Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Current approaches to the management of brain metastases

Abstract

Brain metastases are a very common manifestation of cancer that have historically been approached as a single disease entity given the uniform association with poor clinical outcomes. Fortunately, our understanding of the biology and molecular underpinnings of brain metastases has greatly improved, resulting in more sophisticated prognostic models and multiple patient-related and disease-specific treatment paradigms. In addition, the therapeutic armamentarium has expanded from whole-brain radiotherapy and surgery to include stereotactic radiosurgery, targeted therapies and immunotherapies, which are often used sequentially or in combination. Advances in neuroimaging have provided additional opportunities to accurately screen for intracranial disease at initial cancer diagnosis, target intracranial lesions with precision during treatment and help differentiate the effects of treatment from disease progression by incorporating functional imaging. Given the numerous available treatment options for patients with brain metastases, a multidisciplinary approach is strongly recommended to personalize the treatment of each patient in an effort to improve the therapeutic ratio. Given the ongoing controversies regarding the optimal sequencing of the available and expanding treatment options for patients with brain metastases, enrolment in clinical trials is essential to advance our understanding of this complex and common disease. In this Review, we describe the key features of diagnosis, risk stratification and modern paradigms in the treatment and management of patients with brain metastases and provide speculation on future research directions.

Key points

  • Many patient-related and disease-related prognostic criteria have incorporated molecular profiling into the classification schema and should be considered when estimating a patient’s prognosis following a diagnosis of brain metastases.

  • Genomic profiling of brain metastases has yielded important information about potentially actionable genomic alterations that may not be detected in the primary tumour or extracranial metastases.

  • Evolving radiotherapy techniques, such as hippocampal avoidance whole-brain radiotherapy (WBRT), mitigate the risk of neurocognitive decline following treatment.

  • Stereotactic radiosurgery (SRS) is now the primary treatment for patients with either limited or multiple brain metastases, with potential synergistic effects when combined with certain immunotherapeutic agents or targeted therapies.

  • Postoperative SRS is an alternative to WBRT for patients who undergo resection of brain metastases, with a reduced risk of neurocognitive decline; however, preoperative SRS might be favoured given the lower risks of radiation necrosis and leptomeningeal disease.

  • Developments in targeted therapies and immunotherapies for patients with non-small-cell lung cancer, breast cancer and melanoma have dramatically transformed the treatment of patients with brain metastases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Key features of brain metastases from five common solid tumour types.
Fig. 2: Whole-exome sequencing of brain metastases matched with primary tumours, other brain metastases and extracranial metastases1.
Fig. 3: Radiation exposures during WBRT.
Fig. 4: Potential role of CEST–MRI in the management of brain metastases.

References

  1. Suh, J. H., Kotecha, R., Ahluwalia, M. S. & Vogelbaum, M. A. in Devita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology 11th edn 1934–1945 (Wolters Kluwer, 2019).

  2. Suh, J. H. Stereotactic radiosurgery for the management of brain metastases. N. Engl. J. Med. 362, 1119–1127 (2010).

    CAS  PubMed  Google Scholar 

  3. Achrol, A. S. et al. Brain metastases. Nat. Rev. Dis. Primers 5, 5 (2019).

    PubMed  Google Scholar 

  4. Postmus, P. E. & Smit, E. F. Prophylactic cranial irradiation for stage IV small cell lung cancer, live longer or reduce morbidity of brain metastases? J. Thorac. Dis. 9, 3572–3575 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Scoccianti, S. & Ricardi, U. Treatment of brain metastases: review of phase III randomized controlled trials. Radiother. Oncol. 102, 168–179 (2012).

    PubMed  Google Scholar 

  6. Tsukada, Y., Fouad, A., Pickren, J. W. & Lane, W. W. Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 52, 2349–2354 (1983).

    CAS  PubMed  Google Scholar 

  7. Sampson, J. H., Carter, J. H. Jr., Friedman, A. H. & Seigler, H. F. Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma. J. Neurosurg. 88, 11–20 (1998).

    CAS  PubMed  Google Scholar 

  8. Nayak, L. et al. Epidemiology of brain metastases. Curr. Oncol. Rep. 14, 48–54 (2012).

    PubMed  Google Scholar 

  9. Cagney, D. N. et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol. 19, 1511–1521 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Suki, D., Khoury Abdulla, R., Ding, M., Khatua, S. & Sawaya, R. Brain metastases in patients diagnosed with a solid primary cancer during childhood: experience from a single referral cancer center. J. Neurosurg. Pediatr. 14, 372–385 (2014).

    PubMed  Google Scholar 

  11. Goldman, S., Echevarria, M. E. & Fangusaro, J. Pediatric brain metastasis from extraneural malignancies: a review. Cancer Treat. Res. 136, 143–168 (2007).

    PubMed  Google Scholar 

  12. Mehta, M. P. et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol. 21, 2529–2536 (2003).

    CAS  PubMed  Google Scholar 

  13. Meyers, C. A. et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J. Clin. Oncol. 22, 157–165 (2004).

    CAS  PubMed  Google Scholar 

  14. Schellinger, P. D., Meinck, H. M. & Thron, A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J. Neurooncol. 44, 275–281 (1999).

    CAS  PubMed  Google Scholar 

  15. Sze, G. et al. Intraparenchymal brain metastases: MR imaging versus contrast-enhanced CT. Radiology 168, 187–194 (1988).

    CAS  PubMed  Google Scholar 

  16. Sze, G. et al. Hemorrhagic neoplasms: MR mimics of occult vascular malformations. Am. J. Roentgenol. 149, 1223–1230 (1987).

    CAS  Google Scholar 

  17. McGann, G. M. & Platts, A. Computed tomography of cranial metastatic malignant melanoma: features, early detection and unusual cases. Br. J. Radiol. 64, 310–313 (1991).

    CAS  PubMed  Google Scholar 

  18. Albert, F. K., Forsting, M., Sartor, K., Adams, H. P. & Kunze, S. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34, 45–60 (1994).

    CAS  PubMed  Google Scholar 

  19. Forsyth, P. A. et al. Prospective study of postoperative magnetic resonance imaging in patients with malignant gliomas. J. Clin. Oncol. 15, 2076–2081 (1997).

    CAS  PubMed  Google Scholar 

  20. Patel, T. R. et al. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am. J. Neuroradiol. 32, 1885–1892 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol. 14, e396–e406 (2013).

    PubMed  Google Scholar 

  22. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 2: neurocognitive, neurological, and quality-of-life outcomes. A report from the RANO group. Lancet Oncol. 14, e407–e416 (2013).

    PubMed  Google Scholar 

  23. Gaspar, L. et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 37, 745–751 (1997).

    CAS  PubMed  Google Scholar 

  24. Gaspar, L. E., Scott, C., Murray, K. & Curran, W. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 47, 1001–1006 (2000).

    CAS  PubMed  Google Scholar 

  25. Sperduto, P. W. et al. Effect of targeted therapies on prognostic factors, patterns of care, and survival in patients with renal cell carcinoma and brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 101, 845–853 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Weltman, E. et al. Radiosurgery for brain metastases: a score index for predicting prognosis. Int. J. Radiat. Oncol. Biol. Phys. 46, 1155–1161 (2000).

    CAS  PubMed  Google Scholar 

  27. Lorenzoni, J. et al. Radiosurgery for treatment of brain metastases: estimation of patient eligibility using three stratification systems. Int. J. Radiat. Oncol. Biol. Phys. 60, 218–224 (2004).

    PubMed  Google Scholar 

  28. Sperduto, P. W., Berkey, B., Gaspar, L. E., Mehta, M. & Curran, W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int. J. Radiat. Oncol. Biol. Phys. 70, 510–514 (2008).

    PubMed  Google Scholar 

  29. Sperduto, P. W. et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int. J. Radiat. Oncol. Biol. Phys. 77, 655–661 (2010).

    PubMed  Google Scholar 

  30. Miller, J. A. et al. Overall survival and the response to radiotherapy among molecular subtypes of breast cancer brain metastases treated with targeted therapies. Cancer 123, 2283–2293 (2017).

    CAS  PubMed  Google Scholar 

  31. Sperduto, P. W. et al. Effect of tumor subtype on survival and the graded prognostic assessment for patients with breast cancer and brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 82, 2111–2117 (2012).

    PubMed  Google Scholar 

  32. Sperduto, P. W. et al. The effect of gene alterations and tyrosine kinase inhibition on survival and cause of death in patients with adenocarcinoma of the lung and brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 96, 406–413 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller, J. A. et al. The impact of tumor biology on survival and response to radiation therapy among patients with non-small cell lung cancer brain metastases. Pract. Radiat. Oncol. 7, e263–e273 (2017).

    PubMed  Google Scholar 

  34. Sperduto, P. W. et al. Estimating survival in patients with lung cancer and brain metastases: an update of the Graded Prognostic Assessment for Lung Cancer using Molecular Markers (Lung-molGPA). JAMA Oncol. 3, 827–831 (2017).

    PubMed  Google Scholar 

  35. Sperduto, P. W. et al. The prognostic value of BRAF, C-KIT, and NRAS mutations in melanoma patients with brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 98, 1069–1077 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sperduto, P. W. et al. Estimating survival in melanoma patients with brain metastases: an update of the Graded Prognostic Assessment for Melanoma using Molecular Markers (Melanoma-molGPA). Int. J. Radiat. Oncol. Biol. Phys. 99, 812–816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kotecha, R. et al. Melanoma brain metastasis: the impact of stereotactic radiosurgery, BRAF mutational status, and targeted and/or immune-based therapies on treatment outcome. J. Neurosurg. 129, 50–59 (2018).

    CAS  PubMed  Google Scholar 

  38. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Allen, E. M. et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682–688 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, H. et al. Genes associated with increased brain metastasis risk in non-small cell lung cancer: comprehensive genomic profiling of 61 resected brain metastases versus primary non-small cell lung cancer (Guangdong Association Study of Thoracic Oncology 1036). Cancer 125, 3535–3544 (2019).

    CAS  PubMed  Google Scholar 

  42. Ippen, F. M. et al. Targeting the PI3K/Akt/mTOR-pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases. Neuro Oncol. 21, 1401–1411 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Siena, S. et al. Efficacy of entrectinib in patients (pts) with solid tumors and central nervous system (CNS) metastases: integrated analysis from three clinical trials. J. Clin. Oncol. 37, 3017–3017 (2019).

    Google Scholar 

  44. Ryken, T. C. et al. Congress of Neurological Surgeons systematic review and evidence-based guidelines on the role of steroids in the treatment of adults with metastatic brain tumors. Neurosurgery 84, E189–E191 (2019).

    PubMed  Google Scholar 

  45. Gaspar, L. E. et al. Pre-irradiation evaluation and management of brain metastases. American College of Radiology. ACR Appropriateness Criteria. Radiology 215, 1105–1110 (2000).

    PubMed  Google Scholar 

  46. Jessurun, C. A. C. et al. Evidence-based dexamethasone dosing in malignant brain tumors: what do we really know? J. Neurooncol. 144, 249–264 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hempen, C., Weiss, E. & Hess, C. F. Dexamethasone treatment in patients with brain metastases and primary brain tumors: do the benefits outweigh the side-effects? Support Care Cancer 10, 322–328 (2002).

    PubMed  Google Scholar 

  48. Soffietti, R. et al. EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur. J. Neurol. 13, 674–681 (2006).

    CAS  PubMed  Google Scholar 

  49. Brainin, M. et al. Guidance for the preparation of neurological management guidelines by EFNS scientific task forces–revised recommendations 2004. Eur. J. Neurol. 11, 577–581 (2004).

    CAS  PubMed  Google Scholar 

  50. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    CAS  PubMed  Google Scholar 

  51. Chang, S. M. et al. Anticonvulsant prophylaxis and steroid use in adults with metastatic brain tumors: ASCO and SNO endorsement of the Congress of Neurological Surgeons Guidelines. J. Clin. Oncol. 37, 1130–1135 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Arnold, S. M. & Patchell, R. A. Diagnosis and management of brain metastases. Hematol. Oncol. Clin. North. Am. 15, 1085–1107 (2001).

    CAS  PubMed  Google Scholar 

  53. Mikkelsen, T. et al. The role of prophylactic anticonvulsants in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J. Neurooncol. 96, 97–102 (2010).

    PubMed  Google Scholar 

  54. Sirven, J. I., Wingerchuk, D. M., Drazkowski, J. F., Lyons, M. K. & Zimmerman, R. S. Seizure prophylaxis in patients with brain tumors: a meta-analysis. Mayo Clin. Proc. 79, 1489–1494 (2004).

    PubMed  Google Scholar 

  55. Tremont-Lukats, I. W., Ratilal, B. O., Armstrong, T. & Gilbert, M. R. Antiepileptic drugs for preventing seizures in people with brain tumors. Cochrane Database Syst. Rev. 2, CD004424 (2008).

    Google Scholar 

  56. Kong, X. et al. A meta-analysis: do prophylactic antiepileptic drugs in patients with brain tumors decrease the incidence of seizures? Clin. Neurol. Neurosurg. 134, 98–103 (2015).

    PubMed  Google Scholar 

  57. Wu, A. S. et al. A prospective randomized trial of perioperative seizure prophylaxis in patients with intraparenchymal brain tumors. J. Neurosurg. 118, 873–883 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Patchell, R. A. et al. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 322, 494–500 (1990).

    CAS  PubMed  Google Scholar 

  59. Noordijk, E. M. et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int. J. Radiat. Oncol. Biol. Phys. 29, 711–717 (1994).

    CAS  PubMed  Google Scholar 

  60. Bindal, R. K., Sawaya, R., Leavens, M. E. & Lee, J. J. Surgical treatment of multiple brain metastases. J. Neurosurg. 79, 210–216 (1993).

    CAS  PubMed  Google Scholar 

  61. Schackert, G., Lindner, C., Petschke, S., Leimert, M. & Kirsch, M. Retrospective study of 127 surgically treated patients with multiple brain metastases: indication, prognostic factors, and outcome. Acta Neurochir. 155, 379–387 (2013).

    PubMed  Google Scholar 

  62. Schackert, G., Schmiedel, K., Lindner, C., Leimert, M. & Kirsch, M. Surgery of recurrent brain metastases: retrospective analysis of 67 patients. Acta Neurochir. 155, 1823–1832 (2013).

    PubMed  Google Scholar 

  63. Nahed, B. V. et al. Congress of Neurological Surgeons systematic review and evidence-based guidelines on the role of surgery in the management of adults with metastatic brain tumors. Neurosurgery 84, E152–E155 (2019).

    PubMed  Google Scholar 

  64. Lee, C. H. et al. The role of surgical resection in the management of brain metastasis: a 17-year longitudinal study. Acta Neurochir. 155, 389–397 (2013).

    PubMed  Google Scholar 

  65. Patel, A. J. et al. Factors influencing the risk of local recurrence after resection of a single brain metastasis. J. Neurosurg. 113, 181–189 (2010).

    PubMed  Google Scholar 

  66. Patel, A. J. et al. Impact of surgical methodology on the complication rate and functional outcome of patients with a single brain metastasis. J. Neurosurg. 122, 1132–1143 (2015).

    PubMed  Google Scholar 

  67. Suki, D. et al. Comparative risk of leptomeningeal disease after resection or stereotactic radiosurgery for solid tumor metastasis to the posterior fossa. J. Neurosurg. 108, 248–257 (2008).

    PubMed  Google Scholar 

  68. Suki, D. et al. Comparative risk of leptomeningeal dissemination of cancer after surgery or stereotactic radiosurgery for a single supratentorial solid tumor metastasis. Neurosurgery 64, 664–674 (2009).

    PubMed  Google Scholar 

  69. Baumert, B. G. et al. A pathology-based substrate for target definition in radiosurgery of brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 66, 187–194 (2006).

    PubMed  Google Scholar 

  70. Berghoff, A. S. et al. Invasion patterns in brain metastases of solid cancers. Neuro Oncol. 15, 1664–1672 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. Yoo, H. et al. Reduced local recurrence of a single brain metastasis through microscopic total resection. J. Neurosurg. 110, 730–736 (2009).

    PubMed  Google Scholar 

  72. Kamp, M. A. et al. Proof of principle: supramarginal resection of cerebral metastases in eloquent brain areas. Acta Neurochir. 154, 1981–1986 (2012).

    PubMed  Google Scholar 

  73. Sanmillan, J. L., Fernandez-Coello, A., Fernandez-Conejero, I., Plans, G. & Gabarros, A. Functional approach using intraoperative brain mapping and neurophysiological monitoring for the surgical treatment of brain metastases in the central region. J. Neurosurg. 126, 698–707 (2017).

    PubMed  Google Scholar 

  74. Vogelbaum, M. A. & Suh, J. H. Resectable brain metastases. J. Clin. Oncol. 24, 1289–1294 (2006).

    PubMed  Google Scholar 

  75. Carpentier, A. et al. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg. Med. 43, 943–950 (2011).

    PubMed  Google Scholar 

  76. Mehta, A. M., Sonabend, A. M. & Bruce, J. N. Convection-enhanced delivery. Neurotherapeutics 14, 358–371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Arvanitis, C. D. et al. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc. Natl Acad. Sci. USA 115, E8717–E8726 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahluwalia, M. et al. Laser ablation after stereotactic radiosurgery: a multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. J. Neurosurg. 130, 804–811 (2018).

    PubMed  Google Scholar 

  79. Tsao, M. N. et al. Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst. Rev. 1, CD003869 (2018).

    PubMed  Google Scholar 

  80. Kim, J. M. et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J. Neurooncol. 133, 357–368 (2017).

    PubMed  Google Scholar 

  81. Mulvenna, P. et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. Lancet 388, 2004–2014 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Trifiletti, D. M., Larner, J. M. & Sheehan, J. P. When should patients with brain metastases receive whole brain irradiation? J. Radiosurg. SBRT 4, 1–3 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Farris, M. et al. Brain metastasis velocity: a novel prognostic metric predictive of overall survival and freedom from whole-brain radiation therapy after distant brain failure following upfront radiosurgery alone. Int. J. Radiat. Oncol. Biol. Phys. 98, 131–141 (2017).

    PubMed  Google Scholar 

  84. Patchell, R. A. et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280, 1485–1489 (1998).

    CAS  PubMed  Google Scholar 

  85. Brown, P. D. et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316, 401–409 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Nabors, L. B., et al. NCCN Guidelines Version 1.2019 Central Nervous System Cancers. NCCN https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf (2019).

  87. Soffietti, R. et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 19, 162–174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Brown, P. D. et al. Whole-brain radiotherapy for brain metastases: evolution or revolution? J. Clin. Oncol. 36, 483–491 (2018).

    CAS  PubMed  Google Scholar 

  89. Li, J., Bentzen, S. M., Renschler, M. & Mehta, M. P. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J. Clin. Oncol. 25, 1260–1266 (2007).

    PubMed  Google Scholar 

  90. Gondi, V. et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J. Clin. Oncol. 32, 3810–3816 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Rapp, S. R. et al. Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J. Clin. Oncol. 33, 1653–1659 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dye, N. B., Gondi, V. & Mehta, M. P. Strategies for preservation of memory function in patients with brain metastases. Chin. Clin. Oncol. 4, 24 (2015).

    PubMed  Google Scholar 

  93. Brown, P. D. et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 15, 1429–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gondi, V. et al. Preservation of neurocognitive function (NCF) with conformal avoidance of the hippocampus during whole-brain radiotherapy (HA-WBRT) for brain metastases: preliminary results of phase III trial NRG Oncology CC001. Int. J. Radiat. Oncol. Biol. Phys. 102, 1607 (2018).

    Google Scholar 

  95. Redmond, K. J. et al. Prospective study of hippocampal-sparing prophylactic cranial irradiation in limited-stage small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 98, 603–611 (2017).

    PubMed  Google Scholar 

  96. Nguyen, T. K. et al. Single-fraction stereotactic radiosurgery versus hippocampal-avoidance whole brain radiation therapy for patients with 10 to 30 brain metastases: a dosimetric analysis. Int. J. Radiat. Oncol. Biol. Phys. 105, 394–399 (2019).

    PubMed  Google Scholar 

  97. Auperin, A. et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N. Engl. J. Med. 341, 476–484 (1999).

    CAS  PubMed  Google Scholar 

  98. Lee, J. J. et al. Decision analysis for prophylactic cranial irradiation for patients with small-cell lung cancer. J. Clin. Oncol. 24, 3597–3603 (2006).

    PubMed  Google Scholar 

  99. Slotman, B. J. et al. Prophylactic cranial irradiation in extensive disease small-cell lung cancer: short-term health-related quality of life and patient reported symptoms: results of an international phase III randomized controlled trial by the EORTC Radiation Oncology and Lung Cancer Groups. J. Clin. Oncol. 27, 78–84 (2009).

    PubMed  Google Scholar 

  100. Takahashi, T. et al. Prophylactic cranial irradiation versus observation in patients with extensive-disease small-cell lung cancer: a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 18, 663–671 (2017).

    PubMed  Google Scholar 

  101. Gore, E. M. et al. Randomized phase II study comparing prophylactic cranial irradiation alone to prophylactic cranial irradiation and consolidative extracranial irradiation for extensive-disease small cell lung cancer (ED SCLC): NRG Oncology RTOG 0937. J. Thorac. Oncol. 12, 1561–1570 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Manapov, F. et al. Prophylactic cranial irradiation in small-cell lung cancer: update on patient selection, efficacy and outcomes. Lung Cancer 9, 49–55 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Le Pechoux, C. et al. Standard-dose versus higher-dose prophylactic cranial irradiation (PCI) in patients with limited-stage small-cell lung cancer in complete remission after chemotherapy and thoracic radiotherapy (PCI 99-01, EORTC 22003-08004, RTOG 0212, and IFCT 99-01): a randomised clinical trial. Lancet Oncol. 10, 467–474 (2009).

    PubMed  Google Scholar 

  104. Li, N. et al. Randomized phase III trial of prophylactic cranial irradiation versus observation in patients with fully resected stage IIIA-N2 nonsmall-cell lung cancer and high risk of cerebral metastases after adjuvant chemotherapy. Ann. Oncol. 26, 504–509 (2015).

    CAS  PubMed  Google Scholar 

  105. Pottgen, C. et al. Prophylactic cranial irradiation in operable stage IIIA non small-cell lung cancer treated with neoadjuvant chemoradiotherapy: results from a German multicenter randomized trial. J. Clin. Oncol. 25, 4987–4992 (2007).

    PubMed  Google Scholar 

  106. Sun, A. et al. Prophylactic cranial irradiation vs observation in patients with locally advanced non-small cell lung cancer: a long-term update of the NRG Oncology/RTOG 0214 phase 3 randomized clinical trial. JAMA Oncol. 5, 847–855 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. De Ruysscher, D. et al. Prophylactic cranial irradiation versus observation in radically treated stage III non-small-cell lung cancer: a randomized phase III NVALT-11/DLCRG-02 study. J. Clin. Oncol. 36, 2366–2377 (2018).

    PubMed  Google Scholar 

  108. Chang, E. L. et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 10, 1037–1044 (2009).

    PubMed  Google Scholar 

  109. Aoyama, H. et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295, 2483–2491 (2006).

    CAS  PubMed  Google Scholar 

  110. Hong, A. M. et al. Adjuvant whole-brain radiation therapy compared with observation after local treatment of melanoma brain metastases: a multicenter, randomized phase III trial. J. Clin. Oncol. 37, 3132–3141 (2019).

    PubMed  Google Scholar 

  111. Tsao, M. N. et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): an American Society for Radiation Oncology evidence-based guideline. Practical Radiat. Oncol. 2, 210–225 (2012).

    Google Scholar 

  112. Chao, S. T. et al. Stereotactic radiosurgery in the management of limited (1-4) brain metasteses: systematic review and international stereotactic radiosurgery society practice guideline. Neurosurgery 83, 345–353 (2018).

    PubMed  Google Scholar 

  113. Lal, L. S. et al. Cost-effectiveness analysis of a randomized study comparing radiosurgery with radiosurgery and whole brain radiation therapy in patients with 1 to 3 brain metastases. Am. J. Clin. Oncol. 35, 45–50 (2012).

    PubMed  Google Scholar 

  114. Lester-Coll, N. H. et al. Cost-effectiveness of stereotactic radiosurgery versus whole-brain radiation therapy for up to 10 brain metastases. J. Neurosurg. 125, 18–25 (2016).

    PubMed  Google Scholar 

  115. Savitz, S. T., Chen, R. C. & Sher, D. J. Cost-effectiveness analysis of neurocognitive-sparing treatments for brain metastases. Cancer 121, 4231–4239 (2015).

    PubMed  Google Scholar 

  116. Abel, R. J. et al. Stereotactic radiosurgery to the resection cavity for brain metastases: prognostic factors and outcomes. J. Radiosurg. SBRT 3, 179–186 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Zhang, Y. & Chang, E. L. Resection cavity radiosurgery for intracranial metastases: a review of the literature. J. Radiosurg. SBRT 3, 91–102 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Brown, P. D. et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 18, 1049–1060 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Mahajan, A. et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 18, 1040–1048 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Kocher, M. et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J. Clin. Oncol. 29, 134–141 (2011).

    PubMed  Google Scholar 

  121. Kayama, T. et al. Effects of surgery with salvage stereotactic radiosurgery versus surgery with whole-brain radiation therapy in patients with one to four brain metastases (JCOG0504): a phase III, noninferiority, randomized controlled trial. J. Clin. Oncol. 36, 3282–3289 (2018).

    CAS  Google Scholar 

  122. Atalar, B. et al. Cavity volume dynamics after resection of brain metastases and timing of postresection cavity stereotactic radiosurgery. Neurosurgery 72, 180–185 (2013).

    PubMed  Google Scholar 

  123. Soliman, H. et al. Consensus contouring guidelines for postoperative completely resected cavity stereotactic radiosurgery for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 100, 436–442 (2018).

    PubMed  Google Scholar 

  124. Patel, K. R. et al. Comparing pre-operative stereotactic radiosurgery (SRS) to post-operative whole brain radiation therapy (WBRT) for resectable brain metastases: a multi-institutional analysis. J. Neurooncol. 131, 611–618 (2017).

    CAS  PubMed  Google Scholar 

  125. Routman, D. M. et al. Preoperative stereotactic radiosurgery for brain metastases. Front. Neurol. 9, 959 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Yamamoto, M. et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 15, 387–395 (2014).

    PubMed  Google Scholar 

  127. Hughes, R. T. et al. Initial SRS for patients with 5 to 15 brain metastases: results of a multi-institutional experience. Int. J. Radiat. Oncol. Biol. Phys. 104, 1091–1098 (2019).

    PubMed  Google Scholar 

  128. Joshi, R. S. et al. Prognostic importance of cumulative intracranial tumor volume in patients with gastrointestinal brain metastasis treated with stereotactic radiosurgery. World Neurosurg. 121, e747–e754 (2019).

    PubMed  Google Scholar 

  129. Hirshman, B. R. et al. Superior prognostic value of cumulative intracranial tumor volume relative to largest intracranial tumor volume for stereotactic radiosurgery-treated brain metastasis patients. Neurosurgery 82, 473–480 (2018).

    PubMed  Google Scholar 

  130. Prasad, D. in Adult CNS Radiation Oncology (eds Chang, E., Brown, P., Lo, S., Sahgal, A. & Suh, J.) 665–685 (Springer, 2018).

  131. Thomas, E. M., Popple, R. A., Bredel, M. & Fiveash, J. B. in Adult CNS Radiation Oncology (eds Chang, E., Brown, P., Lo, S., Sahgal, A. & Suh, J.) 639–663 (Springer, 2018).

  132. Wiggenraad, R. et al. Dose-effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother. Oncol. 98, 292–297 (2011).

    PubMed  Google Scholar 

  133. Vogelbaum, M. A. et al. Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J. Neurosurg. 104, 907–912 (2006).

    PubMed  Google Scholar 

  134. Marcrom, S. R. et al. Fractionated stereotactic radiation therapy for intact brain metastases. Adv. Radiat. Oncol. 2, 564–571 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Minniti, G. et al. Fractionated stereotactic radiosurgery for patients with brain metastases. J. Neurooncol. 117, 295–301 (2014).

    CAS  PubMed  Google Scholar 

  136. Traylor, J. I. et al. Fractionated stereotactic radiotherapy for local control of resected brain metastases. J. Neuro-oncol. 144, 343–350 (2019).

    Google Scholar 

  137. Angelov, L. et al. Impact of 2-staged stereotactic radiosurgery for treatment of brain metastases ≥2 cm. J. Neurosurg. 129, 366–382 (2018).

    PubMed  Google Scholar 

  138. Yomo, S., Hayashi, M. & Nicholson, C. A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors. J. Neurooncol. 109, 159–165 (2012).

    PubMed  PubMed Central  Google Scholar 

  139. Higuchi, Y. et al. Three-staged stereotactic radiotherapy without whole brain irradiation for large metastatic brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 74, 1543–1548 (2009).

    PubMed  Google Scholar 

  140. Minniti, G. et al. Single-fraction versus multifraction (3×9 Gy) stereotactic radiosurgery for large (>2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int. J. Radiat. Oncol. Biol. Phys. 95, 1142–1148 (2016).

    PubMed  Google Scholar 

  141. Kim, K. H. et al. Outcome evaluation of patients treated with fractionated Gamma Knife radiosurgery for large (>3 cm) brain metastases: a dose-escalation study. J. Neurosurg. https://doi.org/10.3171/2019.5.jns19222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Choi, C. Y. et al. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int. J. Radiat. Oncol. Biol. Phys. 84, 336–342 (2012).

    PubMed  Google Scholar 

  143. Shen, C. J. et al. The strategy of repeat stereotactic radiosurgery without whole brain radiation treatment for new brain metastases: outcomes and implications for follow-up monitoring. Pract. Radiat. Oncol. 6, 409–416 (2016).

    PubMed  Google Scholar 

  144. Kotecha, R. et al. Three or more courses of stereotactic radiosurgery for patients with multiply recurrent brain metastases. Neurosurgery 80, 871–879 (2017).

    PubMed  Google Scholar 

  145. Shultz, D. B. et al. Repeat courses of stereotactic radiosurgery (SRS), deferring whole-brain irradiation, for new brain metastases after initial SRS. Int. J. Radiat. Oncol. Biol. Phys. 92, 993–999 (2015).

    PubMed  Google Scholar 

  146. McTyre, E. et al. Multi-institutional competing risks analysis of distant brain failure and salvage patterns after upfront radiosurgery without whole brain radiotherapy for brain metastasis. Ann. Oncol. 29, 497–503 (2018).

    CAS  PubMed  Google Scholar 

  147. Eichler, A. F. et al. The biology of brain metastases — translation to new therapies. Nat. Rev. Clin. Oncol. 8, 344–356 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Fortin, D. The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr. Cancer Drug Targets 12, 247–259 (2012).

    CAS  PubMed  Google Scholar 

  149. Lockman, P. R. et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 16, 5664–5678 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Barlesi, F. et al. Pemetrexed and cisplatin as first-line chemotherapy for advanced non-small-cell lung cancer (NSCLC) with asymptomatic inoperable brain metastases: a multicenter phase II trial (GFPC 07-01). Ann. Oncol. 22, 2466–2470 (2011).

    CAS  PubMed  Google Scholar 

  151. Robinet, G. et al. Results of a phase III study of early versus delayed whole brain radiotherapy with concurrent cisplatin and vinorelbine combination in inoperable brain metastasis of non-small-cell lung cancer: Groupe Francais de Pneumo-Cancerologie (GFPC) Protocol 95-1. Ann. Oncol. 12, 59–67 (2001).

    CAS  PubMed  Google Scholar 

  152. Cortes, J. et al. Front-line paclitaxel/cisplatin-based chemotherapy in brain metastases from non-small-cell lung cancer. Oncology 64, 28–35 (2003).

    CAS  PubMed  Google Scholar 

  153. Dinglin, X. X. et al. Pemetrexed and cisplatin combination with concurrent whole brain radiotherapy in patients with brain metastases of lung adenocarcinoma: a single-arm phase II clinical trial. J. Neurooncol. 112, 461–466 (2013).

    CAS  PubMed  Google Scholar 

  154. Antonadou, D. et al. Phase II randomized trial of temozolomide and concurrent radiotherapy in patients with brain metastases. J. Clin. Oncol. 20, 3644–3650 (2002).

    CAS  PubMed  Google Scholar 

  155. Verger, E. et al. Temozolomide and concomitant whole brain radiotherapy in patients with brain metastases: a phase II randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 61, 185–191 (2005).

    CAS  PubMed  Google Scholar 

  156. Tomasini, P., Walia, P., Labbe, C., Jao, K. & Leighl, N. B. Targeting the KRAS pathway in non-small cell lung cancer. Oncologist 21, 1450–1460 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. da Cunha Santos, G., Shepherd, F. A. & Tsao, M. S. EGFR mutations and lung cancer. Annu. Rev. Pathol. 6, 49–69 (2011).

    PubMed  Google Scholar 

  158. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cappuzzo, F. et al. Epidermal growth factor receptor targeted therapy by ZD 1839 (Iressa) in patients with brain metastases from non-small cell lung cancer (NSCLC). Lung Cancer 41, 227–231 (2003).

    PubMed  Google Scholar 

  160. Ishida, A. et al. Gefitinib as a first line of therapy in non-small cell lung cancer with brain metastases. Intern. Med. 43, 718–720 (2004).

    PubMed  Google Scholar 

  161. Fekrazad, M. H., Ravindranathan, M. & Jones, D. V. Jr. Response of intracranial metastases to erlotinib therapy. J. Clin. Oncol. 25, 5024–5026 (2007).

    PubMed  Google Scholar 

  162. Ceresoli, G. L. et al. Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann. Oncol. 15, 1042–1047 (2004).

    CAS  PubMed  Google Scholar 

  163. Kim, J. E. et al. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer 65, 351–354 (2009).

    PubMed  Google Scholar 

  164. Porta, R. et al. Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur. Respir. J. 37, 624–631 (2011).

    CAS  PubMed  Google Scholar 

  165. Grommes, C. et al. "Pulsatile" high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol. 13, 1364–1369 (2011).

    PubMed  PubMed Central  Google Scholar 

  166. How, J., Mann, J., Laczniak, A. N. & Baggstrom, M. Q. Pulsatile erlotinib in EGFR-positive non-small-cell lung cancer patients with leptomeningeal and brain metastases: review of the literature. Clin. Lung Cancer 18, 354–363 (2017).

    CAS  PubMed  Google Scholar 

  167. Welsh, J. W. et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. J. Clin. Oncol. 31, 895–902 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Lee, S. M. et al. Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J. Natl Cancer Inst. 106, dju151 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. Sperduto, P. W. et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: radiation therapy oncology group 0320. Int. J. Radiat. Oncol. Biol. Phys. 85, 1312–1318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mok, T. S. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640 (2017).

    CAS  PubMed  Google Scholar 

  171. Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    CAS  PubMed  Google Scholar 

  172. Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018).

    CAS  PubMed  Google Scholar 

  173. Janne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372, 1689–1699 (2015).

    PubMed  Google Scholar 

  174. Solomon, B. J. et al. Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from PROFILE 1014. J. Clin. Oncol. 34, 2858–2865 (2016).

    CAS  PubMed  Google Scholar 

  175. Venur, V. A. & Ahluwalia, M. S. Targeted therapy in brain metastases: ready for primetime? Am. Soc. Clin. Oncol. Educ. Book 35, e123–e130 (2016).

    PubMed  Google Scholar 

  176. Crino, L. et al. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J. Clin. Oncol. 34, 2866–2873 (2016).

    CAS  PubMed  Google Scholar 

  177. Gadgeel, S. M. et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 15, 1119–1128 (2014).

    CAS  PubMed  Google Scholar 

  178. Hida, T. et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 390, 29–39 (2017).

    CAS  PubMed  Google Scholar 

  179. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).

    CAS  PubMed  Google Scholar 

  180. Camidge, D. R. et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 379, 2027–2039 (2018).

    CAS  PubMed  Google Scholar 

  181. Freedman, R. A. et al. TBCRC 022: a phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J. Clin. Oncol. 37, 1081–1089 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Venur, V. A. & Leone, J. P. Targeted therapies for brain metastases from breast cancer. Int. J. Mol. Sci. 17, 1543 (2016).

    PubMed Central  Google Scholar 

  183. Bachelot, T. et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 14, 64–71 (2013).

    CAS  PubMed  Google Scholar 

  184. Lin, N. U. et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res. 15, 1452–1459 (2009).

    CAS  PubMed  Google Scholar 

  185. Lin, N. U. et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 26, 1993–1999 (2008).

    CAS  PubMed  Google Scholar 

  186. Freedman, R. A. et al. Translational Breast Cancer Research Consortium (TBCRC) 022: a phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J. Clin. Oncol. 34, 945–952 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Freedman, R. et al. TBCRC 022: phase II trial of neratinib + capecitabine for patients (Pts) with human epidermal growth factor receptor 2 (HER2+) breast cancer brain metastases (BCBM). J. Clin. Oncol. 35, 1005 (2017).

    Google Scholar 

  188. Borges, V. F. et al. Efficacy results of a phase 1b study of ONT-380, a CNS-penetrant TKI, in combination with T-DM1 in HER2+ metastatic breast cancer (MBC), including patients (pts) with brain metastases. J. Clin. Oncol. 34, 513 (2016).

    Google Scholar 

  189. Lin, N. U. et al. Determination of the maximum tolerated dose (MTD) of the CNS penetrant tyrosine kinase inhibitor (TKI) tesevatinib administered in combination with trastuzumab in HER2+ patients with metastatic breast cancer (BC). J. Clin. Oncol. 34, 514 (2016).

    Google Scholar 

  190. Dijkers, E. C. et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 87, 586–592 (2010).

    CAS  PubMed  Google Scholar 

  191. Lewis Phillips, G. D. et al. Trastuzumab uptake and its relation to efficacy in an animal model of HER2-positive breast cancer brain metastasis. Breast Cancer Res. Treat. 164, 581–591 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lin, N. U. et al. Interim analysis of PATRICIA: an open-label, single-arm, phase II study of pertuzumab (P) with high-dose trastuzumab (H) for the treatment of central nervous system (CNS) progression post radiotherapy (RT) in patients (pts) with HER2-positive metastatic breast cancer (MBC). J. Clin. Oncol. 35, 2074 (2017).

    Google Scholar 

  193. Bartsch, R. et al. Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clin. Exp. Metastasis 32, 729–737 (2015).

    CAS  PubMed  Google Scholar 

  194. Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

    PubMed  Google Scholar 

  195. Lin, N. U., Bellon, J. R. & Winer, E. P. CNS metastases in breast cancer. J. Clin. Oncol. 22, 3608–3617 (2004).

    PubMed  Google Scholar 

  196. Anders, C. K. et al. Phase 2 study of abemaciclib in patients (pts) with brain metastases (BM) secondary to HR+, HER2- metastatic breast cancer (MBC). J. Clin. Oncol. 37, 1017 (2019).

    Google Scholar 

  197. Cheng, L., Lopez-Beltran, A., Massari, F., MacLennan, G. T. & Montironi, R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod. Pathol. 31, 24–38 (2018).

    CAS  PubMed  Google Scholar 

  198. McArthur, G. A. et al. Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study. Ann. Oncol. 28, 634–641 (2017).

    CAS  PubMed  Google Scholar 

  199. Long, G. V. et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 1087–1095 (2012).

    CAS  PubMed  Google Scholar 

  200. Davies, M. A. et al. Dabrafenib plus trametinib in patients with BRAF V600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 18, 863–873 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Shonka, N., Venur, V. A. & Ahluwalia, M. S. Targeted treatment of brain metastases. Curr. Neurol. Neurosci. Rep. 17, 37 (2017).

    PubMed  Google Scholar 

  202. Margolin, K. et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 13, 459–465 (2012).

    CAS  PubMed  Google Scholar 

  203. Goldberg, S. B. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 17, 976–983 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Tawbi, H. et al. Efficacy and safety of nivolumab (NIVO) plus ipilimumab (IPI) in patients with melanoma (MEL) metastatic to the brain: results of the phase II study checkmate 204. J. Clin. Oncol. 35, 9507 (2017).

    Google Scholar 

  205. Long, G. et al. A randomized phase II study of nivolumab or nivolumab combined with ipilimumab in patients (pts) with melanoma brain metastases (mets): the anti-PD1 brain collaboration (ABC). J. Clin. Oncol. 35, 9508 (2017).

    Google Scholar 

  206. Tawbi, H. A. et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Flippot, R. et al. Safety and efficacy of nivolumab in brain metastases from renal cell carcinoma: results of the GETUG-AFU 26 NIVOREN multicenter phase II study. J. Clin. Oncol. 37, 2008–2016 (2019).

    CAS  PubMed  Google Scholar 

  208. Kondziolka, D., Shin, S. M., Brunswick, A., Kim, I. & Silverman, J. S. The biology of radiosurgery and its clinical applications for brain tumors. Neuro Oncol. 17, 29–44 (2015).

    CAS  PubMed  Google Scholar 

  209. Reynders, K., Illidge, T., Siva, S., Chang, J. Y. & De Ruysscher, D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat. Rev. 41, 503–510 (2015).

    PubMed  PubMed Central  Google Scholar 

  210. Kotecha, R. et al. The impact of sequencing PD-1/PD-L1 inhibitors and stereotactic radiosurgery for patients with brain metastasis. Neuro Oncol. 21, 1060–1068 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Schoenfeld, J. D. et al. Ipilmumab and cranial radiation in metastatic melanoma patients: a case series and review. J. Immunother. Cancer 3, 50 (2015).

    PubMed  PubMed Central  Google Scholar 

  212. Knisely, J. P. et al. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J. Neurosurg. 117, 227–233 (2012).

    PubMed  PubMed Central  Google Scholar 

  213. Schapira, E. et al. Improved overall survival and locoregional disease control with concurrent PD-1 pathway inhibitors and stereotactic radiosurgery for lung cancer patients with brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 101, 624–629 (2018).

    PubMed  Google Scholar 

  214. Levin, V. A. et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 79, 1487–1495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Acharya, S. et al. Distant intracranial failure in melanoma brain metastases treated with stereotactic radiosurgery in the era of immunotherapy and targeted agents. Adv. Radiat. Oncol. 2, 572–580 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Colaco, R. J., Martin, P., Kluger, H. M., Yu, J. B. & Chiang, V. L. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J. Neurosurg. 125, 17–23 (2016).

    CAS  PubMed  Google Scholar 

  217. Lehrer, E. J. et al. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: an international meta-analysis of individual patient data. Radiother. Oncol. 130, 104–112 (2019).

    PubMed  Google Scholar 

  218. Lin, N. U. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 16, e270–e278 (2015).

    PubMed  Google Scholar 

  219. Shearkhani, O. et al. Detection of volume-changing metastatic brain tumors on longitudinal MRI using a semiautomated algorithm based on the Jacobian operator field. Am. J. Neuroradiol. 38, 2059–2066 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Jakubovic, R. et al. The predictive capacity of apparent diffusion coefficient (ADC) in response assessment of brain metastases following radiation. Clin. Exp. Metastasis 33, 277–284 (2016).

    CAS  PubMed  Google Scholar 

  221. Detsky, J. S. et al. Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology. J. Neurooncol. 134, 433–441 (2017).

    PubMed  Google Scholar 

  222. Mehrabian, H. et al. Water exchange rate constant as a biomarker of treatment efficacy in patients with brain metastases undergoing stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 98, 47–55 (2017).

    PubMed  Google Scholar 

  223. Desmond, K. L. et al. Chemical exchange saturation transfer for predicting response to stereotactic radiosurgery in human brain metastasis. Magn. Reson. Med. 78, 1110–1120 (2017).

    CAS  PubMed  Google Scholar 

  224. Mehrabian, H., Desmond, K. L., Soliman, H., Sahgal, A. & Stanisz, G. J. Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer. Clin. Cancer Res. 23, 3667–3675 (2017).

    CAS  PubMed  Google Scholar 

  225. Peng, L. et al. Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics. Int. J. Radiat. Oncol. Biol. Phys. 102, 1236–1243 (2018).

    PubMed  PubMed Central  Google Scholar 

  226. Schouten, L. J., Rutten, J., Huveneers, H. A. & Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94, 2698–2705 (2002).

    PubMed  Google Scholar 

  227. Barnholtz-Sloan, J. S. et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 22, 2865–2872 (2004).

    PubMed  Google Scholar 

  228. Sperduto, P. W. et al. Estimating survival in patients with gastrointestinal cancers and brain metastases: an update of the graded prognostic assessment for gastrointestinal cancers (GI-GPA). Clin. Transl. Radiat. Oncol. 18, 39–45 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to John H. Suh.

Ethics declarations

Competing interests

J.H.S. has acted as a consultant of AbbVie. R.K. has received honoraria from Accuray, Elekta AB, Elsevier and Novocure, and has served on the advisory board of Accuray and Novocure. S.T.C. has received honoraria from Varian Medical Systems. M.S.A. has acted as a consultant of AbbVie, Bayer, Elsevier, Flatiron, Karyopharm, Varian Medical Systems and VBI vaccines, has received royalties from Wiley, fees for contracted research from AbbVie, AstraZeneca, Bayer, BMS, Incyte, Merck, Novocure and Pharmacyclics, and owns stocks in Doctible and Mimivax. A.S. has acted as a consultant of AbbVie, BrainLAB, Elekta (Gamma Knife Icon), Merck, Roche and Varian, has served on the advisory board of VieCure and the International Stereotactic Radiosurgery Society (ISRS), has conducted educational seminars on behalf of Accuray, BrainLAB, Elekta AB and Varian (CNS Teaching Faculty), has received a research grant from Elekta AB, has received travel and accommodation fees from BrainLAB, Elekta and Varian, and is a member of the Elekta MR Linac, Elekta Spine, Oligometastases and Linac-based SRS consortia. E.L.C. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suh, J.H., Kotecha, R., Chao, S.T. et al. Current approaches to the management of brain metastases. Nat Rev Clin Oncol 17, 279–299 (2020). https://doi.org/10.1038/s41571-019-0320-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0320-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer