Gupta, S. et al. Potential impact of family history-based screening guidelines on the detection of early-onset colorectal cancer. Cancer 126, 3013–3020 (2020).

    PubMed  Google Scholar 

  158. Cirillo, P. M. & Cohn, B. A. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the child health and development studies pregnancy cohort. Circulation 132, 1234–1242 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Dwyer, A. J. et al. A summary of the fight colorectal cancer working meeting: exploring risk factors and etiology of sporadic early-age onset colorectal cancer. Gastroenterology 157, 280–288 (2019).

    PubMed  Google Scholar 

  160. Morton, S. M. et al. Cohort profile: growing up in New Zealand. Int. J. Epidemiol. 42, 65–75 (2013).

    PubMed  Google Scholar 

  161. Connelly, R. & Platt, L. Cohort profile: UK millennium cohort study (MCS). Int. J. Epidemiol. 43, 1719–1725 (2014).

    PubMed  Google Scholar 

  162. Nishi, A. et al. Lifecourse epidemiology and molecular pathological epidemiology. Am. J. Prev. Med. 48, 116–119 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. Kim, N. H. et al. Prevalence of and risk factors for colorectal neoplasia in asymptomatic young adults (20–39 years old). Clin. Gastroenterol. Hepatol. 17, 115–122 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Tyler Twombly (Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, USA) for proofreading of the manuscript. The work of the authors is supported by US NIH grants (R35 CA197735 and R01 CA248857 to S.O., R21 CA230873 to S.O. and K.W., R01 CA205406 to K.N., R03 CA197879 to K.W., and R37 CA246175 to Y.C.), a Cancer Research UK Grand Challenge Award (UK C10674/A27140 to M.G., K.N. and S.O.), an Investigator Initiated Grant from the American Institute for Cancer Research (AICR) to K.W., and by a US Department of Defense grant (CA160344 to K.N.). K.N. and M.G. have received support from the Project P Fund. The work of M.G. has been supported by a Stand Up to Cancer Colorectal Cancer Dream Team Translational Research Grant (SU2C-AACR-DT22-17) administered by the American Association for Cancer Research, a scientific partner of SU2C. The work of T.U. has been supported by an Overseas Research Fellowship grant (201960541) from the Japan Society for the Promotion of Science, the Uehara Memorial Foundation and the Yasuda Medical Foundation. The work of K.F. has been supported by fellowship grants from the Uehara Memorial Foundation and the Grant of The Clinical Research Promotion Foundation (2018). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the conceptualization of the article and approved the final version of the manuscript. S.O. developed the initial basic concept and supervised the manuscript preparation. N.A., T.U., R.Z., K.F. and S.O. constructed the overall outline of the manuscript, searched the literature and drafted the manuscript. T.H., M.G., K.W., Y.C., K.N. and S.O. revised the manuscript critically for important intellectual content.

Corresponding author

Correspondence to Shuji Ogino.

Ethics declarations

Competing interests

K.N. has received institutional research funding from Evergrande Group, Genentech, Gilead Sciences, Pharmavite, Revolution Medicines, Tarrex Biopharma and Trovagene, and has served on advisory boards for Array Biopharma, Bayer and Seattle Genetics. M.G. has received research funding from Bristol-Myers Squibb and Merck. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks Samir Gupta, Jose Perea and Benjamin Weinberg for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Child Health and Development Studies (CHDS): http://www.chdstudies.org/

Colon Cancer Family Registry (CCFR) Cohort: https://www.coloncfr.org/

Growing Up in New Zealand: https://www.growingup.co.nz/

Growing Up Today Study 2 (GUTS2): https://nhs2survey.org/gutswordpress/index.php/about/history/

Millennium Cohort Study: https://cls.ucl.ac.uk/cls-studies/millennium-cohort-study/

National Children’s Study: https://www.nichd.nih.gov/research/supported/NCS

Nurses’ Health Study 3 (NHS3): https://www.nhs3.org/

ORIGINS Project: https://originsproject.telethonkids.org.au/

SEER Cancer Statistics Review 1975–2017: https://seer.cancer.gov/csr/1975_2017/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akimoto, N., Ugai, T., Zhong, R. et al. Rising incidence of early-onset colorectal cancer — a call to action. Nat Rev Clin Oncol 18, 230–243 (2021). https://doi.org/10.1038/s41571-020-00445-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-00445-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing